
 101

Linux pNFS Client Design Document for Pluggable Layout Drivers

(DRAFT)

Dean Hildebrand Andy Adamson Bruce Fields Peter Honeyman
Center for Information Technology Integration

University of Michigan
{dhildebz, andros, bfields, honey}@umich.edu

Marc Eshel

IBM Almaden Research Center
eshel@almaden.ibm.com

Trond Myklebust

Network Appliance, Inc.
trond.myklebust@fys.uio.no

1. Introduction

This document provides an overview of the current Linux
pNFS client architecture. This architecture enables
pluggable layout drivers, allowing the layout driver for a
particular file system to be chosen at mount-time. Layout
drivers implement a standard functional interface to
manage layout specific I/O operations as well as a
standard policy interface to answer runtime policy
decisions.

2. Overall pNFS architecture

In pNFS, the NFS client and server continue to
perform control and file management operations and
relegate the responsibility for achieving scalable I/O
throughput to a storage-specific driver. By separating
control and data flows, pNFS allows data to transfer in
parallel from many clients to many storage endpoints.
This removes the single server bottleneck by distributing
I/O across the bisectional bandwidth of the storage
network between the clients and storage devices.

Figure 1 depicts the architecture of pNFS, which adds
a layout driver, an I/O driver, and a file layout retrieval
interface (export operations) to the standard NFSv4
architecture.

The layout driver understands the file layout of the
storage system. A layout consists of all information
required to access any byte range of a file. For example,

a block layout may contain information about block size,
offset of the first block on each storage device, and an
array of tuples that contains device identifiers, block
numbers, and block counts. An object layout specifies the
storage devices for a file and the information necessary to
translate a logical byte sequence into a collection of
objects. A file layout is similar to an object layout but
uses file handles instead of object identifiers. The layout
driver uses the layout to translate read and write requests
from the pNFS client into I/O requests understood by the
storage devices. The I/O driver performs raw I/O, e.g.,
Myrinet GM, Infiniband, TCP/IP, to the storage nodes.

To ensure support for all I/O protocols, the pNFS
implementation for each operation system must include a
standard interface that the layout driver implements. The
layout driver can be specialized or (preferably) implement
a standard protocol such as the Fibre Channel Protocol
(FCP), allowing multiple file systems to all share the
same layout driver. Storage systems adopting this
architecture reduce development and management
obligations by obviating a specialized file system client,
which reduces the cost of high-end storage systems.

 102

Figure 1. pNFS architecture

pNFS extends NFSv4 with the addition of a
layout driver, an I/O driver, and a file layout
retrieval interface. The pNFS server obtains an
opaque file layout map from the storage system
and transfers it to the pNFS client and
subsequently to its layout driver for direct and
parallel data access.

3. pNFS Design

3.1. Design goals

The goals of this pNFS design are:
• Support any storage protocol, including but not

limited to block, object, and file storage protocols.
• Pluggable layout drivers with a standard interface.
• A clear division of responsibilities between the pNFS

client and layout driver.
• Enable layout driver specific policies that govern its

runtime behavior.
• Allow the pNFS client to export a set of optional

features to a layout driver, e.g., data cache, writeback
cache. The pNFS client implements all pNFS
operations, providing the layout driver with an
interface for their execution, e.g., GETDEVICEINFO

• Allow layout drivers to provide custom client feature
implemtations such as data cache management,
writeback cache, etc.

3.2. pNFS Client Design

An NFSv4 client no longer assumes SUNRPC is the
only I/O protocol. If a layout driver exists for a given file
system, it provides the I/O capabilities.

For NFSv2 and v3, the client follows the standard I/O
code path. With NFSv4, we have instrumented the client
I/O code path with several hooks to query the policies of
the layout driver for the file system. Depending on these
policies, the pNFS client will call operations on the layout
driver as necessary. If no layout driver exists for a given
file system (superblock), the NFSv4 client also follows
the standard I/O path.

We currently envision three sets of interfaces that
enable communication between the pNFS client and a
layout driver. The first is the layout driver operations
interface, which gives a set of operations required to set
layout information and perform I/O to the storage nodes.
The second is a layout driver policy interface, which
provides a set of operations that allow a pNFS client to
retrieve the runtime characteristics of a layout driver, e.g.,
file system block size, whether the layout driver wants to
use the NFSv4 writeback cache. The third and final
interface is currently undefined, but will provide a set of
operations layout drivers can use to call into the pNFS
client, e.g., I/O callbacks. There should be no need for
layout drivers to use sunrpc directly to contact the NFSv4
server.

