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Abstract

We propose extensions to the NFSv4 client architecture that provide recovery services, checkpointing and logging
to parallel applications. Fault-tolerance relies on NFSv4 clients forming client clusters that share delegation state
and transfer data among their local caches. We contend that parallel extensions to NFSv4 should not be limited to
file system technologies, such as parallelizing or virtualizing data paths. Rather, NFSv4 should consider semantic
extensions that fulfill the recoverability requirements of parallel applications.

1 Overview
Fault tolerance in parallel environments is a subject that has been studied extensively in theory, but practical

implementations are relatively scarce. Clusters of commodity computers are commonly used to implement cost-
effective, high-performance systems. However, the low-cost, commodity nature of clusters leads to their principal
drawback – numerous low cost workstations are prone to unexpected failures. It becomes critical to provide some
degree of fault tolerance to the high performance applications running on these clusters. We propose a model in
which the file system, specifically a slightly modified version of NFSv4 [8, 16], provides built-in support for fault
tolerant applications. Elements such as data availability, output commit, repeatable reads and recoverability, formerly
addressed in the application domain, are now delegated to the file system.

The delegation of fault-tolerant capabilities to the file system simplifies high performance applications, because
developers no longer have to build their own complex mechanisms. Applications use the asynchronous file system
interfaces for both file sharing and fault tolerance. The file system manages persistence and communication for
checkpointing and logging. Applications still have control over their own fault tolerance semantics, e.g. when and
what to log.

Current file systems do not meet the requirements of high performance parallel applications. These applications
usually communicate through both message passing and file sharing. Conventional file servers, including the NFSv4
server, do not support file sharing efficiently for parallel applications. Conventional rollback recovery protocols incur
substantial overhead when used for applications in which nodes communicate through file sharing. Furthermore,
current parallel file systems do not assist recoverability since they do not provide support for repeatable reads and fast
output commits.

Most previous attempts to incorporate fault tolerance into parallel environments focus on message passing inter-
faces, such as MPI [17] or PVM [9]. These techniques offer fault tolerance that is transparent to applications, but they
apply only to a specific message passing interface.

The idea to enhance NFS with fault tolerance support is not new [11, 13, 2]. Previous proposals focus on data
availability by replicating files to many servers. While data availability is an important aspect of fault tolerance,
applications have further requirements. These include message logging, checkpointing, repeatable reads and output
commit. Currently, NFS related methods provide fault tolerance support for file system data only and, therefore, fail
to satisfy the needs of applications.

Our decision to provide fault tolerance support in the file system intends primarily to simplify the development
of high performance parallel applications by hiding low-level fault tolerance characteristics from the developer, such
as the exact logging location or support for repeatable reads. Also, the choice of the ubiquitous NFS protocol as the
underlying file system, which can be found in almost every popular operating system, enables recoverability among
heterogeneous clients with different operating systems and architectures.

The final contribution of our proposal is the modification of the NFSv4 client to support file sharing more effi-
ciently. NFSv4 introduce new capabilities for more aggressive client side caching in order to improve performance
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over high latency networks. Specifically, file delegation transfers all responsibility for locking, read and write oper-
ations to the client, requiring no further interaction with the server for the duration of the delegation. We enhance
the concept of delegation by allowing a file to be delegated to a cluster of clients. Clients exchange the delegation
interactively to support read and write sharing without contacting the server. We refer to this enhanced version of
NFSv4 delegation as group delegation. This feature particularly benefits high performance, parallel applications.

2 Related Work
We include a brief treatment of NFS recoverability and some related fault-tolerance techniques in parallel environ-

ments. Elnozahy et al [7] offer a thorough review of rollback recovery protocols.
Some research augments message passing interfaces with fault-tolerance capabilities [3, 18, 15, 10], which pre-

serves application interfaces and results in application transparent fault tolerance. These solutions apply to a specific
interprocess communication model only and do not address I/O or other communication paths. Application level
toolkits, such as Manetho [6], share the same disadvantage.

Other methods require modification or recompilation of the application either by offering a library that provides
check-pointing, restart and replication capabilities [14] or by using a special-purpose compiler that produces “fault-
tolerant” code [4]. Modification and recompilation is burdensome and the use of the systems in parallel environments
is not straightforward.

Fault-tolerant NFS systems address the availability and recoverability of file system data only, and, do not address
application concerns, such as checkpointing and logging. FT-NFS [13] uses a number of backup NFS servers and
replicates the file state among this group. Expand [11] virtualizes a set of NFS server as a unique parallel file system
with a common namespace. HA-NFS [2] employs redundant hardware, dual-ported disks, and mirroring to take over
on a hot-standby server in case the primary fails.

The extensions we propose are orthogonal to fault-tolerance in NFS and can be used to improve existing fault
tolerant systems. We build application fault tolerance within the NFSv4 protocol and rely on NFSv4 servers to manage
the availability and persistence of file system data. The extensions to NFSv4 allow rollback recovery systems to use
the file system efficiently and extend recoverability guarantees to file I/O.

Alvisi et al [1] describe a theoretical model with recovery properties similar to the proposed system. Their ap-
proach uses a client/server file system to share logging and checkpointing information. However, they use message
passing protocols for volatile replication and client-to-client data sharing outside the file system. Message passing
avoids the overhead of synchronous I/O and reduce server interactions. In contrast, our system builds these benefits
into the file system, making recovery services efficient and application transparent.

