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Introduction

 Proposition:
– NFSv4 can be simply extended to support parallelism, data

distribution, and high performance I/O

 Goal is to meet needs of
– HPC community
– Linux clusters
– Database and enterprise computing

 Leverage existing V4 implementations with a very
small set of protocol extensions

 Separation of metadata, data function at server not
required
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Overview

 Propose to extend NFSv4 in two ways

 Extensions are suitable for inclusion in NFSv4.1
– Small set of extensions
– Optional for clients and servers
– Strict superset of existing protocol

 Affects client/server protocol only
– No specification of parallel server implementation or

server-to-server protocol

 Compatible with NFS RDMA
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Two Sets of Protocol Changes

 Support for unordered operations within
compounds

 Support for data distribution within files and
directories

 These two sets of changes are independent of
each other

– Can  be considered separately for inclusion in
protocol
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Unordered Operation

Single NFSv4.0 compound can specify multiple I/O
operations to server

 Proposal: Allow unordered set of operations in a
compound

– Ops can be performed concurrently or in arbitrary order at
the server

 Provides support for I/O list and batch I/O operations

 Useful for strided access and for cache prefetchers
and cleaners
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Unordered Operation Set

 Add two new operators to v4
– UNORDEREDBEGIN
– UNORDEREDEND

 Specify beginning and end of a set of
unordered operations within a single
compound

 Both have void parameter list

 MUST not be nested
(NFS4ERR_UNORDERED_INVAL)
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Some Semantics

 PUTFH applies to succeeding operations within
unordered set

 Server is free to ignore unordered directive and
perform ops in order

 Server can reject an ambiguous unordered sequence
(NFS4ERR_UNORDERED_INVAL)

 Overlapping read/write and write/write conflicts are
allowed

– Server not required to check
– Can execute I/O ops in any order
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Unordered Error Handling

 Status of UNORDEREDBEGIN is always
NFS4OK or NFS4ERR_UNORDERED_INVAL

 Status of UNORDEREDEND is always NFS4OK,
NFS4ERR_UNORDERED_INVAL or
NFS4ERR_UNORDERED_FAILED

 Return FAILED if any op in unordered
sequence fails

 More  than one op can fail
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More Unordered Error Handling

 Status returned for all ops up to
UNORDEREDEND, or for first failing op

 If there is a failed op, status of
UNORDEREDEND and of COMPOUND is
NFS4ERR_UNORDERED_FAILED
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Data Distribution

 A single file system (FSID) can span multiple servers
– Or SSI server with multiple access points

 Named objects (directories and files) are always local
to the server that contains directories with hard links
to them

 New type of named object: “Metafile”
– Basically a file that has its data elsewhere

 Second new type of unnamed object: “Data Fork”
– Data portion associated with a metafile
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Metafiles and Data Forks

 Data Forks can be located on different servers
from their metafiles

 Allows data distribution
– I/O can be separated from metadata operations
– Provides “directory scaling”

• Increases aggregate I/O bandwidth to the files
in a directory

• Does not improve throughput of namespace
operations within a directory
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Linkage

 Each data fork has only one metafile

 Metafiles can be multiply linked into
namespace, just like ordinary files

 Add a new optional attribute to metafile
– data_locations
– Similar to fs_locations
– Contents are a list of server name strings and file

handles
– File handles are handles of data forks
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Data Forks

 Only way to get data fork FH is through
GETATTR on metafile

 Client performs GETATTR to retrieve
data_locations attribute

 New variant OPEN DISTRIBUTED
– similar to OPEN RECLAIM
– takes a file handle as an argument
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Transparency

 Data is accessible through metafile

 Server proxies data from data fork

 File appears normal to client

 Client has to explicitly look for non-empty
data_locations attribute to take advantage of
distribution
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Parallel Files

 Can have more than one data fork per file
– File Scaling

 V4 client can stripe data across the data forks
– Data forks are sparse
– Overlay of all data forks is complete file

 Client is free to expose the data forks to the
application as a collection of parallel data containers

– Suitable for parallel I/O libraries such as MPI-IO
– No need to hide the inherent parallelism
– Exposure is outside scope of protocol spec
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data_locations attribute

 data_locations is a list of server name strings and
filehandles, one per data fork

 Can have multiple data forks of same file on a server
– Completely up to the server to distribute data forks

 Client can request that a file have multiple data forks
by specifying a non-empty list of null entries for
data_locations in CREATE, SETATTR

 Client can request change in number of data forks via
SETATTR

 Server not required to comply
– Can simply create a normal file, with empty data_locations

attribute
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Single Use Volatile File Handles

 Propose a new flavor of volatile fh
– NF4_VOLATILE_SINGLE_USE
– data fork FH returned from GETATTR usable by calling

client to open data fork exactly once
– FH expires after lease period if not used in OPEN

DISTRIBUTED

 Allows server to know when there are no outstanding
FHs for a data fork

– Facilitates restriping, migration, etc.

 Proof at data fork that metafile access control was
checked

– Handle all access control and access denial at metafile
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File Handle as Secure Capability

 struct FH {
– expiry time (for use in open)
– data fork id
– OWF( expiry time, data fork id, client cred, server

secret)
}

Can’t be forged
Limited lifetime
Server can invalidate it
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data_distribution attribute

 Add another attribute data_distribution
– Variable length array of uint4s

 Required attribute if data_locations length > 1

 First uint4 is stripe factor

 Default is zero-based round robin striping

 Subsequent uint4s allow other distributions to be
specified

– Useful for restriping

 Distribution description can be standardized in V4
spec
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Operation Semantics

 Operations that affect metafile and data forks
go to metafile

– CREATE, REMOVE, SETATTR, etc.

 Data forks share owner and acls with metafile

 Data forks can be separately secured from
metafile

– E.g. different encryption level on metadata and
data

– Operations on data fork can provoke a SECINFO
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Locking

 Data forks can be directly locked
– These locks are held locally only
– Only apply to single data fork even though byte

range includes sparse regions held in other data
forks

 Metafile can be locked
– These locks must be propagated to the affected

data forks
– Can conflict with local data fork locks
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GETATTR

 GETATTR of data fork does not retrieve
information for whole file

 GETATTR of meta file retrieves correct size,
mtime, atime, ctime for entire file
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Server-to-Server Protocol

 Server-to-server communication is implied by data
distribution

 Beyond scope of v4 spec
– Should not be considered for inclusion in v4 spec

 Servers may use v4 to implement some functionality

 Server may use proprietary internal methods and
protocols

 Possible to define a companion spec to v4 that
specifies inter-server operation or some aspects of it
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Compatibility and Leverage

 Simple set of extensions to V4

 Maps quite closely to some parallel server
architectures

– Would be relatively easy to use V4 with
extensions as the client/server wire protocol

 Leverages existing V4 implementations, as
well as current and planned parallel server
implementations
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Conclusions

 Two sets of simple extensions to V4

 Unordered operations support HPC, database I/O
– Facilitate higher performance and throughput

 Data distribution allows directory and file scaling
– Highly parallel I/O
– Transparent or explicit parallelism at application

 Leverages existing V4 and parallel server
implementations