This document presents a minimal design for each
interface that meets the (functional) needs of the PVFS2
and NFSv4 file layout drivers. These interfaces may not
currently meet the needs of other layout drivers, e.g.,
objects, blocks, so let the design discussion begin!

3.2.1. Layout driver registration
A layout driver is a kernel module that registers itself

with the pNFS client when it is loaded.
To register, a module calls:
struct pnfs_layoutdriver_type {
 const int id;
 const char *name;
 struct layoutdriver_io_operations *io_ops;
 struct layoutdriver_policy_operations

*p_ops;
};

struct pnfs_client_operations*

 pnfs_register_layoutdriver(
struct pnfs_layoutdriver_type *);

To unregister, a module calls:
void
pnfs_unregister_layoutdriver(

struct pnfs_layoutdriver_type *);

The variable id is the unique id of the layout driver,

and maps directly to the new file system attribute,
LAYOUT_CLASSES, which is the list of layout driver
id’s that a file system supports. The
layoutdriver_operations struct is the I/O operations
supported by the layout driver (Section 3.5). Currently, if
the pNFS server supports multiple layout driver types, the
pNFS client will use the first one listed in the
LAYOUT_CLASSES attribute.

The returned pnfs_client_operations struct gives the
list of callback operations supported by the pNFS client.

3.2.2. Setting the layout driver for a file system
A pNFS client retrieves the LAYOUT_CLASSES

attribute when encountering an unknown file system
identifier (at mount time). If a layout driver with a

 103

matching id exists, the layout driver’s operations are set
in the superblock. If a matching layout driver is not
registered, the client uses standard NFSv4. To prevent
namespace collisions, a global registry maintainer such as
IANA should store the layout driver identifiers.

3.2.3. Layout driver operations interface
There is much debate on the definition of layout

driver’s interface. Determining a division of labor
between the pNFS client and its layout drivers that
satisfies the needs of all underlying file systems will
surely be an ongoing process.

A single layout driver instance manages each mount
point. At mount time, the pNFS client calls the layout
driver’s initialize_mountpoint operation to inform the
layout driver of a new super block. The
initialize_mountpoint returns a pnfs_mount_type
structure, which contains a pointer to layout driver
specific mount information. The pNFS client stores the
pnfs_mount_type structure in the nfs super block and
uses it for all layout driver file system operations.
For each inode, the pNFS client initially calls the layout
driver’s alloc_layout operation to retrieve a reference to a
pnfs_layout_type structure. The pnfs_layout_type
structure contains a pointer to layout driver specifc layout
information and is stored in the nfs inode. The pNFS
client injects layout information returned by
LAYOUTGET into the layout driver through the
set_layout operation.

The pnfs_mount_type and pnfs_layout_type
structures enable storing mount and layout information in
an layout independent manner while eliminating
hashtable lookups within the layout driver.

The syntax for these functions is:
/* Layout driver specific identifier for a mount
point. For each mountpoint a reference is
stored in the nfs_server structure. */
struct pnfs_mount_type {
 void* mountid;
};

/* Layout driver specific identifier for layout
information for a file. Each inode has a
specific layout type structure. A reference is
stored in the nfs_inode structure. */
struct pnfs_layout_type {
 struct pnfs_mount_type* mountid;
 void* layoutid;
};

/* Layout driver I/O operations. Either the
pagecache or non-pagecache read/write operations
must be implemented */
struct layoutdriver_io_operations {

/* Functions that use the pagecache. If
use_pagecache == 1, then these functions must be
implemented. */
ssize_t (*read_pagelist) (
 struct pnfs_layout_type * layoutid,
 struct inode *,

 unsigned int pgbase,
 struct page** pagevec,
 loff_t offset,
 size_t count,
 void* private);

ssize_t (*write_pagelist) (
 struct pnfs_layout_type * layoutid,
 struct inode *,
 unsigned int pgbase,
 struct page** pagevec,
 loff_t offset,
 size_t count,
 int sync,
 void* private);

/* Functions that do not use the pagecache. If
use_pagecache == 0, then these functions must be
implemented. */
ssize_t (*read) (

 struct pnfs_layout_type * layoutid,
 struct file*,
 char __user *,
 size_t, loff_t *);

ssize_t (*write) (
 struct pnfs_layout_type * layoutid,
 struct file*,
 const char __user *,
 size_t,
 loff_t *);

ssize_t (*readv) (
 struct pnfs_layout_type * layoutid,
 struct file*,
 const struct iovec *,
 unsigned long, loff_t *);

ssize_t (*writev) (
 struct pnfs_layout_type * layoutid,
 struct file*,
 const struct iovec *,
 unsigned long,
 loff_t *);

