Native pNFS Client for Windows HPC Server 2008
NFS origins

• NFSv2 and NFSv3
 – Proprietary (Sun Microsystems) client/server protocols for distributed filing
 – “Open system”
 • Protocol published
 • Interoperability promoted
 – Stateless, usually UDP-based
 – Other protocols for mount, locks, quotas
NFsv4

• Control ceded to IETF
• Goals
 – Internet performance
 – Interoperability, internationalization
 – Security, reliability, availability
 – Extensible
• Stateful protocol
 – Open, locks, oplocks, secure channels, callbacks
• RFC 3010, December 2000; RFC 3530, April 2003
NFSv4 and HPC

from ASCI Technology Prospectus, July 2001
Single server bottleneck

Client
Client
Client...
Client

Server
Meeting HPC storage needs

- HPC demands for scalable storage are met through innovative, proprietary, non-interoperable solutions
 - Lustre, GPFS, PanFS, PVFS2 dominate
 - Investment in proprietary solution has high risk of lock-in or loss

- pNFS insulates storage architects from these risks
 - Neutral ground through standardization
 - Continues to admit vendor innovation
 - Pools customer investment
 - Spreads investment across more vendors
Parallel file systems

Asymmetric
- Direct access to storage
- Separate metadata servers
- File, object, or block access

Symmetric
- Direct access to storage
- Each node is a fully capable client and metadata server
- File access
NFS advantages and obstacles

- Security
- Heterogeneity
- Transparency

- Performance
- Scalability
pNFS worldview

• pNFS extends NFSv4
 – parallel, multi-path transfers
 – complex topologies
• A layout associates a file with a device ID
• LAYOUTGET returns the device ID for a given file
 – The handle for a specific storage device topology
• GETDEVICEINFO returns the storage device topology for a given device ID
pNFS

Client

pNFS Client

Layout
I/O

pNFS Driver
I/O

pNFS Parallel I/O

Server

NFSv4 I/O and Metadata

pNFS Server

Layout

Control
Flow

Storage System

Storage Nodes
pNFS I/O in Windows

- Credentials manager
- RPC/XDR
- Net
- User
- NFS ops
- Layout manager
- Callback handler
- RDBSS-based mini-RDR driver
- Cache manager
- Kernel
- Session manager

Diagram showing the flow of communication and data between the different components.
The path to pNFS in Linux

- Convince people it will work
- Get on the IETF agenda
- Draft a protocol standard
 - Make sure it addresses HPC issues
- Convince people to fund implementation
- Gather frequently to test interoperability
 - Convince Linux maintainers to accept patches
 - Convince Linux distributions to support pNFS
Building the Case

Write files

Write one file

Read files

Read one file
Roadmap

• Standardization
 – Target: 2008
• Implementation
 – Target: 2009
• Distribution
 – Target: 2010 (HPC, other early adopters)
• Enterprise distribution
 – Target: 2011
Implementations

- CITI, Sun, StorSpeed, Seagate, Panasas, Ohio Supercomputing Center, NetApp, LSI, IBM, EMC, Carnegie Mellon, DESY, BlueArc

- Frequent interoperability testing
 - Connectathon, Bake-a-thons

- Functionally correct and interoperable
 - Linux, Solaris clients
 - DESY, EMC, IBM, Linux, NetApp, Panasas, Solaris servers
Windows client status

• Passing most “Basic Connectathon” tests
 – Interoperability testing began at last Bake-a-thon
• Layout implementation begins in 4Q09
• Open source distribution (more hands, more eyes) to begin 1H10
• Functional completeness 4Q10
 – With continuing development and tuning by open source developers
Linux implementation status

• Maintainers work with developers to engineer kernel patches
 – Linux kernel version increments approximately quarterly
 – Ultimately Linus Torvalds decides

• NFSv4.1 is more than pNFS
 – Sessions communication layer, required for pNFS
 – Directory delegation

• Client and server fore and back sessions channel in Linux 2.6.32 kernel
There is much left to do

• Administration tools
 – Metadata server management
 – Volume management

• Performance at scale
 – Instrumentation, measurement, tuning
 – Small-scale file striping performance under way at CITI (fewer than 20 nodes)

• Metadata striping

• Windows HPC Server 2008 metadata server