
NetApp Memo

12/03/03 Page 1 of 7

pNFS: Extensions to NFSv4 to Support
Data Distribution and Parallelism

Peter Corbett

November 27, 2003

Position Statement

The goal of th is proposal i s to descr ibe how NFSv4 can be extended by the minor
vers ioning p rocess to a l low a higher degree of d is tr ibution of f i le system con tents , and
to suppor t para l le l f i les . We also propose an extens ion that a l lows concur rent opera-
t ions on the se rver . Prefe rably , the extens ions would be int roduced into NFSv4 .1.
The new features that we add would al l be opt ional. The goal i s to a l low NFSv4.1 c l i -
ents to d irectly access data s tored on mult ip le servers connected to form a s ingle
name space and a coordinated f i le serv ice. This proposal wi l l be completely compati-
b le with NFS RDMA extens ions in the RPC layer .

There are four areas that we address in th is proposal:

• Unordered opera tions.

• Data loca tions, a l low ing di rectory contents to be d is tr ibuted across mult ip le servers .

• Dis tr ibut ion of paral le l f i les ac ross servers .

• Server- to -serve r operations .

The basic model we propose is tha t a number o f servers can cooperatively present a
s ingle f i le sys tem wi th a s ingle fs id. A f i le can be composed of a s ing le metafi le, local
to the se rver contain ing the direc tor ies that l ink to i t , and one or more da ta forks tha t
can be dis tr ibu ted among the othe r servers that s to re por t ions of the f i le system. This
al lows dis t r ibution of the da ta por t ions of f i les in the same directory (d irectory scal ing)
as wel l as dis t r ibution of the da ta of indiv idual f i les (f i le scal ing) .

Unordered Operations

DAFS 1.0 defined a ba tch I/O and I/O l is t capab i l i ty in the protocol. This a l lows mul-
t ip le regions of a f i le to be read or wr i t ten in one I/O operation, and even al lows
mul t ip le regions of d i f ferent f i les to be read or w r i t ten in one I/O operat ion. Batched
operations are col lected into comple tion g roups, which al low pol l ing or wait ing upon
completion of any of a number of s imultaneous ly issued componen t I/Os .

We propose that a more l imi ted functional i ty be made avai lable, poss ib ly in NFSv4 .1.
The key conside ration is to a l low a c l ient to request a number of operations s imu lta-
neously . Currently , mult ip le ind iv idua l read and wr i te operations can be g rouped into
a compound request in NFSv4 . However, the se rver i s requ ired to execute these op-
era tions in order , and to return fa i lure i f any of the operations fa i ls whi le ensur ing that
none of the fo l lowing opera tions in the compound has comp leted. We p ropose al low-
ing an “unordered” section in the compound, conta in ing a l is t of operations tha t the

®

NetApp Memo

12/03/03 Page 2 of 7

server is free to execute concurrently or in arbi trary sequence . The order of the op-
era tions in the response is unchanged.

The opera tions in an unordered se t can be per formed on mu lt ip le f i les . To ensure that
sequences of operations on mult ip le f i les are unamb iguous , the set of opera tions is
ordered w ith respect to PUTFH. In othe r words, PUTFH operations in the unordered
set of operations app ly to the unordered operations that fo l low them in the request.
For examp le, an unordered sequence of PUTFH, READ, PUTFH, READ… wil l have the
identical effec t as same sequence of operations appear ing outs ide of an unordered
sec tion, but the server can per fo rm the reads concurrently or in any sequence.

The pr imary intended use of unordered operations is in the implementa tion o f c l ient-
s ide I/O l is t operations. The I/O l is t passes mult ip le I /Os to the c l ient in one system
cal l . The c l ient can then construct a compound with an unordered set of I /O opera-
t ions, one per operat ion in the I /O l is t.

The unordered capabi l i ty is usefu l in a t leas t two appl ication domains. One typical
use of the I/O l is t capabi l i ty is in sc ienti f ic computing . When large mult i -d imensiona l
data sets are s tored in a s ingle f i le , decomposing those data sets fo r access by par-
al le l programs of ten requi res s tr ided access through the f i le . I /O l is t operations make
constructing the cal ls and issuing the requests s imple r . Presenting the l is t to the
server in an unordered sect ion of a compound al lows the server to per form the reques t
more eff ic iently .