/* Consistency ops */
int (*fsync) (
 struct pnfs_layout_type * layoutid,
 struct file *,
 struct dentry *,
 int);

int (*commit) (
 struct pnfs_layout_type * layoutid,
 struct inode * inode,

 struct list_head * pagelist,
 int sync,
 void* private);

/* Layout information. For each inode,
alloc_layout is executed once to retrieve an
inode specific layout structure. Each
subsequent layoutget operation results in a
set_layout call to set the opaque layout in the
layout driver. free_layout deallocs layout
resources */
struct pnfs_layout_type* (*alloc_layout) (
 struct pnfs_mount_type * mountid,
 struct inode * inode);

void (*free_layout) (
 struct pnfs_layout_type * layoutid,
 struct inode * inode);

struct pnfs_layout_type* (*set_layout) (

 104

 struct pnfs_layout_type * layoutid,
 struct inode * inode,
 void* layout);

/* Registration information for a new mounted
file system */
struct pnfs_mount_type*(*initialize_mountpoint)(
 struct super_block *);
int (*uninitialize_mountpoint) (
 struct pnfs_mount_type* mountid);

/* Allow custom/extra behavior through ioctl,
just like a file system */
int (*ioctl) (
 struct pnfs_layout_type *,
 struct inode *,
 struct file *,
 unsigned int,
 unsigned long);
};

To inject the file layout map, the pNFS client passes

the opaque array as an argument to the set_layout
function. Once the layout driver has finished processing
the layout, the pNFS client is free to call the driver’s read
and write functions.

3.2.4. Layout driver policy interface
The following is a first draft of layout driver policies:

struct layoutdriver_policy_operations {
/* The stripe size of the file system */
ssize_t (*get_stripesize) (

struct pnfs_layout_type * layoutid,
struct inode *);

/* Should the NFS req. gather algorithm cross
stripe boundaries? */
int (*gather_across_stripes) (

struct pnfs_mount_type * mountid);

/* Retreive the block size of the file system.
If gather_across_stripes == 1, then the file
system will gather requests into the block size
*/
ssize_t (*get_blocksize) (

struct pnfs_mount_type *);

/* I/O requests under this value are sent to the
NFSv4 server */
int (*get_io_threshold) (

struct pnfs_layout_type *,
struct inode*);

/* Use the linux page cache prior to calling
layout driver read/write functions */
int (*use_pagecache) (struct pnfs_layout_type *,
struct inode *);

/* Should the pNFS client issue a layoutget call
in the same compound as the OPEN operation? */
int (*layoutget_on_open) (

struct pnfs_mount_type *);
};

I would like to see additional policies that allow more

flexible I/O semantics such as:
• Layout driver support for write or read gathering and

use of the writeback cache without use of the data

cache. This is the default I/O policy in Lustre and
critical to improve the efficiency of small I/Os.

3.2.5. I/O Driver
Currently the I/O driver is more of a design concept

than a reality. Both the NFSv4 file and PVFS2 layout
drivers integrate the I/O driver into the layout driver. The
NFSv4 file layout driver only supports sunrpc (although
this is changing with new technologies such as RDMA).
The PVFS2 layout driver only supports its custom built
BMI protocol.

3.2.6. pNFS client callback interface

struct pnfs_device
{

unsigned int layoutclass;
int dev_id;
unsigned int dev_addr_len;
char dev_addr_buf[MAXSIZE];

};

struct pnfs_devicelist {
 unsigned int num_devs;
 unsigned int devs_len;
 struct pnfs_device devs[MAXCOUNT];
};

struct pnfs_client_operations {
int (*nfs_fsync) (

struct file * file,
struct dentry * dentry,
int datasync);

int (*nfs_getdevicelist) (
struct super_block * sb,
struct pnfs_devicelist* devlist);

int (*nfs_getdeviceinfo) (
struct super_block * sb,
u32 dev_id,
struct pnfs_device * dev);

};

Depending on where the asynchrony starts, we may
need I/O callbacks. The NFSv4 layout driver pushes
asynchrony to the sunrpc driver, and therefore does not
require I/O callbacks either.

3.2.7. Retrieving device information
The GETDEVINFO and GETDEVLIST operations

retrieve additional information about one or more storage
nodes. The layout driver has the option to call these
operations at any time through the pNFS client callback
interface. We suspect the most common point will occur
when a file system is mounted inside the layout driver
initialization operation.

