NetApp Memo

‘&Q PNFS: Extensions to NFSv4 to Support
NetworkAppliance Data Distribution and Parallelism

Peter Corbett

November 27, 2003

Position Statement

The goal of this proposal is to describe how NFSv4 can be extended by the minor
versioning process to allow a higher degree of distribution of file system contents, and
to support parallel files. We also propose an extension that allows concurrent opera-
tions on the server. Preferably, the extensions would be introduced into NFSv4.1.
The new features that we add would all be optional. The goal is to allow NFSv4.1 cli-
ents to directly access data stored on multiple servers connected to form a single
name space and a coordinated file service. This proposal will be completely compati-
ble with NFS RDMA extensions in the RPC layer.

There are four areas that we address in this proposal:

* Unordered operations.

* Data locations, allowing directory contents to be distributed across multiple servers.
e Distribution of parallel files across servers.

e Server-to-server operations.

The basic model we propose is that a number of servers can cooperatively present a
single file system with a single fsid. A file can be composed of a single metafile, local
to the server containing the directories that link to it, and one or more data forks that
can be distributed among the other servers that store portions of the file system. This
allows distribution of the data portions of files in the same directory (directory scaling)
as well as distribution of the data of individual files (file scaling).

Unordered Operations

DAFS 1.0 defined a batch I/O and I/O list capability in the protocol. This allows mul-
tiple regions of a file to be read or written in one I/O operation, and even allows
multiple regions of different files to be read or written in one I/O operation. Batched
operations are collected into completion groups, which allow polling or waiting upon
completion of any of a number of simultaneously issued component |I/Os.

We propose that a more limited functionality be made available, possibly in NFSv4.1.
The key consideration is to allow a client to request a number of operations simulta-
neously. Currently, multiple individual read and write operations can be grouped into
a compound request in NFSv4. However, the server is required to execute these op-
erations in order, and to return failure if any of the operations fails while ensuring that
none of the following operations in the compound has completed. We propose allow-
ing an “unordered” section in the compound, containing a list of operations that the

12/03/03 Page 1 of 7

NetApp Memo

server is free to execute concurrently or in arbitrary sequence. The order of the op-
erations in the response is unchanged.

The operations in an unordered set can be performed on multiple files. To ensure that
sequences of operations on multiple files are unambiguous, the set of operations is
ordered with respect to PUTFH. In other words, PUTFH operations in the unordered
set of operations apply to the unordered operations that follow them in the request.
For example, an unordered sequence of PUTFH, READ, PUTFH, READ... will have the
identical effect as same sequence of operations appearing outside of an unordered
section, but the server can perform the reads concurrently or in any sequence.

The primary intended use of unordered operations is in the implementation of client-
side 1/O list operations. The 1/O list passes multiple 1/Os to the client in one system
call. The client can then construct a compound with an unordered set of I/O opera-
tions, one per operation in the 1/O list.

The unordered capability is useful in at least two application domains. One typical
use of the 1/O list capability is in scientific computing. When large multi-dimensional
data sets are stored in a single file, decomposing those data sets for access by par-
allel programs often requires strided access through the file. 1/0 list operations make
constructing the calls and issuing the requests simpler. Presenting the list to the
server in an unordered section of a compound allows the server to perform the request
more efficiently.

A second use of this capability is in cache cleaners and prefetchers, for example, by
databases. The cleaner and prefetcher usually run as a set of separate threads or
processes on the host database server. |If I/O list capability is provided, then the
cleaner and prefetcher can issue multiple page 1/Os in one system call. This allows
the server to perform these operations more efficiently. It also allows the database
server to run with fewer cleaner and prefetcher threads.

We suggest adding two new operations to specify the beginning and end of an unor-
dered list of operations. UNORDEREDBEGIN specifies to the server that the following
operations can be performed in any order. UNORDEREDEND specifies to the server
that the set of wunordered operations is complete. Operations after the
UNORDEREDEND operation must be performed only after all operations in the pre-
ceding unordered section are complete. Status is returned for each operation
including UNORDEREDBEGIN and UNORDEREDEND. The server may disregard the
UNORDEREDBEGIN operation by choosing to perform all the succeeding operations in
order. The status response to UNORDEREDBEGIN must be NFS4_OK or
NFS4 _UNORDERED_INVAL in all cases. Status and responses for all the unordered
operations are returned in the sequence in which they appear in the compound re-
quest. The server may return failed statuses for one or more of the operations in the
unordered section. In the case where some of the unordered operations have failed,
the server may return successful statuses, including read data, for operations after
the first failed operation, including operations after the last failed operation. The
server is not required to return status for any unordered operation beyond the first
operation in the unordered sequence to fail. In the case where one or more of the un-
ordered operations have failed, then the returned status of UNORDEREDEND must be
NFS4ERR_UNORDERED_FAILED. The status of the entire compound must be
NFS4ERR_UNORDERED_FAILED if the server sends a response to the
UNORDEREDEND operation. If the server truncates the response at an earlier failed
operation, then the status of that operation must be returned as the status of the com-
pound.

