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1. Introduction 

This document provides an overview of the current Linux 
pNFS client architecture.  This architecture enables 
pluggable layout drivers, allowing the layout driver for a 
particular file system to be chosen at mount-time.  Layout 
drivers implement a standard functional interface to 
manage layout specific I/O operations as well as a 
standard policy interface to answer runtime policy 
decisions. 

2. Overall pNFS architecture 

In pNFS, the NFS client and server continue to 
perform control and file management operations and 
relegate the responsibility for achieving scalable I/O 
throughput to a storage-specific driver.  By separating 
control and data flows, pNFS allows data to transfer in 
parallel from many clients to many storage endpoints.  
This removes the single server bottleneck by distributing 
I/O across the bisectional bandwidth of the storage 
network between the clients and storage devices.  

Figure 1 depicts the architecture of pNFS, which adds 
a layout driver, an I/O driver, and a file layout retrieval 
interface (export operations) to the standard NFSv4 
architecture. 

The layout driver understands the file layout of the 
storage system.  A layout consists of all information 
required to access any byte range of a file.  For example, 

a block layout may contain information about block size, 
offset of the first block on each storage device, and an 
array of tuples that contains device identifiers, block 
numbers, and block counts.  An object layout specifies the 
storage devices for a file and the information necessary to 
translate a logical byte sequence into a collection of 
objects.  A file layout is similar to an object layout but 
uses file handles instead of object identifiers.  The layout 
driver uses the layout to translate read and write requests 
from the pNFS client into I/O requests understood by the 
storage devices.  The I/O driver performs raw I/O, e.g., 
Myrinet GM, Infiniband, TCP/IP, to the storage nodes. 

To ensure support for all I/O protocols, the pNFS 
implementation for each operation system must include a 
standard interface that the layout driver implements.  The 
layout driver can be specialized or (preferably) implement 
a standard protocol such as the Fibre Channel Protocol 
(FCP), allowing multiple file systems to all share the 
same layout driver.  Storage systems adopting this 
architecture reduce development and management 
obligations by obviating a specialized file system client, 
which reduces the cost of high-end storage systems. 
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Figure 1.  pNFS  architecture 

pNFS extends NFSv4 with the addition of a 
layout driver, an I/O driver, and a file layout 
retrieval interface.  The pNFS server obtains an 
opaque file layout map from the storage system 
and transfers it to the pNFS client and 
subsequently to its layout driver for direct and 
parallel data access.   

3. pNFS Design 

3.1. Design goals 

The goals of this pNFS design are: 
• Support any storage protocol, including but not 

limited to block, object, and file storage protocols. 
• Pluggable layout drivers with a standard interface. 
• A clear division of responsibilities between the pNFS 

client and layout driver. 
• Enable layout driver specific policies that govern its 

runtime behavior. 
• Allow the pNFS client to export a set of optional 

features to a layout driver, e.g., data cache, writeback 
cache.  The pNFS client implements all pNFS 
operations, providing the layout driver with an 
interface for their execution, e.g., GETDEVICEINFO 

• Allow layout drivers to provide custom client feature 
implemtations such as data cache management, 
writeback cache, etc. 

3.2. pNFS Client Design 

An NFSv4 client no longer assumes SUNRPC is the 
only I/O protocol.  If a layout driver exists for a given file 
system, it provides the I/O capabilities. 

For NFSv2 and v3, the client follows the standard I/O 
code path.  With NFSv4, we have instrumented the client 
I/O code path with several hooks to query the policies of 
the layout driver for the file system.  Depending on these 
policies, the pNFS client will call operations on the layout 
driver as necessary.  If no layout driver exists for a given 
file system (superblock), the NFSv4 client also follows 
the standard I/O path. 

We currently envision three sets of interfaces that 
enable communication between the pNFS client and a 
layout driver.  The first is the layout driver operations 
interface, which gives a set of operations required to set 
layout information and perform I/O to the storage nodes.  
The second is a layout driver policy interface, which 
provides a set of operations that allow a pNFS client to 
retrieve the runtime characteristics of a layout driver, e.g., 
file system block size, whether the layout driver wants to 
use the NFSv4 writeback cache.  The third and final 
interface is currently undefined, but will provide a set of 
operations layout drivers can use to call into the pNFS 
client, e.g., I/O callbacks.  There should be no need for 
layout drivers to use sunrpc directly to contact the NFSv4 
server. 

This document presents a minimal design for each 
interface that meets the (functional) needs of the PVFS2 
and NFSv4 file layout drivers.  These interfaces may not 
currently meet the needs of other layout drivers, e.g., 
objects, blocks, so let the design discussion begin! 

