A Practical Distributed Authorization System
for GARA

WiLLiaM A. ApAaMSON and OLGA KORNIEVSKAIA

Center for Information Technology Integration
University of Michigan, Ann Arbor, USA

{andros,aglo}@citi.umich.edu

Abstract. Although Quality of Service functionality has become a com-
mon feature of network hardware, configuration of QoS parameters is
done by hand. There is a critical need for an automated network reser-
vation system to provide reliable last mile networking for video, audio,
and large data transfers. Security of all communications in the process of
automating the network configuration is vital. What makes this security
problem difficult is the allocation of end-to-end network resources across
security realms and administrative domains.

This paper introduces a practical system that shows a design and im-
plementation of Globus General-purpose Architecture for Reservation
and Allocation (GARA) services that offer automated network reserva-
tion services to users. The contributions of this paper are twofold. First,
we provide a fine-grained cross-domain authorization for GARA that
leverages existing institutional security and group services, with univer-
sal access for users. We identify and discuss issues involved. Second, we
eliminate the need for long term public key credentials and associated
overheads that are required by other systems. We describe the implemen-
tation of an easy and convenient Web interface for making reservation
requests.

1 Introduction

Reliable high speed end-to-end network services are increasingly important for
scientific collaborators, whether separated by large distances or located just
across town or campus. Our experience shows that long haul networks demon-
strate good performance (thanks to over provisioning), but the last mile — from
the edge of the campus network to the desktop — is often a network bottleneck.

Quality of Service functionality is a common feature of network hardware.
Recent studies show the viability and utility of these features to control network
resources. Currently, QoS configuration of network hardware is done by hand.
While several standardization efforts are attempting to produce protocols that
enable automated network configuration across administrative domains [12,19],
it is not yet clear which protocol(s) will be embraced.

Our work addresses the need for an automated network reservation system
to provide reliable last mile networking for video, audio, and large data transfers

for the partner institutions. Reliable end-to-end network service between part-
ner institutions is achieved by reserving network resources within the end-point
institution networks, coupled with the demonstrated adequate performance of
the over provisioned interconnecting long haul networks, wherein no network
resource reservation is needed.

In automating network configuration, security of all communications is vital.
Network hardware is a prime target for malicious hackers, because controlling the
routing and resource allocation of a network enables myriad other attacks. What
makes this security problem difficult is the cross-domain nature of end-to-end
network resource allocation. Requesting end-to-end network resource allocation
between the local domain and a remote domain, a user needs to be authenticated
and authorized in both domains before the request can be granted.

Our work is based on the Globus General-purpose Architecture for Reser-
vation and Allocation (GARA) [6,8,7,10]. This is a natural choice because the
project partner institutions all run Globus software in either production or pre-
production mode. The goal of the GARA architecture is to create a flexible
solution that satisfies requirements of different types of resources (networks,
CPUs, disks, etc.), while providing a convenient interface for users to create
both advance and immediate reservations. GARA uses the Globus Grid Secu-
rity Infrastructure (GSI) [5] for authentication and authorization. An attractive
feature of GSI is that it performs cross-domain authentication by relying on a
Public Key Infrastructure (PKI) and requiring users to have long term public
key (PK) credentials.

GSI provides coarse-grained access control. A flat file, called the gridmap
file, stores mappings from PK credentials (Distinguished Names, (DN)) to local
user names. A user is allowed access to Globus services if there is an entry
corresponding to this user in the gridmap file. This all-or-nothing access control
policy is extremely limiting. Authorization decisions in QoS are based on many
parameters such as the amount of available bandwidth, time of day, system
load, and others. We propose to control resource usage with a policy engine and
expressive security policies.

In this paper, we describe the design and implementation of a GARA sys-
tem that automates network reservations. The contributions of this paper are
twofold. First, we provide a fine-grained cross-domain authorization for GARA
that leverages existing security and group services, with universal access for
users. Second, we eliminate the need for long term PK credentials, currently re-
quired by the system. We also introduce a secure and convenient Web interface
for making reservation requests based on Kerberos credentials.