One example of when GETDEVINFO may be
executed is after the use of GETDEVLIST to get more
detailed device information, e.g., SAN volume label
information or port numbers.

3.2.8. Write design

 105

The pNFS client uses a writeback cache to gather write
requests into wsize requests. Write requests larger than
the wsize are split into wsize-sized requests. The
maximum wsize is 32 KB. When an inode is flushed—
either due to memory pressure, file close, or application
fsync—all dirty pages written to the server. The list of
pages to be flushed is handed off to the layout driver
through the writepage operation.

Execution of writepage is currently a synchronous
operation. The current NFSv4 implementation does not
directly support asynchronous I/O, instead relying on the
multithreaded sunrpc implementation for asynchronous
I/O support.

If the server is mounted with the sync option set, all
pages are immediately written to the data servers.

Issuing I/O in 32 KB requests severely reduces
performance for some parallel file systems, e.g., PVFS2,
which are designed for large block sizes. As a
workaround, the current pNFS implementation has added
another layout driver I/O interface operation, write.
This operation is invoked before the pNFS client’s use of
the writeback and data caches, allowing the original write
request to be processed by the layout driver.

The current pNFS implementation does not support
O_DIRECT.

3.2.9. Read design
The pNFS read code path is very similar to the write

code path. pNFS read requests are gathered or split into
rsize (32 KB) requests. The Linux readahead
algorithm determines the read request offset and extent
arguments. A list of pages to be filled are handed to the
layout driver readpage operation.

Execution of readpage is currently a synchronous
operation. The current NFSv4 implementation does not
directly support asynchronous I/O, instead relying on the
multithreaded sunrpc libraries for asynchronous I/O
support.

If the server is mounted with the sync option set, all
pages are immediately filled through read requests to the
data servers.

Issuing I/O in 32 KB requests severely reduces
performance for some parallel file systems, e.g., PVFS2,
which are designed for large block sizes. As a
workaround, the current pNFS implementation has added
another layout driver I/O interface operation, read. This
operation bypasses the data cache, allowing the original
read request to be processed by the layout driver.

The current pNFS implementation does not support
O_DIRECT.

3.2.10. Layout management
The LAYOUTGET operation obtains file access

information for a byte-range of a file, i.e., the file layout,

from the underlying storage system. At no time does the
pNFS client attempt to interpret this object, it acts simply
as a conduit between the storage system and the layout
driver. The byte range described by the returned layout
may be smaller or larger than the requested size due to
block alignments, layout prefetching, space limitations,
etc.

The client issues a LAYOUTGET operation after
opening a file and before reading or writing file data. The
NFSv4 file layout driver issues a LAYOUTGET within
the same compound as OPEN, whereas the PVFS2 layout
driver issues LAYOUTGET operations as required.

The current pNFS client implementation assumes the
layout driver contains a layout cache, allowing repeated
reads and writes to the layout driver once the layout is set.
The pNFS client tracks the range for which layouts are
acquired, issuing LAYOUTGET operations for byte
ranges of the file not currently covered in the layout
driver’s layout cache.

3.2.11. Commit and Layoutcommit
The current pNFS client implementation of

LAYOUTCOMMIT only updates the pNFS server with
the lastbytewritten field. If the lastbytewritten field is
greater than the current file size, the pNFS server updates
the size of the file.

Currently, an NFSv4 client sends a COMMIT to the
server in response to client memory pressure or just
before the file is closed. With pNFS, instead of executing
a COMMIT to the server, the pNFS client calls the layout
driver commit operation. Once the layout driver is
finished commit data to the data servers, the pNFS client
issues a LAYOUTCOMMIT operation to the server. Our
implementation currently tracks the last byte written to an
inode between invocations of LAYOUTCOMMIT and
uses this value for LAYOUTCOMMIT.

3.2.12. Returning a layout
This operation informs the server that obtained layout

information is no longer required. Clients return a layout
voluntarily or when they receive a server recall request.
The current code implements this operation but does not
execute it.

4. Layout Driver Specific Information

4.1. NFSv4 File Layout

• Issues LAYOUTGET with OPEN (Since this is an
optimization, we currently retrieve layout info as
needed. We will implement this when the code is
more stable.)

 106

• Ensures that the pNFS client does not gather read and
write requests across stripe boundaries.

• Asynchronous I/O support via sunrpc

4.2. PVFS2

• Issue LAYOUTGET as needed