3.2.1. Layout driver registration 
A layout driver is a kernel module that registers itself 

with the pNFS client when it is loaded.  
To register, a module calls: 
struct pnfs_layoutdriver_type { 
 const  int id; 
 const  char *name; 
 struct layoutdriver_io_operations *io_ops; 
 struct layoutdriver_policy_operations 

*p_ops; 
}; 
 
struct pnfs_client_operations* 

    pnfs_register_layoutdriver( 
struct pnfs_layoutdriver_type *); 

 
To unregister, a module calls: 
void  
pnfs_unregister_layoutdriver( 

struct pnfs_layoutdriver_type *); 
 
 
The variable id is the unique id of the layout driver, 

and maps directly to the new file system attribute, 
LAYOUT_CLASSES, which is the list of layout driver 
id’s that a file system supports.  The 
layoutdriver_operations struct is the I/O operations 
supported by the layout driver (Section 3.5).  Currently, if 
the pNFS server supports multiple layout driver types, the 
pNFS client will use the first one listed in the 
LAYOUT_CLASSES attribute. 

The returned pnfs_client_operations struct gives the 
list of callback operations supported by the pNFS client. 

3.2.2. Setting the layout driver for a file system 
A pNFS client retrieves the LAYOUT_CLASSES 

attribute when encountering an unknown file system 
identifier (at mount time).  If a layout driver with a 
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matching id exists, the layout driver’s operations are set 
in the superblock.  If a matching layout driver is not 
registered, the client uses standard NFSv4.  To prevent 
namespace collisions, a global registry maintainer such as 
IANA should store the layout driver identifiers.   

3.2.3. Layout driver operations interface 
There is much debate on the definition of layout 

driver’s interface.  Determining a division of labor 
between the pNFS client and its layout drivers that 
satisfies the needs of all underlying file systems will 
surely be an ongoing process.  

A single layout driver instance manages each mount 
point.  At mount time, the pNFS client calls the layout 
driver’s initialize_mountpoint operation to inform the 
layout driver of a new super block.  The 
initialize_mountpoint returns a pnfs_mount_type 
structure, which contains a pointer to layout driver 
specific mount information.  The pNFS client stores the 
pnfs_mount_type structure in the nfs super block and 
uses it for all layout driver file system operations.   
For each inode, the pNFS client initially calls the layout 
driver’s alloc_layout operation to retrieve a reference to a 
pnfs_layout_type structure.  The pnfs_layout_type 
structure contains a pointer to layout driver specifc layout 
information and is stored in the nfs inode.  The pNFS 
client injects layout information returned by 
LAYOUTGET into the layout driver through the 
set_layout operation. 

The pnfs_mount_type and pnfs_layout_type 
structures enable storing mount and layout information in 
an layout independent manner while eliminating 
hashtable lookups within the layout driver.   
 

The syntax for these functions is: 
/* Layout driver specific identifier for a mount 
point.  For each mountpoint a reference is 
stored in the nfs_server structure. */ 
struct pnfs_mount_type { 
 void* mountid; 
}; 
 
/* Layout driver specific identifier for layout 
information for a file.  Each inode has a 
specific layout type structure. A reference is 
stored in the nfs_inode structure. */ 
struct pnfs_layout_type { 
 struct pnfs_mount_type* mountid; 
 void* layoutid; 
}; 
 
/* Layout driver I/O operations.  Either the 
pagecache or non-pagecache read/write operations 
must be implemented */ 
struct layoutdriver_io_operations { 
  
/* Functions that use the pagecache.  If 
use_pagecache == 1, then these functions must be 
implemented. */ 
ssize_t (*read_pagelist) ( 
 struct pnfs_layout_type * layoutid, 
 struct inode *,  

 unsigned int pgbase,  
 struct page** pagevec,  
 loff_t offset, 
 size_t count, 
 void* private); 
  
ssize_t (*write_pagelist) ( 
 struct pnfs_layout_type * layoutid, 
 struct inode *,  
 unsigned int pgbase,  
 struct page** pagevec,  
 loff_t offset, 
 size_t count, 
 int sync, 
 void* private); 
 
/* Functions that do not use the pagecache.  If 
use_pagecache == 0, then these functions must be 
implemented. */ 
ssize_t (*read) ( 

 struct pnfs_layout_type * layoutid, 
 struct file*,  
 char __user *,  
 size_t, loff_t *); 
 

ssize_t (*write) ( 
 struct pnfs_layout_type * layoutid, 
 struct file*,  
 const char __user *,  
 size_t,  
 loff_t *); 
 
ssize_t (*readv) ( 
 struct pnfs_layout_type * layoutid,  
 struct file*,  
 const struct iovec *,  
 unsigned long, loff_t *); 
 
ssize_t (*writev) ( 
 struct pnfs_layout_type * layoutid, 
 struct file*,  
 const struct iovec *,  
 unsigned long,  
 loff_t *); 
 