A second use of th is capabi l i ty i s in cache c leaners and pre fetchers, fo r example, by
databases. The c leaner and pre fetcher usua l ly run as a set o f separate threads or
processes on the host database se rver . I f I /O l is t capab i l i ty is prov ided, then the
c leaner and pre fetcher can issue mult ip le page I/Os in one system cal l . Th is a l lows
the serve r to per form these operations more eff ic iently . I t a lso al lows the database
server to run w ith fewer c leaner and pre fetcher threads.

We sugges t adding two new operations to speci fy the beginning and end of an unor-
dered l is t of operations. UNORDEREDBEGIN specif ies to the server tha t the fo l low ing
operations can be per formed in any order . UNORDEREDEND specif ies to the se rver
tha t the set of unordered operations is comple te. Operations af ter the
UNORDEREDEND operation must be per formed only after a l l operations in the p re-
ceding unordered section are complete. Status is retu rned for each operation
inc luding UNORDEREDBEGIN and UNORDEREDEND. The server may disregard the
UNORDEREDBEGIN operat ion by choos ing to per fo rm al l the succeed ing operations in
order . The s tatus response to UNORDEREDBEGIN must be NFS4_OK or
NFS4_UNORDERED_INVAL in a l l cases . Sta tus and responses for a l l the unordered
operations are returned in the sequence in wh ich they appear in the compound re-
quest. The server may retu rn fa i led s tatuses for one or more o f the operat ions in the
unordered sec tion. In the case where some of the unordered operations have fa i led,
the serve r may return successful s tatuses, inc luding read da ta, fo r operations after
the f i rs t fa i led operation, inc luding operations af ter the last fa i led operation. The
server is not required to return s tatus for any unordered opera tion beyond the f i rs t
operation in the unordered sequence to fa i l . In the case where one o r more of the un-
ordered operations have fa i led, then the returned s tatus o f UNORDEREDEND mus t be
NFS4ERR_UNORDERED_FAILED. The s tatus o f the entire compound must be
NFS4ERR_UNORDERED_FAILED i f the server sends a response to the
UNORDEREDEND operation. I f the server trunca tes the response at an ear l ier fa i led
operation , then the s tatus of tha t operation must be retu rned as the s tatus of the com-
pound.

An unordered sequence canno t be impl ic i t ly te rminated by the end of a compound.
Each UNORDEREDBEGIN should be pai red wi th an UNORDEREDEND, and these op-

NetApp Memo

12/03/03 Page 3 of 7

era tions cannot be nested. Improper matching of UNORDEREDBEGIN with
UNORDEREDEND results in the error NFS4_UNORDERED_INVAL be ing re turned for
the f i rs t improper UNORDEREDBEGIN opera tion in the compound. For example, i f the
compound contains two consecutive UNORDEREDBEGIN operations, the f i rs t wi l l re-
turn NFS4OK and the second wi l l r eturn NFS4_UNORDERED_INVAL because of the
improper nesting. Simi lar ly the result of the second of two consecut ive
UNORDEREDEND operations wi l l a lways be NFS4_UNORDERED_INVAL.

The resul ts of over lapping combinations of reads and wr i tes in the unordered sect ion
are nonde termin is t ic ; the operations can be per formed in any order on the server .
This is not an error condit ion, and the serve r is not required to check for over lap con-
f l i c ts among the unordered operat ions. Opera tions other than reads and wr i tes may
also be per formed in an unordered section, inc luding non- idempotent opera tions such
as CREATE and OPEN. Interspersed PUTFH opera tions are in terpre ted in the se-
quence of opera tion o rder in the unordered section. I f the server cannot
unambiguously per form an unordered sequence o f operations , the server can choose
to per form the operat ions in sequence. The server may also return the s tatus
NFS4ERR_UNORDERED_INVAL for any o f the unordered operations. In that case, i t
wi l l a lso return NFS4ERR_UNORDERED_INVAL for the UNORDEREDEND opera tion,
as wel l as for the en tire compound.