An unordered sequence cannot be implicitly terminated by the end of a compound.
Each UNORDEREDBEGIN should be paired with an UNORDEREDEND, and these op-

12/03/03 Page 2 of 7

NetApp Memo

erations cannot be nested. Improper matching of UNORDEREDBEGIN with
UNORDEREDEND results in the error NFS4_UNORDERED_INVAL being returned for
the first improper UNORDEREDBEGIN operation in the compound. For example, if the
compound contains two consecutive UNORDEREDBEGIN operations, the first will re-
turn NFS40K and the second will return NFS4_UNORDERED_INVAL because of the
improper nesting. Similarly the result of the second of two consecutive
UNORDEREDEND operations will always be NFS4_UNORDERED_INVAL.

The results of overlapping combinations of reads and writes in the unordered section
are nondeterministic; the operations can be performed in any order on the server.
This is not an error condition, and the server is not required to check for overlap con-
flicts among the unordered operations. Operations other than reads and writes may
also be performed in an unordered section, including non-idempotent operations such
as CREATE and OPEN. Interspersed PUTFH operations are interpreted in the se-
quence of operation order in the wunordered section. If the server cannot
unambiguously perform an unordered sequence of operations, the server can choose
to perform the operations in sequence. The server may also return the status
NFS4ERR_UNORDERED_INVAL for any of the unordered operations. In that case, it
will also return NFS4ERR_UNORDERED_INVAL for the UNORDEREDEND operation,
as well as for the entire compound.

Data Locations

Data locations is an extension of file system locations. The goal of data locations is
to allow transparent (to the application) distribution and migration of the data portion
of individual files and directories that reside in the same filesystem to multiple differ-
ent servers, including files in the same directory. This allows subsequent read and
write access to those files and directories to be made directly to the servers that
contain them.

The approach we propose is that all the servers present the same fsid for the entire
distributed file system. We extend the existing migration mechanism of NFSv4. To do
this, we leave a pointer to the remotely located file in the form of a small metafile.
The metafile is named, and resides in the regular file system namespace, possibly
adjacent to regular files. It.is accessible by a filehandle returned via GETFH. The
response to read and write operations on the metafile will return
NFSV4ERR_DATAMOVED. This prompts the client to perform a GETATTR on the file-
handle, asking for the data_locations attribute. The data_locations attribute will
return the address information for the server that contains the data portion of the file,
along with the filehandle of the data portion of the file. We call the data portion of the
file a “data fork”. Data_locations is similar in format to the fs_locations attribute, with
the root path replaced by a filehandle field for the relocated data portion of the file.
One way to think of this is that just the data portion of the file has migrated. The file
data is directly accessible at the specified server using the filehandle specified in the
data_locations attribute, without a further LOOKUP or GETFH operation. The client
will need to PUTFH on the new server to set the current file handle there to be the
filehandle of the data fork.

The metafile has limited capability, and is primarily a redirection point for the relo-
cated data fork. File relocations cannot be chained. If the data fork is subsequently
relocated from the server pointed to, the metafile should be updated. Exactly one
metafile should be maintained for each migrated file. Hard links are allowed to the
metafile, but multiple metafiles cannot point to the same data fork. It is the responsi-
bility of the server to maintain a coherent image of the entire file system, and to clean
up all portions of files that have become completely unlinked.

12/03/03 Page 3 of 7

NetApp Memo

The client opens the data fork using the DISTRIBUTED variant of OPEN. This is
similar to the CLAIM_PREVIOUS variant of OPEN, with CURRENT_FH being the file-
handle of the data fork.

The client can request that the server distribute individual files by creating files using
the CREATE operation with a unique value of the createtype4 switched union, which
is: NFADFILE void. The attributes supplied with the CREATE operation must specify
a data_locations attribute with one entry. The entry value specified should be null.
The server is then responsible for deciding which data server will hold the data fork of
the file. The metafile server fills in the data_locations attribute for the metafile.
Similarly, the client can request that the server distribute an existing regular file by
attempting to set the data_locations attribute with a one element list, with a null value
for the single entry in the list. Thus the data_locations attribute is not writable, but
can be set by the client in SETATTR and CREATE to request changes on the server.