/* Consistency ops */ 
int (*fsync) ( 
 struct pnfs_layout_type * layoutid, 
 struct file *, 
 struct dentry *,  
 int); 
 
int (*commit) ( 
 struct pnfs_layout_type * layoutid, 
 struct inode * inode, 

 struct list_head * pagelist, 
 int sync, 
 void* private); 
 
/* Layout information. For each inode, 
alloc_layout is executed once to retrieve an 
inode specific layout structure.  Each 
subsequent layoutget operation results in a 
set_layout call to set the opaque layout in the 
layout driver.  free_layout deallocs layout 
resources */ 
struct pnfs_layout_type* (*alloc_layout) ( 
 struct pnfs_mount_type * mountid,  
 struct inode * inode); 
 
void (*free_layout) ( 
 struct pnfs_layout_type * layoutid,  
 struct inode * inode); 
 
struct pnfs_layout_type* (*set_layout) ( 
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 struct pnfs_layout_type * layoutid, 
 struct inode * inode,  
 void* layout); 
 
/* Registration information for a new mounted 
file system */ 
struct pnfs_mount_type*(*initialize_mountpoint)( 
 struct super_block *); 
int (*uninitialize_mountpoint) ( 
 struct pnfs_mount_type* mountid); 
 
/* Allow custom/extra behavior through ioctl, 
just like a file system */ 
int (*ioctl) ( 
 struct pnfs_layout_type *,  
 struct inode *,  
 struct file *,  
 unsigned int,  
 unsigned long); 
}; 

 
To inject the file layout map, the pNFS client passes 

the opaque array as an argument to the set_layout 
function.  Once the layout driver has finished processing 
the layout, the pNFS client is free to call the driver’s read 
and write functions.  

3.2.4. Layout driver policy interface 
The following is a first draft of layout driver policies: 
 

struct layoutdriver_policy_operations { 
/* The stripe size of the file system */ 
ssize_t (*get_stripesize) ( 

struct pnfs_layout_type * layoutid, 
struct inode *); 

 
/* Should the NFS req. gather algorithm cross 
stripe boundaries? */ 
int (*gather_across_stripes) ( 

struct pnfs_mount_type * mountid); 
 
/* Retreive the block size of the file system.  
If gather_across_stripes == 1, then the file 
system will gather requests into the block size 
*/ 
ssize_t (*get_blocksize) ( 

struct pnfs_mount_type *); 
 
/* I/O requests under this value are sent to the 
NFSv4 server */ 
int (*get_io_threshold) ( 

struct pnfs_layout_type *,  
struct inode*); 

 
/* Use the linux page cache prior to calling 
layout driver read/write functions */ 
int (*use_pagecache) (struct pnfs_layout_type *, 
struct inode *); 
 
/* Should the pNFS client issue a layoutget call 
in the same compound as the OPEN operation? */ 
int (*layoutget_on_open) ( 

struct pnfs_mount_type *); 
}; 

 
I would like to see additional policies that allow more 

flexible I/O semantics such as: 
• Layout driver support for write or read gathering and 

use of the writeback cache without use of the data 

cache.  This is the default I/O policy in Lustre and 
critical to improve the efficiency of small I/Os. 

3.2.5. I/O Driver 
Currently the I/O driver is more of a design concept 

than a reality.  Both the NFSv4 file and PVFS2 layout 
drivers integrate the I/O driver into the layout driver.  The 
NFSv4 file layout driver only supports sunrpc (although 
this is changing with new technologies such as RDMA).  
The PVFS2 layout driver only supports its custom built 
BMI protocol. 

3.2.6. pNFS client callback interface 
 
struct pnfs_device 
{ 

unsigned int  layoutclass; 
int           dev_id; 
unsigned int  dev_addr_len; 
char          dev_addr_buf[MAXSIZE]; 

}; 
 
struct pnfs_devicelist { 
 unsigned int        num_devs; 
 unsigned int        devs_len; 
 struct pnfs_device  devs[MAXCOUNT]; 
}; 
  
struct pnfs_client_operations { 
int (*nfs_fsync) ( 

struct file * file, 
struct dentry * dentry, 
int datasync); 
 

int (*nfs_getdevicelist) ( 
struct super_block * sb, 
struct pnfs_devicelist* devlist); 
 

int (*nfs_getdeviceinfo) ( 
struct super_block * sb, 
u32 dev_id, 
struct pnfs_device * dev); 

};  
 

Depending on where the asynchrony starts, we may 
need I/O callbacks.  The NFSv4 layout driver pushes 
asynchrony to the sunrpc driver, and therefore does not 
require I/O callbacks either. 

3.2.7. Retrieving device information 
The GETDEVINFO and GETDEVLIST operations 

retrieve additional information about one or more storage 
nodes.  The layout driver has the option to call these 
operations at any time through the pNFS client callback 
interface.  We suspect the most common point will occur 
when a file system is mounted inside the layout driver 
initialization operation. 