Data Locations

Data loca tions is an extens ion of f i le system locat ions. The goal of data locations is
to a l low transparent (to the appl ication) d is tr ibut ion and migration of the data por t ion
of indiv idual f i les and director ies tha t res ide in the same f i lesystem to mult ip le d i ffer-
ent serve rs, inc luding f i les in the same directory . This a l lows subsequent read and
wr i te access to those f i les and d irecto r ies to be made di rectly to the servers that
contain them.

The approach we propose is that a l l the serve rs present the same fs id for the en tire
dis tr ibuted f i le system. We extend the ex is t ing migration mechanism of NFSv4. To do
this , we leave a poin ter to the remotely loca ted f i le in the fo rm of a smal l metafi le .
The metaf i le is named, and res ides in the regular f i le system namespace, poss ib ly
adjacent to regular f i les . I t . is access ib le by a f i lehandle retu rned v ia GETFH. The
response to read and wr i te operat ions on the metafi le wi l l retu rn
NFSV4ERR_DATAMOVED. This p rompts the c l ient to per form a GETATTR on the f i le-
handle, ask ing for the data_loca tions attr ibute. The data_loca tions attr ibute wi l l
return the address in formation for the se rver that contains the data po r t ion of the f i le ,
a long with the f i lehandle of the data por t ion of the f i le . We cal l the data por t ion of the
fi le a “data fo rk” . Data_loca tions is s imi lar in format to the fs_locat ions a ttr ibu te, wi th
the root path replaced by a f i lehandle f ie ld for the re located data por t ion of the f i le .
One way to th ink of th is is that just the data por t ion of the f i le has migrated. The f i le
data is d irectly access ib le at the spec if ied server us ing the f i lehandle spec if ied in the
data_loca tions attr ibute, w ithout a fur ther LOOKUP or GETFH operation . The c l ien t
wi l l need to PUTFH on the new server to set the cur rent f i le handle there to be the
fi lehandle of the data fork .

The metaf i le has l imi ted capabi l i ty , and is p r imar i ly a redirec tion point for the re lo-
cated data fork . Fi le re locations cannot be chained. I f the data fo rk is subsequently
relocated from the se rver pointed to, the metafi le should be updated. Exac tly one
metafi le should be ma intained for each migrated f i le . Hard l inks are al lowed to the
metafi le, but mult ip le meta fi les cannot point to the same data fork . I t is the respons i-
b i l i ty of the server to maintain a coherent image o f the entire f i le system, and to c lean
up al l po r t ions of f i les that have become completely un l inked .

NetApp Memo

12/03/03 Page 4 of 7

The c l ien t opens the data fork us ing the DISTRIBUTED var iant of OPEN. This is
s imi lar to the CLAIM_PREVIOUS var iant of OPEN, wi th CURRENT_FH being the f i le-
handle of the data fo rk .

The c l ien t can reques t that the server d is tr ibute indiv idual f i les by creat ing f i les us ing
the CREATE operation with a unique value of the createtype4 swi tched union , which
is : NF4DFILE void. The attr ibutes suppl ied wi th the CREATE operation must specify
a data_loca tions attr ibute wi th one entry . The entry value specif ied shou ld be nul l .
The serve r is then responsible for dec id ing which data serve r wi l l hold the da ta fork of
the f i le . The metafi le server f i l ls in the data_loca tions attr ibute fo r the metafi le.
Simi lar ly , the c l ient can request tha t the server d is tr ibute an ex is t ing regula r f i le by
attempting to set the data_loca tions attr ibute wi th a one element l is t, w ith a nul l value
for the s ingle entry in the l is t . Thus the data_loca tions attr ibute is not w r i table, but
can be se t by the c l ient in SETATTR and CREATE to request changes on the se rver .

The serve r may refuse to re locate the data fo rk of a f i le . I t indica tes that the data is
local by sett ing a nu l l value (a zero length l is t) for the data_loca tions attr ibute of a
f i le. The data_loca tions attr ibute is nul l for a l l f i les that do no t have relocated data.

