
Building a Scalable NFS

Breaking the Single Server Bottleneck

Stephen Fridella, Xiaoye Jiang, David Black

Goals

Extend NFS in a way which:

 Breaks the single server bottleneck

 Supports multiple underlying storage
models

 Achieves scalable sharing for file systems
and individual files

Single Server Bottleneck

storage medium

ip network

data
meta-data

What Storage Medium?

All of them…

SCSI/ FC device OSD NFS/ Samba

realization

abstraction

“logical volumes” ---- block containers

File System

Medium specific driver
Medium specific driver

Medium specific driver

NFS Client Architecture

network

 to server

TCP/IP

NFS

Medium-specific driver

Local File System

storage fabric

to storage 

Volume Discovery

Need volume discovery phase

 Client and server agree on what storage
medium is used

 Server communicates to client a mapping of
logical volume ids to appropriate storage
space

 Future communications are in terms of
logical volume addresses

Meta-Data Management Protocol

Client needs protocol elements which allow it
to…

 fetch block mappings for files

 allocate new blocks to files

 coordinate access to files with other clients

Meta-Data Management (cont)

Our proposal:

 Block-range read and write delegations are
implicitly granted on successful mapping/
allocation requests

 Allocations are initially provisional---they
require an explicit commit request after data
is written

 Ideas are based on EMC’s File Mapping
Protocol

Reading Data (example)

NFS server

FS

1

1 File read req

2

2 getMapping req

3

3 Read file mapping

4

4 getMapping reply

5

5 Read file data

6

6 Reply to application

Subsequent reads may use cached
data or cached mappings

Local Application

NFS
Client

Writing Data (example)

FS

1 File write req

1

2

2 allocSpace req

3

3 Blocks pre-allocated

4

4 allocSpace reply

5

5 File write reply

6

6 Write cached data to disk

7

7 commitBlock req

8

8 Blocks added to file mapping

Subsequent writes can use
cached pre-allocated blocks

Local Application

NFS
Client

NFS server

Block Range Delegations

 Shared and exclusive

 Lease-based

 Can be revoked when server detects
conflicting delegation request

 Can be revoked when server detects
operation that will change mapping (write,
truncate)

Conflicting Requests (Example)

NFS server

Client 1 Client 2

FS

1

1
1 allocSpace req/ blocks
 provisionally alloced/
 allocSpace reply

2

2 data written to buffer
 cache

3 3 getMapping req for
 overlapping range4

4 revoke notification

5 5 flush data to storage

6 commit req/ add blocks
 to file mapping

7

7

7 notification reply/
 getMapping reply

8

8 read data from storage

6

6

Summary

 Break the single server bottleneck by
providing a meta-data management
interface for clients

 Support multiple underlying storage models
by using a generic logical volume
abstraction

 Provide for read/write sharing of files as well
as file-systems by using block-range
delegations