The remainder of this paper is organized as follows. Section 2 describes the
Kerberized Credential Authority (KCA) and Kerberized Credential Translation
(KCT) services and shows how they allow universal access to GARA by enabling a
reservation to be made via the Web, obviating the need to install Globus software
on workstations. Section 3 presents an architecture for distributed authorization
that employs a shared namespace, delegated authorization through secure and
trusted channels and a signed authorization payload, and the policy engine used

client & Web g | Gatekeeper | g | GARA| ﬁ Network

Server Hardware

NG~

|KDC| |KCA| |KCT|

Fig.1. KX509 GARA Web Interface. This figure shows how local network re-
sources are reserved with the GARA Web interface. KX509 junk keys replace long
term PK credentials. Communications with the KDC, KCA, and KCT are Kerberos
protected.

to make the authorization decision. Section 4 briefly describes implementation of
the system. Related work is presented in Section 5. Finally, Section 6 concludes.

2 GARA Web Interface

Many sites, such as the University of Michigan, lack a PKI, but they do have an
installed Kerberos [14] base. The University of Michigan has developed a service
that allows users to access Grid resources based on their Kerberos credentials.
The KX509 [9,13] system translates Kerberos credentials into short-lived PK
credentials, or junk keys, which in turn can be used by browsers for mutual SSL
authentication or by GSI for Globus authentication.

Junk keys have several advantages over traditional long-lived PK credentials.
They have short lifetimes, so the revocation problem [1] is largely obviated.
While, in a traditional PKI, long term credentials put the ease of user mobility
in question, KX509 users can obtain new junk keys at each workstation.

KX.509 creates a new public/private keypair and sends the public key to a
Kerberized Certificate Authority (KCA) over a Kerberos secured channel. Using
the presented public key, the KCA creates and signs a short term X.509 identity
certificate.

In order to make network resource reservations convenient for users, we built
a GARA Web Interface. A user makes a reservation by filling out a GARA net-
work reservation Web form. All requests are SSL protected and require mutual
authentication. As opposed to a traditional password-based user authentication,
we use short-lived user certificates, priorly acquired with KX.509. After the Web
server authenticates the user, it contacts a Kerberized Credential Translation
(KCT) [13] server, presents appropriate credentials, and requests Kerberos cre-
dentials on the user’s behalf. Next, the Web server runs KX509 on the user’s
behalf, which creates a new junk key for the user on the Web server. This junk
key is then used to create Globus proxy credentials. GARA client code resides on

the Web server and uses Globus proxy credentials. Figure 1 gives an overview of
the GARA Web Interface.

3 Distributed Authorization Design

In a cross domain distributed authorization scheme, authorization decisions are
made even if the requestor and resources reside in separate domains. Often au-
thorization decisions are made by a policy engine that applies policy rules to a
set of input attributes. These attributes might include user attributes such as
group membership or environmental attributes such as time of day. Attribute
information can come from a variety of sources: local services, environment, con-
figurations, or attached to the resource request. We separate the authorization
process into two phases: gathering of attributes and running of the policy engine.

In designing the distributed authorization system, we must address the lo-
cation where the authorization decision takes place. We discuss how the use of
shared namespace and delegated credentials are the key to creating a practical
authorization scheme. We also believe in utilizing existing local authorization
services to require as little replication of information as possible.

Location of authorization decision: The question that needs to be answered
is: where is the best place in GARA to make the authorization decision? Three
possible locations exist: Web server, gatekeeper, and resource manager.

Prior to initiating any contact with the desired resource, the Web server
can contact an authorization service and provide user’s identity and resource
request information. Having such an authorization service would perforce need
to have a policy for each resource and information about each user. However,
this choice presents extra communications when the resource is not available, or
when fine-grained authorization is not required.