The data_loca tions attr ibute’s data type is data_ locations4, which is def ined as:

s truct da ta_location4 {

utf8str_c is server<>;

nfs_fs4 fh;

} ;

s truct da ta_locations4 {

data_loca tion4 locations<>;

} ;

To fac i l i tate the server ’s abi l i ty to ensure that the data forks are only opened by c l i -
ents that have per formed the requ ired access r ights negot iat ion at the meta fi le, the
server may prov ide da ta fork f i lehandles tha t have a special form of volat i l i ty . These
are s ingle use f i le handles , spec if ied with the f lag RH4_VOLATILE_SINGLE_USE.
The semantic of th is f i le handle is tha t i t i s only val id to be used by the c l ien t for a
s ingle OPEN operation . After th is , fur ther a ttempts to open the data fork with the
same hand le wi l l retu rn NFS4ERR_BADHANDLE. The s ingle use f i le handle wi l l ex-
pire after the lease per iod i f i t is not used in an OPEN operation. Once opened, the
fi le hand le remains val id for use by that c l ien t only , unti l the c l ient c loses the data
fork .

A server that i ssues only s ingle use vo lati le f i le handles for data forks o f f i les has the
benefi t o f know ing when the re are no f i le handles outs tanding for a data fo rk . When
no val id f i le handles are outs tanding, the se rver i s free to migrate the f i le ’s data fo rk .

Distribution of Parallel Files

We can ex tend the same mechanism used to re locate the data por t ion of f i les to spec-
i fy mult ip le da ta forks for a s ingle f i le . The c l ient d iscovers the data forks in the
response to a GETATTR cal l that the c l ient is sues a fter receiv ing the error
NFSV4ERR_DATAMOVED from the serve r . The data_loca tions attr ibute wi l l prov ide a
l is t of servers and f i le handles of mul t ip le data forks o f the f i le . Each of these f i le
handles corresponds to a separate , zero -based byte addressable data fork of the f i le .

NetApp Memo

12/03/03 Page 5 of 7

These may be s tored on the same o r separate servers , a l l contain ing f i le systems with
the same fs id. The data forks are impl ic i t ly counted and numbered by the length o f
the data_loca tions attr ibute l i s t, and the pos it ion of the forks in the l i s t. This a l lows
ful l f lex ib i l i ty of appl ica tion paral le l ism independently of the actual number of serve rs
ava i lable to s tore the data forks : mult ip le data forks can be s tored on the same server
s ince they each have their own f i le handle .

The NFSv4 c l ien t MAY expose the data fo rks of the f i le as mult ip le separate byte ad-
dress ib le data s treams of the same f i le , i f there is appl ication or VFS support for tha t.
However, the typical usage of the data forks is to prov ide containers across which the
c l ient can s tr ipe a s ingle byte s tream. This preserves the tradit ional appl icat ion v iew
of the f i le as a s ing le byte s tream whi le d is tr ibut ing da ta across mu lt ip le serve rs. To
make the s tr ip ing ar i thmetic s imp ler , the data forks are each sparse f i les . The pos i-
t ion of each by te of data in one of the data forks is exactly the pos it ion of the same
byte in the merged f i le . The merged f i le is s imply the over lay of a l l the data forks.
This reduces the byte address ing a r i thmetic needed to be per formed on the c l ient, and
it a l lows a var iety o f data dis tr ibution, inc luding dis tr ibutions tha t are not s imple
str ip ing . Since mos t server f i le systems can support sparse f i les a t b lock granular i ty
without excess space consumption and s ince the server can choose the dis tr ibution
granular i ty , th is s impl i f ication does not car ry a space o r per formance penalty .

The c l ien t dete rmines the d is tr ibution of the data among the da ta forks of the f i le by
ret r iev ing the data_dis t r ibution att r ibute s tored in the metafi le. This attr ibute must be
present i f the f i le has a non-nul l data_loca tions attr ibute of length grea ter than one .
Data_dis t r ibution is a var iable leng th array of u int4s . The f i rs t e lement in th is a rray
sto res a s ingle uint4 s tr ip ing factor which specif ies the bas ic s tr ipe unit s ize in bytes.
The defau lt s tr ip ing is a rotating in-o rder pattern across al l the da ta forks. However ,
i f another s tr ip ing pattern is used, i t is specif ied in the tra i l ing uint4s in the
data_dis t r ibution attr ibute. Each of these specif ies the data fo rk tha t holds the next
s tr ipe un its worth of data, in a zero based number ing scheme. The pa ttern of data
placement speci f ied in the data_dis t r ibution att r ibute is repeated to the end of the
data fork f i les .

