
Hopkins Storage Systems Lab, Department of Computer Science

NFSv4 as the Building Block
for Fault Tolerant Applications

Alexandros Batsakis

Hopkins Storage Systems Lab, Department of Computer Science

Overview
Goal:

To provide support for client recoverability and application fault
tolerance through the NFSv4 file system

Motivation:
Conventional file systems do not meet the requirements of
parallel applications

Performance:
Mechanisms for recoverability enable efficient write-sharing
among clients and improve file system performance

Hopkins Storage Systems Lab, Department of Computer Science

What we propose:

“the file system aids in the recovery of failed clients”

Application support
– Facilitate fault-tolerance operations

NFSv4 extensions
– Extend the delegation concept to multiple clients
– Add client-to-client operations

Hopkins Storage Systems Lab, Department of Computer Science

Environment

Clients in Group C access
files from a server across the

internet

Clients in Group B access
files from a server in the
same LAN, 1-hop away

NFS
Server

Group A

WAN

Router

Router

client client

client client

client client

client client

client client

client client

client client

client client

client client

client client

client client

client client

Router

Group C Group B

Clients in Group A access
files from a server in the

same LAN

Hopkins Storage Systems Lab, Department of Computer Science

Environment
High-performance parallel applications running
on PC clusters
Data access from “remote” NFS file server
Applications communicate through file sharing
and/or message passing
Applications should be able to reproduce the
prior-to-failure state at recovery time

Hopkins Storage Systems Lab, Department of Computer Science

Problem statement
Rollback recovery protocols incur substantial overhead
when nodes communicate through file sharing

–– Read loggingRead logging
File read is logged to disk to guarantee availability at recovery

–– Output CommitOutput Commit
Application state is logged to disk before write
Ensure that state that generated the write is reproducible

Conventional file systems do not support write sharing
efficiently

–– Synchronous writeSynchronous write--backback
Clients have to wait for I/O completion (blocking)Clients have to wait for I/O completion (blocking)

Hopkins Storage Systems Lab, Department of Computer Science

NFSv4 & Parallel applications
Does NFSv4 support file sharing efficiently?
– Yes, when read-only sharing
– No, when file sharing involves writing

Does NFSv4 support recoverability?
– No built-in support for repeatable reads or fast

output commits

Hopkins Storage Systems Lab, Department of Computer Science

Server vs. Client Recoverability
Server fault tolerance

– Data availability through replication or shared disk
– Preserves file system data only

Application fault tolerance
– Logging; preserves application state
– Repeatable reads; avoid read logging
– Fast output commit; avoids synchronous write-back

Hopkins Storage Systems Lab, Department of Computer Science

Mechanisms
Group delegation

– Current delegation model does not efficiently support file sharing
– File sharing takes place directly between clients
– Server is unaware of group delegation
– Client that initiated the delegation acts as group representative

Fast commit
– Clients perform COMMITCOMMIT operation without contacting server
– Updates logged immediately to client remote memories
– Reach stable storage at later time

Cooperative caching
– Coordinates access to content in caches

Hopkins Storage Systems Lab, Department of Computer Science

Mechanisms

Delegated file will be
written back

asynchronously

Group Delegation

Group B

NFS
Server

Group A

WAN

Router

Router

client client

client client

client client

client client

client client

client client

client client

client client

client client client client

Router

Group C

Client perform Fast Commit
to a configurable number of

remote memories

client client client client

Hopkins Storage Systems Lab, Department of Computer Science

Client recoverability
Support for shared logging
Application level protocols have two options:

a. Clients log to a common file
• Group delegation serializability
• Cooperative caching sharing
• Fast commit performance

b. Clients use their own log
• Use fast commit to replicate log to other clients

Hopkins Storage Systems Lab, Department of Computer Science

Client recoverability (2)
• Elimination of read logging

– Support for repeatable reads through versioning
• Checkpointing to reduce log size
• Applications are still in charge of semantics

– When and what to log or checkpoint

Hopkins Storage Systems Lab, Department of Computer Science

A nice side-effect: Performance
Data sharing works better
– Eliminates write-backs to server
– Significant boost when clients are close to each other

Offload server
– Write-sharing without server interactions

Fast commit (asynchronous write-back)
– Efficient file sharing
– Keeps data closer to application

Hopkins Storage Systems Lab, Department of Computer Science

Considerations
Security
– Is it acceptable to assume that clients have the

same privileges?
– If not, solution depends on the security model

used by each system
Callback efficiency
– Harder to break delegation as client group gets larger

Cooperative caching & scalability

Hopkins Storage Systems Lab, Department of Computer Science

NFSv4 protocol modifications
No server modifications are required
With server modifications:
– More natural support for group delegation:

Adjust delegation policy
Persistent delegation

– Server can contact any node in group to query state
– Delegation will not be revoked when initial client fails

– Might provide solution to security problem
Clients use server for access control and authentication
when sharing files

Hopkins Storage Systems Lab, Department of Computer Science

Conclusions
Recoverability requirements for parallel applications

– semantic extensions to NFSv4
Client modifications to provide support for recoverability

– Group delegation, fast commit, cooperative caching

Modified NFSv4 supports:
– shared logging, repeatable reads, fast output commit

Performance benefits
– Even when recoverability is not the goal

	NFSv4 as the Building Block for Fault Tolerant Applications
	Overview
	What we propose:
	Environment
	Environment
	Problem statement
	NFSv4 & Parallel applications
	Server vs. Client Recoverability
	Mechanisms
	Mechanisms
	Client recoverability
	Client recoverability (2)
	A nice side-effect: Performance
	Considerations
	NFSv4 protocol modifications
	Conclusions