The gatekeeper is expected to handle numerous requests, so performing the
authorization decision at the gatekeeper could have an impact on the gate-
keeper’s performance. At the gatekeeper, it is still unknown if the resource is
available, so as above, the extra communication and work to make an authoriza-
tion decision could be wasted effort. We conclude that adding authorization at
the gatekeeper would be counter productive.

The best place to enforce authorization in the GARA architecture is at the re-

source manager where each service is capable of stating, enforcing, and modifying
its policies without depending on the administration of the Globus architecture
at large.
Shared namespace. Central to any authorization service design is the forma-
tion of an attribute namespace that is understood by policy engines. Frequently,
the primary concern in the authorization decision is related to a group mem-
bership question: does this user belong to appropriate groups? Consequently,
a security policy would enforce the restricted membership for specific actions.
Within a domain, the statement of group membership is well defined. Both user
identity information and a group namespace are available locally.

A shared group namespace, presented to policy engines in multiple domains
and used to control access to resources in multiple domains, is defined by a num-
ber of groups with common names across domains. In its existing group service,
each domain creates groups with these names and manages user membership
as any local group. Other attributes presented to the distributed policy engines

such as the amount of requested bandwidth or start-time of the request are al-
ready encapsulated in a shared namespace in that they are coded as name,value
pairs in the request.

Signed authorization payload. At the remote service, we do not add a call-
back to the local group service to determine group membership, instead, autho-
rization information is added to the existing resource request.

The local GARA resource manager queries the local group membership ser-
vice for the subset of shared namespace groups in which the requestor is a mem-
ber, and passes the group list along with the request parameters to its policy en-
gine to make an authorization decision. If the request succeeds, the local GARA
resource manager creates an authorization payload consisting of the requestor’s
distinguished name and the group list. To secure the authorization payload, we
require the local GARA resource manager to sign the authorization payload be-
fore adding it to the reservation reply returned to the GARA client running on
the Web server. The reservation request is forwarded to the remote GARA who
validates the signature on the received authorization information before pass-
ing the group list as input to its policy engine. Thus we piggy-back the group
membership information on the existing reservation request communication.
Policy Engine. After all the requestor’s attributes such as group membership
and request parameters have been established, the fine-grained authorization
decision can be made. In general, policy engines accept attribute-value pairs as
input, compare the input attributes to a set of policy rules, and return a pass/fail
response. The granularity of the authorization decision is embodied in the com-
plexity of the policy rules that must be satisfied by the input attribute-value
pairs. To allow different policy engines, the authorization callout has a generic
API that passes information about the requestor and the action to the policy
engine. We chose KeyNote [2—4] for our policy engine because of its flexibility
and easy availability.

4 Implementation

4.1 KeyNote Policy Engine

Applications such as GARA describe policies to KeyNote with a set of attribute-
value pairs (called an action condition) creating a policy namespace. In Figure 4,
the policy namespace consists of the following attributes and their correspond-
ing values: app_domain, operation, type, location, amount, time, and grid_bw.
To express a security policy, each Globus site is free to choose any descriptive
attribute name. However, if any of the attributes are to be included in the au-
thorization data that is passed to or received from a remote domain, then the
attributes need to be included in the shared namespace we described previously.

We now describe the basic pseudocode for the KeyNote policy engine call
with a group membership action condition.

— requester: the requesting principal’s identifier.

SN_groups = retrieve_group_membership(requestor);

result = authorization_decision(requestor, action_description,
policy, credentials);

if (result == "allowed") do the requested action

else report action is not allowed

Fig. 2. Pseudo-code for the authorization mechanism in diffserv_manager.

session_id = kn_init();

kn_add_assertion(session_id,policy[il);

kn_add_assertion(session_id,credentials[i]);

for all actions in action_description
kn_add_action(session_id, action_description.attr,
action_description.value);

result = kn_do_query(session_id);

Fig. 3. Pseudo-code for the call to the KeyNote policy engine.

keynote-version: 2

local-constants: ADMIN_UM = "x509-base64:MIICrzCC"
authorizer: "POLICY"

licensees: ADMIN_UM

conditions: app_domain == "gara" &&
operation == "reservation" &&
type == "bandwidth" &&
((location == "local" && Q@amount <= 100) ||
(location == "remote" && Qamount <= 10) ||
time == "night") && grid_bw == "yes");

Fig. 4. Trusted assertion stating KeyNote top level security policy. Note that the value

of the key has been truncated.