For examp le, a f i le that is s tr iped across four data forks, with a s t r ipe unit of 4k could
have a data_dis t r ibution att r ibute conta in ing a s ing le uin t4 with value {4096}. I t could
also have an ar ray of f ive uint4s , with values {4096, 0, 1, 2, 3} to achieve the same
effect; each success ive 4k block would be placed in the next da ta fork , in a rota ting
pat tern. A data_dis t r ibution value of {4096, 0, 1, 2, 3, 3, 2, 1, 0} would resul t in a
data placement pattern that repea ts every 8 s tr ipe units , and that z igzags across the
data containers . The usage of the data_dis t r ibution att r ibute is to a l low serve rs to re-
dis tr ibute f i le data, for example by adding a data fork to a f i le , wi thout hav ing to
red is tr ibute the enti re f i le .

Access to data forks is jus t l ike access to any other f i le , g iven the f i le handle . Unor-
dered I/O opera tions can be per fo rmed against a data fork .

The data forks of a f i le can be independently secured. Therefo re, a SECINFO nego-
t ia t ion may take place befo re a data fo rk can be accessed . Data forks may by default
have universal ownership and ACL attr ibutes that go unchecked by the server . This
al lows the server to per form al l access r ight check ing at the metafi le when the
metafi le is opened. The server must check access r ights to the data forks i f the data
forks have non-universal ownership or ACLs. The ACLs are modif ied by SETATTR
cal ls . The server can dete rmine whether the in i t ia l ACL and owner at tr ibutes should
be the same as those of the metaf i le, o r shou ld be universal.

Locks can be mediated at the data forks . Locks can also be acquired on the metaf i le,
or on byte ranges of the metafi le. Mandatory locks on byte ranges o f the metafi le

NetApp Memo

12/03/03 Page 6 of 7

should be enforced at the a ffected data forks . Locks made directly on data forks do
not propagate to othe r data forks .

The str ip ing or other d is tr ibution pattern of data among the da ta forks can be placed
in the hands of the appl ica tion. This requires VFS extens ions or user space imple-
mentations that a l low the appl ica tion to expl ic i t ly speci fy a data fo rk to be accessed
by an I/O opera tion. An in termed iate I /O l ib rary , such as MPI- IO can make good use
of the mu lt ip le data forks of a s ingle f i le . Imposing an arb i trary s tr ip ing on the data
forks to construct a s ingle s tream of addressable byte space ou t of the mul t ip le forks
wou ld force MPI- IO to f i rs t deconstruct the f i le in to i ts paral le l po r t ions , then map i ts
des ired data decompos it ion onto those forks. In some cases, i t is more eff ic ient to
prov ide the app l ication l ib rary w ith an expl ic i t ly paral le l inter face to the para l le l f i le ,
exposing the indiv idual data forks for what they are without an unnecessary addi t ional
v ir tual ization. Whether any operating system or c l ient chooses to expose the ind iv id-
ual data forks, through the VFS inter face or otherw ise, i s optional and is beyond the
scope of the protocol speci f ication.

CREATE is extended to speci fy the number of data fo rks to create for a para l le l f i le .
The c l ien t can ask the server to d is tr ibute a f i le us ing the CREATE operation. D is tr ib-
uted f i les have a unique va lue of the c reatetype4 switched union: NF4DFILE void; The
att r ibutes supp l ied w ith the CREATE operation must specify a data_loca tions attr ibute
with the des ired number of entr ies in the l is t. The entr y values should al l be nul l . The
server is then responsible for dec id ing which serve r wi l l hold each o f the data forks o f
the f i le , and w i l l f i l l in the data_loca tions attr ibute fo r the metafi le with a se rver loca-
t ion and f i lehandle for each data fo rk . The server can reduce or increase the number
of data forks in the f i le , and re tains ul t ima te con trol over da ta dis tr ibut ion and place-
ment.

