
1
Network Appliance

2
Network Appliance

NFSv4 Extensions to
Support Parallelism

 Peter Corbett

 December 4, 2003

3
Network Appliance

Introduction

 Proposition:
– NFSv4 can be simply extended to support parallelism, data

distribution, and high performance I/O

 Goal is to meet needs of
– HPC community
– Linux clusters
– Database and enterprise computing

 Leverage existing V4 implementations with a very
small set of protocol extensions

 Separation of metadata, data function at server not
required

4
Network Appliance

Overview

 Propose to extend NFSv4 in two ways

 Extensions are suitable for inclusion in NFSv4.1
– Small set of extensions
– Optional for clients and servers
– Strict superset of existing protocol

 Affects client/server protocol only
– No specification of parallel server implementation or

server-to-server protocol

 Compatible with NFS RDMA

5
Network Appliance

Two Sets of Protocol Changes

 Support for unordered operations within
compounds

 Support for data distribution within files and
directories

 These two sets of changes are independent of
each other

– Can be considered separately for inclusion in
protocol

6
Network Appliance

Unordered Operation

Single NFSv4.0 compound can specify multiple I/O
operations to server

 Proposal: Allow unordered set of operations in a
compound

– Ops can be performed concurrently or in arbitrary order at
the server

 Provides support for I/O list and batch I/O operations

 Useful for strided access and for cache prefetchers
and cleaners

7
Network Appliance

Unordered Operation Set

 Add two new operators to v4
– UNORDEREDBEGIN
– UNORDEREDEND

 Specify beginning and end of a set of
unordered operations within a single
compound

 Both have void parameter list

 MUST not be nested
(NFS4ERR_UNORDERED_INVAL)

8
Network Appliance

Some Semantics

 PUTFH applies to succeeding operations within
unordered set

 Server is free to ignore unordered directive and
perform ops in order

 Server can reject an ambiguous unordered sequence
(NFS4ERR_UNORDERED_INVAL)

 Overlapping read/write and write/write conflicts are
allowed

– Server not required to check
– Can execute I/O ops in any order

9
Network Appliance

Unordered Error Handling

 Status of UNORDEREDBEGIN is always
NFS4OK or NFS4ERR_UNORDERED_INVAL

 Status of UNORDEREDEND is always NFS4OK,
NFS4ERR_UNORDERED_INVAL or
NFS4ERR_UNORDERED_FAILED

 Return FAILED if any op in unordered
sequence fails

 More than one op can fail

10
Network Appliance

More Unordered Error Handling

 Status returned for all ops up to
UNORDEREDEND, or for first failing op

 If there is a failed op, status of
UNORDEREDEND and of COMPOUND is
NFS4ERR_UNORDERED_FAILED

11
Network Appliance

Data Distribution

 A single file system (FSID) can span multiple servers
– Or SSI server with multiple access points

 Named objects (directories and files) are always local
to the server that contains directories with hard links
to them

 New type of named object: “Metafile”
– Basically a file that has its data elsewhere

 Second new type of unnamed object: “Data Fork”
– Data portion associated with a metafile

12
Network Appliance

Metafiles and Data Forks

 Data Forks can be located on different servers
from their metafiles

 Allows data distribution
– I/O can be separated from metadata operations
– Provides “directory scaling”

• Increases aggregate I/O bandwidth to the files
in a directory

• Does not improve throughput of namespace
operations within a directory

13
Network Appliance

Linkage

 Each data fork has only one metafile

 Metafiles can be multiply linked into
namespace, just like ordinary files

 Add a new optional attribute to metafile
– data_locations
– Similar to fs_locations
– Contents are a list of server name strings and file

handles
– File handles are handles of data forks

14
Network Appliance

Data Forks

 Only way to get data fork FH is through
GETATTR on metafile

 Client performs GETATTR to retrieve
data_locations attribute

 New variant OPEN DISTRIBUTED
– similar to OPEN RECLAIM
– takes a file handle as an argument