— action_description: the data structure describing an action contains attribute

value pairs which are included in the request. For example, “system_load <
70” specifies an environment condition stating that the current system load
must not exceed 70%.

SN_groups: the shared namespace groups in the action_description, also added
as attribute value pairs describing the action. For example, “grid_ bw = yes”
states the request is a member of the grid_bw group.

policy: the data structure describing local policy, typically read from a local
file.

credentials: the data structure with any relevant credentials, typically sent
along with the request by the requesting principal. Before making use of
these credentials, their validity must be confirmed by verifying a signature
included in the credential data structure.

Figure 2 shows the main actions of diffserv_manager.

Figure 3 provides details of the authorization_decision function.

Figure 4 shows an example of a KeyNote top level security policy that allows
the action if the following conditions hold: an application domain is called gara
and the requested operation is reservation for the resource of type bandwidth.
Furthermore, if this is a local request, then bandwidth for more than 100Mb
is not allowed. If the request is from a remote user, then amount greater than
10Mb is not allowed. If the current time is after hours, then no restriction on
bandwidth is enforced. The requestor must be a member of grid_bw group.

If the KeyNote policy engine states that the action is not allowed, no reser-
vation is made by the local diffserv_manager and an authorization failure is
returned to the Web server. As the result, the reservation protocol returns an
authorization error back to the client. A success value is returned to the client
only if both local and remote authorization have succeeded.

4.2 Reservation Flow

We successfully demonstrated our modifications to GARA by reserving band-
width for a video application running between the University of Michigan and
CERN!. Bandwidth is reserved by filling in a Web form served by a modified
Apache Web server that runs the GARA client. The GARA client communicates
with separate GARA services at each end-point domain, as shown in Figure 5.
The GARA services use KeyNote authorization policies configured to require
bounded request parameters for bandwidth, time and duration. Group member-
ship is also required. We demonstrated that if any of the policy parameters are
not satisfied, e.g. too much requested bandwidth or incorrect AFS PTS group
membership, the reservation fails.

A successful reservation results in configuration of the end domain Cisco
ingress routers, that marks the packets and polices the flow, with the appro-
priate Committed Access Rate (CAR) rate limit. The participating routers are
statically configured with WRED, Cisco’s implementation of the Random Early
Detection (RED) class of congestion avoidance algorithms.

What follows is a step by step description of an end-to-end network reserva-
tion using the enhanced GARA, also illustrated in Figure 5.

1. User (locally) executes kinit and acquires Kerberos credentials.

2. User (locally) executes kz509 and acquires junk keys.

3. Using a browser, a user makes an https request for the network resource
reservation page. The junk key, obtained in Step 2, is used for mutual SSL
authentication. Network reservation parameters such as source and destina-
tion IP address, desired bandwidth, start time are entered into a form and
sent to the Web server.

4. The Web server kct_module makes a Kerberos authenticated request to the
KCT and acquires a service ticket for the KCA service on the user’s behalf.

! European Organization for Nuclear Research

client i Web g | Gatekeeper | g | GARA| 23;' Network
3 Server 6 7 10 | Hardware

NN o oh ol

|KDC| |KCA| |KCT|

GSlI Engine

11 local domain

remote domain

Gatekeeper | g | GARA| ﬁ Network

14 | Hardware

13

Policy
Engine

Fig. 5. Network Resource Reservation Data Flow. KDC is a Kerberos Key Dis-
tribution Center. KCA is a Kerberized Key Signer. KCT is a Kerberized Credential
Translator. KDC and KCT must share hardware because both require access to the
Kerberos database. PTS is AFS Protection Server.

