Network Testing and Performance Using SeRIF

Charles J. Antonelli
David Richter
Olga Kornievksaia
Nathan Gallaher

Center for Information Technology Integration
University of Michigan

Work supported by U-M ITCom
SeRIF

• **SeRIF** : Secure Remote Invocation Framework

• *Purpose* : provide a secure and extensible remote process invocation service, with strong authentication and flexible authorization

• Based on Globus, GARA

• Adds fine-grained authorization
 – Walden
SeRIF

• Central portal host
 – Authentication
 – Control (invocation, parameters, results)
 – Databases (LDAP)

• Dedicated remote nodes
 – Gatekeeper
 – Local scheduler for execution and cleanup
 – Provides status and output redirection
 – Fine grained authorization at resource
NTAP

• **NTAP**: Network Testing and Performance

• **Purpose**: provide a secure and extensible network testing and performance tool invocation service at U-M

• Uses SeRIF framework

• Runs on portal host and Performance Measurement Platforms (PMPs) attached to routers in a VLAN environment
NTAP Architecture

Web Portal

Router 1 -> Router 2 -> Router 3

Host A -> Router 1

Host B -> Router 3

PMP 1 -> GSI -> PMP 2

PMP 2 -> GSI -> PMP 3

Attribute Callout

Walden
AFS PTS
Flat File
• Bandwidth reservation tool:
 – Securely modifies network switch configurations to provide differentiated services
 – Based on GARA extension
 • “General-purpose Architecture for Reservation and Allocation”
 • Layered on Globus
 • Includes scheduler for future reservations
 – Implements modular, fine-grained, role-based authorization
 • Added signed group membership(s) to reservation data
 • Keynote policy engine / AFS PTS group service
NTAP II

• Added authorization plug-in
 – PERMIS policy engine / LDAP group service

• Generalized from bandwidth reservations to the ability to run securely arbitrary programs at a Grid service endpoint
 – Designed to add functionality easily
 – Network testing tools supported
 • iperf, traceroute, ping, etc

• Implemented automatic path discovery
Segment Mapping

- **Strategy**
 - Use `traceroute` to obtain packet routing path
 - Use network topology database to map each router to its associated PMP
 - Execute pairwise performance tests along path

- **Multi-homed PMP support**
 - One routing table per VLAN
 - Routing policy selects routing table based on source address of outgoing packet
 - Emulates a default route per virtual interface
Segment Mapping

Search types (Anchors)

- Host
- Router
- Router, no path discovery
- PMP
- PMP, no LDAP search
Segment Mapping

Testing Modes

– Simple
 • Uses default VLANs only
 • Fallback mode

– Source
 • One-way QoS modeling, best for asymmetric applications, accurate for multi-hop

– Full
 • Two-way QoS modeling, but not useful for multi-hop
Production Hardening

Stable, robust product suitable for continuous operation
- Error handling/recovery
- Cleanup/restart
- Log file management
- Deployment packaging
- Deployment verifier
- Documentation
Output Database

- Test program outputs captured
- Stored in LDAP database
- Database display tool
 - Output hop-by-hop matrix display
 - Color-coded test history
 - Click through cells for detailed views
 - Links to most recent tests
 - Config file for rapid prototyping
NTAP III

• Deployment
 – PMPs deployed at ITCom, Merit, Internet2
• Added authorization plug-in
 – PERMIS policy engine / LDAP group service
• 10 Gbps PMPs
• Host Endpoint Testing
• Automated Testing
• Profile-based interface
Walden

- Fine-grained authorization at gatekeeper
- Uses XACML policy file
 - Resource, Action, Subject attributes
Automated Testing

- Want repetitive, automated testing
 - … but with secure authentication and authorization

- Solution: renewable credentials
 - User obtains Globus credentials
 - Portal schedules repetitive testing
 - Prior to test cycle, portal derives single-use credential from user credential
 - Rest of NTAP architecture unchanged
Host Endpoint Testing

- **First mile problem**
 - Leverages Network Diagnostic Tester
- **Uses JavaWebStart to run signed apps on client**
 - Client downloads NDT app
 - Multi-step process
 - User clicks two links
 - Client identifies first-hop router and attached PMP running NDT server
 - Client runs NDT test and displays results as usual
 - NDT server sends results to NTAP database
Profile-based Interface

- Database of test paths and test requests
 - Segment mapped or user-specified
 - Captures common test configurations
- Available as library of standard configurations
 - Select test profile
 - Attach one or more test profiles
 - Run test and record results
- Leverages test expertise
- Authorized access contemplated
MGRID NTAP Project

Demonstration
Future Work

- Post-processed statistics, graphs
- Cross-domain testing
- Alternatives to topology database
- Automated tools
 - Tune TCP stack
 - Detect duplex mismatches
- Graph the topology database
Any Questions?

http://www.citi.umich.edu