15
Network Appliance

Transparency

 Data is accessible through metafile

 Server proxies data from data fork

 File appears normal to client

 Client has to explicitly look for non-empty
data_locations attribute to take advantage of
distribution

16
Network Appliance

Parallel Files

 Can have more than one data fork per file
– File Scaling

 V4 client can stripe data across the data forks
– Data forks are sparse
– Overlay of all data forks is complete file

 Client is free to expose the data forks to the
application as a collection of parallel data containers

– Suitable for parallel I/O libraries such as MPI-IO
– No need to hide the inherent parallelism
– Exposure is outside scope of protocol spec

17
Network Appliance

data_locations attribute

 data_locations is a list of server name strings and
filehandles, one per data fork

 Can have multiple data forks of same file on a server
– Completely up to the server to distribute data forks

 Client can request that a file have multiple data forks
by specifying a non-empty list of null entries for
data_locations in CREATE, SETATTR

 Client can request change in number of data forks via
SETATTR

 Server not required to comply
– Can simply create a normal file, with empty data_locations

attribute

18
Network Appliance

Single Use Volatile File Handles

 Propose a new flavor of volatile fh
– NF4_VOLATILE_SINGLE_USE
– data fork FH returned from GETATTR usable by calling

client to open data fork exactly once
– FH expires after lease period if not used in OPEN

DISTRIBUTED

 Allows server to know when there are no outstanding
FHs for a data fork

– Facilitates restriping, migration, etc.

 Proof at data fork that metafile access control was
checked

– Handle all access control and access denial at metafile

19
Network Appliance

File Handle as Secure Capability

 struct FH {
– expiry time (for use in open)
– data fork id
– OWF(expiry time, data fork id, client cred, server

secret)
}

Can’t be forged
Limited lifetime
Server can invalidate it

20
Network Appliance

data_distribution attribute

 Add another attribute data_distribution
– Variable length array of uint4s

 Required attribute if data_locations length > 1

 First uint4 is stripe factor

 Default is zero-based round robin striping

 Subsequent uint4s allow other distributions to be
specified

– Useful for restriping

 Distribution description can be standardized in V4
spec

21
Network Appliance

Operation Semantics

 Operations that affect metafile and data forks
go to metafile

– CREATE, REMOVE, SETATTR, etc.

 Data forks share owner and acls with metafile

 Data forks can be separately secured from
metafile

– E.g. different encryption level on metadata and
data

– Operations on data fork can provoke a SECINFO

22
Network Appliance

Locking

 Data forks can be directly locked
– These locks are held locally only
– Only apply to single data fork even though byte

range includes sparse regions held in other data
forks

 Metafile can be locked
– These locks must be propagated to the affected

data forks
– Can conflict with local data fork locks

23
Network Appliance

GETATTR

 GETATTR of data fork does not retrieve
information for whole file

 GETATTR of meta file retrieves correct size,
mtime, atime, ctime for entire file

24
Network Appliance

Server-to-Server Protocol

 Server-to-server communication is implied by data
distribution

 Beyond scope of v4 spec
– Should not be considered for inclusion in v4 spec

 Servers may use v4 to implement some functionality

 Server may use proprietary internal methods and
protocols

 Possible to define a companion spec to v4 that
specifies inter-server operation or some aspects of it

25
Network Appliance

Compatibility and Leverage

 Simple set of extensions to V4

 Maps quite closely to some parallel server
architectures

– Would be relatively easy to use V4 with
extensions as the client/server wire protocol

 Leverages existing V4 implementations, as
well as current and planned parallel server
implementations

26
Network Appliance

Conclusions

 Two sets of simple extensions to V4

 Unordered operations support HPC, database I/O
– Facilitate higher performance and throughput

 Data distribution allows directory and file scaling
– Highly parallel I/O
– Transparent or explicit parallelism at application

 Leverages existing V4 and parallel server
implementations