5. The Web server kz509_-module acquires and caches junk keys on behalf of the
user as in Step 2. Then, the Web server globus_prozy_init module uses the
newly created keys to create user’s Globus proxy certificate.

6. The Web server gara_module constructs a reservation request to the local
gatekeeper using the Globus GSSAPI_SSLEAY protocol and the proxy cer-
tificate. The local GARA gatekeeper looks for an entry in the gridmap file
that matches the corresponding distinguished name — a field in the Globus
proxy certificate (from Step 5). The DN and local id are attached to the RSL
(Resource Specification Language) string.

7. Using the Nexus API for interprocess communication, the local gatekeeper
forwards the RSL to the resource manager (diffserv_manager).

8. The local id is passed to the group_membership function, which performs one
of several actions, depending on configuration and on whether the request is
from a local or remote user. If the authorization data in this RSL is null, the
request is from a user in the local realm. In our settings, group membership
function queries a Protection Server (PTS) — a part of AFS. The call can
be easily replaced by a query to any local group service such as an LDAP
service or a flat file. The call is performed over an authenticated channel
using the diffserv_manager’s identity. Prior to accepting any connections,
diffserv_manager acquires AFS tokens needed to authenticate with the PTS
server.

9. The group membership information acquired in the previous step, the reser-
vation parameters, and a policy file are passed to the KeyNote policy engine
that makes an authorization decision. If the request does not satisfy the cur-

rent security policy, an error is returned back to the client and the rest of
the steps are not executed.

10. The setup_flow Expect script uses SSH to communicate with the appropriate
network hardware and configures the network reservation.

11. This step is the same as Step 6 except this time the RSL carries the au-
thorization payload. We use auth-data as the attribute name. The value is
variable length. In our current implementation, the RSL is limited to 4KB,
at least enough to encode information 64 groups (assuming 64 byte names).

12. Same as Step 7.

13. Same as Step 9.

14. Same as Step 10.

This design lets us express many policies, including who can request which
network resources and when such requests are valid. In the example we presented,
the authorization payload is signed by one certificate, the remote GARA diffserv
manager. More broadly, a site may require the authorization payload to contain
assertions from other services. For example, a site might require that users be
U.S. citizens, verified by some specific Certificate Authority. Signed assertions
can be added to the authorization payload to accommodate such requirements.

5 Related Work

The Globus MyProxy [16] initiative provides a trusted server to store user’s
delegated credentials, indexed by a tag and a password. Later, a service can
contact a MyProxy server, present a tag and a password and receive correspond-
ing credentials (e.g., certificate or Kerberos ticket) on a client’s behalf. Each
service requires a different tag and password, forcing users to manage many
passwords. This approach requires users to type in their passwords into HTML
forms. HTML forms are easily reproduced by a malicious hacker who collects
passwords. He can obtain a certificate, signed by one of the default Certificate
Authorities supported by browsers, and run a Web server, providing a spoofed
login HTML form. However, by examining the credential, an activity most users
do not bother doing, the user can tell the login form is spoofed.

The Grid Portal Architecture [11] is a Web interface to Grid Computing
resources that uses MyProxy Services for client authentication. The GARA Web
interface differs from the Grid Portal in several important ways. Access in our
scheme is via done an https stream and requires mutual SSL authentication,
which in turn requires a user certificate, thus obviating the need for users to
type passwords in HTML forms, as it is done in the Grid Portal.

The Community Access Service (CAS) [15] is a proposed Grid authorization
service that the user calls prior to making a request for Grid resources. CAS
returns a signed capability to indicate a successful authorization request. The
capability is then added to the Grid resource request.

The GARA client is designed to contact each end domain GARA service. In
the future, GARA client will contact the first GARA service, which in turn will

contact other bandwidth brokers (BB), needed for the end-to-end reservation.
Sander et al. discusses the bandwidth broker to bandwidth broker protocol in
[18]. The Simple Inter-Domain Bandwidth Broker Specification (SIBBS) [19] is a
simple request-response bandwidth broker to bandwidth broker broker protocol
being developed by the Internet2 QBone Signaling Design Team. It is anticipated
that GARA will be an early development code base for SIBBS.