The c l ien t can reques t that addit ional data forks be added to an ex is t ing paral le l f i le
by increas ing the length of the data_loca tions attr ibute in a SETATTR cal l . The se rver
wi l l ignore al l the entry values, but w i l l respect the length o f the l is t. SETATTR can
also be used to request the serve r to reduce the number o f data forks in an ex is t ing
paral le l f i le , by sending a shortened data_loca tions attr ibute l i s t. The server , i f i t
complies with the request, wi l l ignore the at tr ibute values and reduce the l is t length
from the end of the l is t fo rward. The c l ient must retr ieve the data_loca tions and
data_dis t r ibution att r ibutes afte r making a change to data dis t r ibution. The server
should fa i l a l l I /O requests to the red is tr ibuted f i le from any c l ien t that has not re-
freshed i ts data_loca tions and data_dis t r ibution attr ibutes.

Server-To-Server Operations

This proposal impl ies that some server- to-server operations be per formed, to crea te
and remove data forks of f i les , to set and ge t attr ibutes of the data forks , to p ropaga te
and enforce locks, and most l ikely for severa l othe r operations . The c l ien t per forms
operations that affec t both the metafi le and i ts da ta forks by access ing the meta fi le
only . Thus, we requi re a capabi l i ty fo r a l l the se rvers to operate on each other , acting
as pr iv i leged c l ients . There are a number of issues that must be addressed here, in-
c luding secur i ty , and what the se rver- to-server pro tocol wi l l be.

We bel ieve that the server- to-server protocol should not be par t of the NFSv4 specif i -
cat ion. I t may be most des irable to separate ly def ine a server - to-se rver p rotoco l,
s imi lar to NFSv4, but that is des igned specif ical ly for the purpose o f communicat ion
among servers. This a l lows the l ikely smal l commun ity of paral le l se rver bui lders to
bui ld interoperable servers , for example, to bui ld separa te data and metada ta servers.
The community can develop i terations of the p rotoco l without changing NFSv4 , a l low-
ing more f lex ib i l i ty and more rapid development . I t is a lso poss ib le that the server- to-

NetApp Memo

12/03/03 Page 7 of 7

server operations can be per formed us ing vendor specif ic propr ietary protocols .
Server vendors wi l l be free to conform to a separate se rver- to-server specif ica tion o r
to implement their own propr ietary server- to-server protocols , and can conform to the
NFSv4.1 specif i cation in e i ther case. Thus, server - to-se rver operations, whi le impl ied
by these protocol extens ions, are outs ide the scope of the c l ient/server protocol , and
therefore are not specif ied in the set of pro tocol extens ions. We are not ce r ta in of the
need for a server- to-server protocol specif ication, but would be inte rested in d iscuss-
ing i t fu r ther with o ther server vendors and developers.

Conclusions

The goal of th is proposal i s to specify how NFSv4 can be s imply extended to prov ide
support for d is tr ibut ing f i le sys tems, d irectory contents , and paral le l f i l es across mu l-
t ip le servers. I t appears tha t th is can be done with a minimum of protocol ex tens ions.
We also p ropose a s imple unordered extens ion to NFSv4 tha t a l lows mul t ip le I/O or
other opera tions of the same compound to be per formed concurrently at the server .

By leav ing much of the semantics of f i le operations intac t, in some cases reducing
the ir scope to a s ing le data fork of the f i le , we minimize the impact on the NFSv4
protocol, and reduce the amount of d i f feren tiated code needed in the V4 c l ient to im-
plement these extens ions. I t is our be l ief that the extens ion proposed cou ld be
implemented re lat ively eas i ly by c l ient and serve r vendors. We also bel ieve that the
extens ions map quite wel l onto the dis t r ibuted data archi tectures already p resent or
under development in some servers .

Acknowledgements

Dave Noveck, Tom Talpey, and Br ian Paw lowski a l l p rov ided valuable input and feed-
back on the proposal.