The server may refuse to relocate the data fork of a file. It indicates that the data is
local by setting a null value (a zero length list) for the data_locations attribute of a
file. The data_locations attribute is null for all files that do not have relocated data.

The data_locations attribute’s data type is data_locations4, which is defined as:
struct data_location4 {
utf8str_cis server<>;
nfs_fs4 fh;
b
struct data_locations4 {
data_location4 locations<>;
b

To facilitate the server’s ability to ensure that the data forks are only opened by cli-
ents that have performed the required access rights negotiation at the metafile, the
server may provide data fork filehandles that have a special form of volatility. These
are single use file handles, specified with the flag RH4_VOLATILE_SINGLE_USE.
The semantic of this file handle is that it is only valid to be used by the client for a
single OPEN operation. After this, further attempts to open the data fork with the
same handle will return NFS4ERR_BADHANDLE. The single use file handle will ex-
pire after the lease period if it is not used in an OPEN operation. Once opened, the
file handle remains valid for use by that client only, until the client closes the data
fork.

A server that issues only single use volatile file handles for data forks of files has the
benefit of knowing when there are no file handles outstanding for a data fork. When
no valid file handles are outstanding, the server is free to migrate the file’s data fork.

Distribution of Parallel Files

We can extend the same mechanism used to relocate the data portion of files to spec-
ify multiple data forks for a single file. The client discovers the data forks in the
response to a GETATTR call that the client issues after receiving the error
NFSV4ERR_DATAMOVED from the server. The data_locations attribute will provide a
list of servers and file handles of multiple data forks of the file. Each of these file
handles corresponds to a separate, zero-based byte addressable data fork of the file.

12/03/03 Page 4 of 7

NetApp Memo

These may be stored on the same or separate servers, all containing file systems with
the same fsid. The data forks are implicitly counted and numbered by the length of
the data_locations attribute list, and the position of the forks in the list. This allows
full flexibility of application parallelism independently of the actual number of servers
available to store the data forks: multiple data forks can be stored on the same server
since they each have their own file handle.

The NFSv4 client MAY expose the data forks of the file as multiple separate byte ad-
dressible data streams of the same file, if there is application or VFS support for that.
However, the typical usage of the data forks is to provide containers across which the
client can stripe a single byte stream. This preserves the traditional application view
of the file as a single byte stream while distributing data across multiple servers. To
make the striping arithmetic simpler, the data forks are each sparse files. The posi-
tion of each byte of data in one of the data forks is exactly the position of the same
byte in the merged file. The merged file is simply the overlay of all the data forks.
This reduces the byte addressing arithmetic needed to be performed on the client, and
it allows a variety of data distribution, including distributions that are not simple
striping. Since most server file systems can support sparse files at block granularity
without excess space consumption and since the server can choose the distribution
granularity, this simplification does not carry a space or performance penalty.

The client determines the distribution of the data among the data forks of the file by
retrieving the data_distribution attribute stored in the metafile. This attribute must be
present if the file has a non-null data_locations attribute of length greater than one.
Data_distribution is a variable length array of uint4s. The first element in this array
stores a single uint4 striping factor which specifies the basic stripe unit size in bytes.
The default striping is a rotating in-order pattern across all the data forks. However,
if another striping pattern is used, it is specified in the trailing uintds in the
data_distribution attribute. Each of these specifies the data fork that holds the next
stripe units worth of data, in a zero based numbering scheme. The pattern of data
placement specified in the data_distribution attribute is repeated to the end of the
data fork files.

For example, a file that is striped across four data forks, with a stripe unit of 4k could
have a data_distribution attribute containing a single uint4 with value {4096}. It could
also have an array of five uint4s, with values {4096, 0, 1, 2, 3} to achieve the same
effect; each successive 4k block would be placed in the next data fork, in a rotating
pattern. A data_distribution value of {4096, 0, 1, 2, 3, 3, 2, 1, 0} would result in a
data placement pattern that repeats every 8 stripe units, and that zigzags across the
data containers. The usage of the data_distribution attribute is to allow servers to re-
distribute file data, for example by adding a data fork to a file, without having to
redistribute the entire file.

Access to data forks is just like access to any other file, given the file handle. Unor-
dered I/O operations can be performed against a data fork.

The data forks of a file can be independently secured. Therefore, a SECINFO nego-
tiation may take place before a data fork can be accessed. Data forks may by default
have universal ownership and ACL attributes that go unchecked by the server. This
allows the server to perform all access right checking at the metafile when the
metafile is opened. The server must check access rights to the data forks if the data
forks have non-universal ownership or ACLs. The ACLs are modified by SETATTR
calls. The server can determine whether the initial ACL and owner attributes should
be the same as those of the metafile, or should be universal.