One example of when GETDEVINFO may be 
executed is after the use of GETDEVLIST to get more 
detailed device information, e.g., SAN volume label 
information or port numbers. 

3.2.8. Write design 
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The pNFS client uses a writeback cache to gather write 
requests into wsize requests.  Write requests larger than 
the wsize are split into wsize-sized requests.  The 
maximum wsize is 32 KB.  When an inode is flushed—
either due to memory pressure, file close, or application 
fsync—all dirty pages written to the server.  The list of 
pages to be flushed is handed off to the layout driver 
through the writepage operation. 

Execution of writepage is currently a synchronous 
operation.  The current NFSv4 implementation does not 
directly support asynchronous I/O, instead relying on the 
multithreaded sunrpc implementation for asynchronous 
I/O support. 

If the server is mounted with the sync option set, all 
pages are immediately written to the data servers. 

Issuing I/O in 32 KB requests severely reduces 
performance for some parallel file systems, e.g., PVFS2, 
which are designed for large block sizes.  As a 
workaround, the current pNFS implementation has added 
another layout driver I/O interface operation, write.  
This operation is invoked before the pNFS client’s use of 
the writeback and data caches, allowing the original write 
request to be processed by the layout driver. 

The current pNFS implementation does not support 
O_DIRECT. 

3.2.9. Read design 
The pNFS read code path is very similar to the write 

code path.  pNFS read requests are gathered or split into 
rsize (32 KB) requests.  The Linux readahead 
algorithm determines the read request offset and extent 
arguments.  A list of pages to be filled are handed to the 
layout driver readpage operation.  

Execution of readpage is currently a synchronous 
operation.  The current NFSv4 implementation does not 
directly support asynchronous I/O, instead relying on the 
multithreaded sunrpc libraries for asynchronous I/O 
support. 

If the server is mounted with the sync option set, all 
pages are immediately filled through read requests to the 
data servers. 

Issuing I/O in 32 KB requests severely reduces 
performance for some parallel file systems, e.g., PVFS2, 
which are designed for large block sizes.  As a 
workaround, the current pNFS implementation has added 
another layout driver I/O interface operation, read.  This 
operation bypasses the data cache, allowing the original 
read request to be processed by the layout driver. 

The current pNFS implementation does not support 
O_DIRECT. 

3.2.10. Layout management 
The LAYOUTGET operation obtains file access 

information for a byte-range of a file, i.e., the file layout, 

from the underlying storage system.  At no time does the 
pNFS client attempt to interpret this object, it acts simply 
as a conduit between the storage system and the layout 
driver.  The byte range described by the returned layout 
may be smaller or larger than the requested size due to 
block alignments, layout prefetching, space limitations, 
etc. 

The client issues a LAYOUTGET operation after 
opening a file and before reading or writing file data.  The 
NFSv4 file layout driver issues a LAYOUTGET within 
the same compound as OPEN, whereas the PVFS2 layout 
driver issues LAYOUTGET operations as required. 

The current pNFS client implementation assumes the 
layout driver contains a layout cache, allowing repeated 
reads and writes to the layout driver once the layout is set.  
The pNFS client tracks the range for which layouts are 
acquired, issuing LAYOUTGET operations for byte 
ranges of the file not currently covered in the layout 
driver’s layout cache.  

3.2.11. Commit and Layoutcommit 
The current pNFS client implementation of 

LAYOUTCOMMIT only updates the pNFS server with 
the lastbytewritten field.  If the lastbytewritten field is 
greater than the current file size, the pNFS server updates 
the size of the file. 

Currently, an NFSv4 client sends a COMMIT to the 
server in response to client memory pressure or just 
before the file is closed.  With pNFS, instead of executing 
a COMMIT to the server, the pNFS client calls the layout 
driver commit operation.  Once the layout driver is 
finished commit data to the data servers, the pNFS client 
issues a LAYOUTCOMMIT operation to the server.  Our 
implementation currently tracks the last byte written to an 
inode between invocations of LAYOUTCOMMIT and 
uses this value for LAYOUTCOMMIT. 

3.2.12. Returning a layout 
This operation informs the server that obtained layout 

information is no longer required.  Clients return a layout 
voluntarily or when they receive a server recall request.  
The current code implements this operation but does not 
execute it. 

4. Layout Driver Specific Information 

4.1. NFSv4 File Layout 

• Issues LAYOUTGET with OPEN (Since this is an 
optimization, we currently retrieve layout info as 
needed.  We will implement this when the code is 
more stable.) 
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• Ensures that the pNFS client does not gather read and 
write requests across stripe boundaries. 

• Asynchronous I/O support via sunrpc 

4.2. PVFS2 

• Issue LAYOUTGET as needed 