3 NFSv4 client modifications
In our attempt to provide efficient fault tolerance support in the NFS file system, some modifications to the NFSv4

client are necessary. No server-side modifications are required.
The first change is group delegation. Current NFS implementations (including NFSv4) require the client possess-

ing the most recent version of the file to write it back to the server before it can be sent to the next client. In order
to improve performance of write sharing, we propose a enhanced version of delegation (group delegation) in which
clients share files directly with other clients without additional interaction with the server.

Group-delegation extends the current delegation model by allowing clients that modify the delegated file to perform
a COMMIT operation without contacting the server. Instead of committing to the server’s stable storage, clients copy
a file to a configurable number of remote memories. We refer to this operation as fast commit, because updates
are logged immediately to remote memories and will be written to stable storage at a later time. Fast commit is an
application of family-based logging protocols (FBL) [1]. FBL protocol implements stable storage by replicating data
to the volatile memory of nodes and guarantees that the file can be recovered at any time unless multiple concurrent
failures occur.

As delegated files are now distributed to multiple client memories, we need an effective way to locate which client
has the desired instance of the file. In order to address this issue, we use a form of cooperative caching [5] between
the collaborating NFS clients. The cooperative caching algorithm coordinates the contents of the caches and allows
requests to be satisfied by the memory of remote clients, if possible.
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4 NFSv4 in rollback recovery protocols
By using fault-tolerance extensions to NFSv4, applications and user-level toolkits avoid the obligation to maintain

persistence and communication for checkpointing and logging. NFS hides the details of the inter-node interactions,
allowing applications to focus on the high-level semantics of fault tolerance (e.g. when and what to log, checkpoint
frequency and coordination).

Fault-tolerant extensions to NFSv4 solve the performance problems of storing application state in shared file
systems and simplify the implementation and management of replication and persistence. Consider a client that
stores state information in local storage. When such a client fails, its disk becomes unreachable and other clients
cannot access data to recover application state. Rollback recovery systems [1] avoid this problem by replicating state
outside the file system through message passing. Such an approach requires complex protocols to create and invalidate
replicas. As an alternative to replication through message passing, clients can store all state to a shared file system.
However, client/server interactions are expensive relative to I/O to a local disk or messaging within a cluster. Our
extensions to NFSv4 allow the shared file system to encapsulate the advanced features of rollback recovery protocols.
Group delegation, fast commit, and cooperative caching solve the performance problems of shared file systems. Shared
data are made persistent seamlessly by asynchronous writes from client caches. NFS clients store shared data in their
local memory, in a number of remote peer memories to guarantee availability across node failures, and eventually to
the file server to guarantee persistence.

Shared message logging is the first fault tolerance function implemented by our NFSv4 client extensions. One
approach to message logging has all clients sharing a single log, appending causal events to a file. In this approach,
group delegation serializes writes. Cooperative caching allows nodes to exchange log data between local memories.
Fast commit replicates data for availability. All together, the features allow clients to share a single log file without
server interactions, except for asynchronous write-back to make modified file data persistent. Other specific enhance-
ments, such as efficient append writing modes and truncate from the front of a file, fit into this logging model, but are
not the focus of this proposal.

NFSv4 enhancements also benefit per-node message logging architectures in which each node writes state chang-
ing events to its own log in the shared file system. This architecture is an alternative to shared logging. After a node
failure, other nodes access a log to recover the state of the failed application. In this model, performance benefits come
from fast commit. Alvisi et al [1] describe a file-sharing protocol that eliminates synchronous output commits and
write-backs. Their approach builds a middleware service that replicates determinants (causal events) in user space.
Furthermore, middleware has to manage replicas, including invalidation and writing data to persistent storage. We
observe that this middleware is managing data outside of the file system to fix performance problems. Implementing
similar services in NFSv4 hides the complexity from applications and manages persistence seamlessly.

Checkpointing is an important aspect of fault tolerant systems because it reduces the size of the log and makes
recovery faster. In our model, applications are still responsible for the checkpointing semantics. Thus, checkpoint
coordination and frequency must be decided by the application. Efficient data sharing benefits checkpointing in the
same manner as logging.

An important characteristic of our NFS-based solution is the elimination of read logging. To make I/O recoverable,
applications must log the contents of every file-read to stable storage. The concern is that file data has been changed.
File I/O is a causal event and the original data must be available during recovery in order to reconstruct application
state. We eliminate the need for read logging by supporting repeatable reads. In one approach, we propose to run
the NFSv4 server on a versioning file system. The NFSv4 clients obtain a version identifier for each read. Instead of
logging read data, the client logs the version identifier. During recovery, the client presents the identifier to the NFSv4
server and reads the original versions. Recent work encapsulates versioning functionality in a disk file system and make
versioning transparent [12], so that repeatable reads require no changes to the NFSv4 server. An alternative builds
repeatable reads on standard file systems, by having the NFSv4 client create separate files in a copy-on-write manner.
This approach is preferable to read-logging, because versions are created at write and hardened asynchronously, as
opposed to read-logging which logs data synchronously. While this approach works on any file system, it does not
have the data reduction benefits of versioning file systems.

5 Conclusions
We propose a model in which the function and complex optimizations for fault tolerance support, formerly found

in the application domain, are implemented in the file system. Specifically, our model is based on NFSv4 to provide
persistence and communication for logging and checkpointing. We modify NFSv4 client by adding support for group
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delegation, fast commit and cooperative caching. The incorporation of fault tolerance functionality into the file system
greatly reduces complexity and development time, while supporting heterogeneity and file sharing.
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