Locks can be mediated at the data forks. Locks can also be acquired on the metafile,
or on byte ranges of the metafile. Mandatory locks on byte ranges of the metafile

12/03/03 Page 5 of 7

NetApp Memo

should be enforced at the affected data forks. Locks made directly on data forks do
not propagate to other data forks.

The striping or other distribution pattern of data among the data forks can be placed
in the hands of the application. This requires VFS extensions or user space imple-
mentations that allow the application to explicitly specify a data fork to be accessed
by an I/O operation. An intermediate 1/O library, such as MPI-IO can make good use
of the multiple data forks of a single file. Imposing an arbitrary striping on the data
forks to construct a single stream of addressable byte space out of the multiple forks
would force MPI-10 to first deconstruct the file into its parallel portions, then map its
desired data decomposition onto those forks. In some cases, it is more efficient to
provide the application library with an explicitly parallel interface to the parallel file,
exposing the individual data forks for what they are without an unnecessary additional
virtualization. Whether any operating system or client chooses to expose the individ-
ual data forks, through the VFS interface or otherwise, is optional and is beyond the
scope of the protocol specification.

CREATE is extended to specify the number of data forks to create for a parallel file.
The client can ask the server to distribute a file using the CREATE operation. Distrib-
uted files have a unique value of the createtype4 switched union: NF4DFILE void; The
attributes supplied with the CREATE operation must specify a data_locations attribute
with the desired number of entries in the list. The entry values should all be null. The
server is then responsible for deciding which server will hold each of the data forks of
the file, and will fill in the data_locations attribute for the metafile with a server loca-
tion and filehandle for each data fork. The server can reduce or increase the number
of data forks in the file, and retains ultimate control over data distribution and place-
ment.

The client can request that additional data forks be added to an existing parallel file
by increasing the length of the data_locations attribute in a SETATTR call. The server
will ignore all the entry values, but will respect the length of the list. SETATTR can
also be used to request the server to reduce the number of data forks in an existing
parallel file, by sending a shortened data_locations attribute list. The server, if it
complies with the request, will ignore the attribute values and reduce the list length
from the end of the list forward. The client must retrieve the data_locations and
data_distribution attributes after making a change to data distribution. The server
should fail all 1/O requests to the redistributed file from any client that has not re-
freshed its data_locations and data_distribution attributes.

Server-To-Server Operations

This proposal implies that some server-to-server operations be performed, to create
and remove data forks of files, to set and get attributes of the data forks, to propagate
and enforce locks, and most likely for several other operations. The client performs
operations that affect both the metafile and its data forks by accessing the metafile
only. Thus, we require a capability for all the servers to operate on each other, acting
as privileged clients. There are a number of issues that must be addressed here, in-
cluding security, and what the server-to-server protocol will be.

We believe that the server-to-server protocol should not be part of the NFSv4 specifi-
cation. It may be most desirable to separately define a server-to-server protocol,
similar to NFSv4, but that is designed specifically for the purpose of communication
among servers. This allows the likely small community of parallel server builders to
build interoperable servers, for example, to build separate data and metadata servers.
The community can develop iterations of the protocol without changing NFSv4, allow-
ing more flexibility and more rapid development. It is also possible that the server-to-

12/03/03 Page 6 of 7

NetApp Memo

server operations can be performed using vendor specific proprietary protocols.
Server vendors will be free to conform to a separate server-to-server specification or
to implement their own proprietary server-to-server protocols, and can conform to the
NFSv4.1 specification in either case. Thus, server-to-server operations, while implied
by these protocol extensions, are outside the scope of the client/server protocol, and
therefore are not specified in the set of protocol extensions. We are not certain of the
need for a server-to-server protocol specification, but would be interested in discuss-
ing it further with other server vendors and developers.

Conclusions

The goal of this proposal is to specify how NFSv4 can be simply extended to provide
support for distributing file systems, directory contents, and parallel files across mul-
tiple servers. It appears that this can be done with a minimum of protocol extensions.
We also propose a simple unordered extension to NFSv4 that allows multiple 1/O or
other operations of the same compound to be performed concurrently at the server.

By leaving much of the semantics of file operations intact, in some cases reducing
their scope to a single data fork of the file, we minimize the impact on the NFSv4
protocol, and reduce the amount of differentiated code needed in the V4 client to im-
plement these extensions. It is our belief that the extension proposed could be
implemented relatively easily by client and server vendors. We also believe that the
extensions map quite well onto the distributed data architectures already present or
under development in some servers.

Acknowledgements

Dave Noveck, Tom Talpey, and Brian Pawlowski all provided valuable input and feed-
back on the proposal.

12/03/03 Page 7 of 7