Our choice of policy engines was influenced by the availability of working
code. The modular design allows for use of other policy engines. Akenti [20],
and GAA API [17] were also considered. We acknowledge Akenti’s strength over
KeyNote in terms of credential management. On the other hand, Akenti imposes
a lot of overhead, not required by KeyNote, such as creation of certificates for
each of the clients.

6 Conclusions

We have demonstrated a scalable distributed authorization service that joins
local domain group services via a shared namespace, and asserts group member-
ship by adding a signed authorization payload to existing communications.

We showed that authorization succeeds only when the user is a member of
the correct groups and the reservation parameters are within bounds as dictated
by the policies present at each end-point.

We have focused our distributed authorization service design on the ability
to use existing local domain group services, firm in the belief that coalescing
and maintaining replicas of user and group information does not scale and is an
unnecessary administrative burden.

References

1. Andre Arnes. Public Key Certificate Revocation Schemes. PhD thesis, Norwegian
University of Science and Technology, Kingson, Ontario, Canada, February 2000.

2. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote trust
management system version 2. RFC 2704, September 1999.

3. M. Blaze, J. Feigenbaum, and A. Keromytis. Keynote: Trust management for
public-key infrastructure. In Proceedings Cambridge 1998 Security Protocols In-
ternational Workshop, April 1998.

4. M. Blaze, J. Feigenbaum, and M. Strauss. Compliance checking in the PolicyMaker
trust management system. In Proceedings of Financial Cryptography, February
1998.

5. R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, and J. Volmer. A national-
scale authentication infrastructure. IEEE computer, 33(12):60-66, December 2000.

6. Documentation: A Guide to GARA. http://www-fp.mecs.anl.gov/qos/
gos_papers.htm.

7. Documentation: Administrators Guide to GARA.
http://wwu-fp.mcs.anl.gov/qos/qos_papers.htm.
8. Documentation: Programmers Guide to GARA.

http://www—fp.mcs.anl.gov/qos/qos_papers.htm.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

W. Doster, M. Watts, and D. Hyde. The KX.509 protocol. Technical Report 01-2,
Center for Information Technology Integration, University of Michigan, February
2001.

I. Foster, A. Roy, and V. Sander. A quality of service architecture that combines
resource reservation and application adaptation. In Proceedings of the 8th Inter-
national Workshop on Quality of Service (IWQQOS 2000), June 2000.

Grid Computing Portal: http://hotpage.npaci.edu/cgi-bin/
hotpage_top.cgi.
IETF Internet Traffic Engineering Working Group.

http://www.ietf.org/html.charters/ tewg-charter.html.

O. Kornievskaia, P. Honeyman, B. Doster, and K. Coffman. Kerberized credential
translation: A solution to web access control. In Proceedings of the 10th USENIX
Security Symposium, August 2001.

C. Neuman and T. Ts’o. Kerberos: an authentication service for computer net-
works. IEEE Communications, 32(9):33-38, September 1994.

L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community
authorization service for group collaboration. In IEEE Workshop on Policies for
Distributed Systems and Networks, 2002. submitted.

MyProxy project. http://dast.nlanr.net/ Projects/MyProxy.

T. Ryutov and C. Neuman. Representation and evaluation of security policies for
distributed system services. In Proceedings of the DISCEX, January 2000.

V. Sander, W. A. Adamson, I. Foster, and A. Roy. End-to-end provision of pol-
icy information for network qos. In Proceedings of the 10th Symposium on High
Performance Distributed Computing, August 2001.

SIBBS. The simple inter-domain bandwidth broker specification.
http://gqbone.internet2.edu/bb/.

M. Thompson, W. Johnson, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari.
Certificate based access control for widely distributed resources. In Proceedings of
the 8th USENIX Security Symposium, August 1999.

