

CITI Technical Report 00-1

Linux Kernel Hash Table Behavior:
Analysis and Improvements

Chuck Lever, Sun-Netscape Alliance
<chuckl@netscape.com>

ABSTRACT

The Linux kernel employs hash table data structures to store high-usage data objects such as
pages, buffers, inodes, and others. In this report we find significant performance boosts with
careful analysis and tuning of four critical kernel data structures.

April 13, 2000

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

This document was written as part of the Linux Scalability Project. The work described in this paper was supported via grants from

the Sun-Netscape Alliance, Intel, Dell, and IBM. For more information, see our home page.

If you have comments or suggestions, email linux-scalability@citi.umich.edu .

Copyright © 2000 by the Regents of the University of Michigan, and by AOL-Netscape Inc. All rights reserved.
Trademarked material referenced in this document is copyright by its respective owner.

 - 1 -

Linux Kernel Hash Table Behavior:
Analysis and Improvements

Chuck Lever, Sun-Netscape Alliance

<chuckl@netscape.com>

1. Introduction

Hash tables are a venerable and well-understood data
structure often used for high-performance applications
because of their excellent average lookup time. Linux,
an open-source POSIX-compliant operating system,
relies on hash tables to manage pages, buffers, inodes,
and other kernel-level data objects.

Why worry about the kernel’s hash tables? As we
show, Linux performance depends on the efficiency
and scalability of these tables. On a small machine
with 32M of physical RAM, a page cache hash table
with 2048 buckets is probably large enough to hold all
possible cache pages in chains shorter than three.
However, a hash table this small cannot hold all
possible pages on a larger machine with, say, 512M of
physical RAM while maintaining short chains to keep
lookup times quick. Keeping hash chains short is even
more important on modern CPUs because of the effects
of CPU cache pollution on overall system
performance. Lookups on longer chains can push
useful data out of CPU caches.

Hash tables depend on good average case behavior to
perform well. Average case behavior relies on the
actual input data more often than we like to admit,
especially when using simple shift-add hash functions.
Statistical examination of specific hash functions used
in combination with specific real world data can
expose opportunities for performance improvement.

It is also important to understand why hash tables are
employed in preference to a more sophisticated data
structure, such as a tree. Insertion into a hash table is
O(1) if hashed objects are maintained in last-in first-
out (LIFO) order in each bucket. A tree insertion or
deletion is O(log n). Object deletion and hash table
lookup operations are often O(n/m) (where n is the
number of objects in the table and m is the number of
buckets), which approaches O(1) when the hash
function spreads hashed objects evenly through the
hash table and there are more hash buckets than objects
to be stored. Finally, if designers are careful about hash

table design, they can keep the average lookup time for
both successful and unsuccessful lookups low (i.e. less
than O(log n)) by using a large hash table and a hash
function that thoroughly randomizes the key.

In this report we analyze several critical hash tables in
the Linux kernel, and describe minor tuning changes
that can improve Linux performance by a significant
margin. The remainder of this report is organized as
follows. Section 2 outlines our methodology. In
Section 3, we separately examine four critical kernel
hash tables and show how modifications to each hash
table affect overall system performance. Section 4
reports results of combining the findings of Section 3.
We discuss hash function theory as it applies on
modern CPU architectures in Section 5, and Section 6
concludes the report.

2. Methodology

Our goal is to improve system throughput. Therefore,
the final measure of performance improvement is
benchmark throughput. However, there are a number
of metrics we can use to determine the “goodness” of a
hash function with a given set of real-life input keys. In
this section, we describe our benchmark procedures
and the additional metrics we use to determine hash
function goodness.

We use the SPEC SDM benchmark suite to drive our
tests [SPEC]. SDM emulates a multi-tasking software
development workload with a fixed script of
commands typically used by software developers, such
as cc , ed, nroff , and spell . We model offered load
by varying the number of concurrent instances of the
script that run during the benchmark. The throughput
values generated by the benchmark are in units of
“scripts per hour.” Each value is calculated by
measuring the elapsed time for a given benchmark run,
then dividing by the number of concurrent scripts
running during the benchmark run. The elapsed time is
measured in hundredths of a second.

Lever

 - 2 -

We benchmark two hardware bases:

1. A four processor Dell PowerEdge 6300/450
with 512M of RAM and a single Seagate 18G
LVD SCSI hard drive. This machine uses
450Mhz Xeon Pentium II’s, each with 512K of
L2 cache.

2. A two processor custom-built system with
128M of RAM and a pair of 2G Quantum
Fireball hard drives. This machine uses 200Mhz
Pentium Pro CPUs with a 256K external level 2
cache for each CPU, supported by the Intel
i440FX chipset.

At the time of these tests, these machines were loaded
with the Red Hat 5.2 distribution using a 2.2.5 Linux
kernel built with egcs 1.1.1, and using glibc 2.0 as
installed with Red Hat.

The dual Pentium Pro machine workloads vary from
sixteen to sixty-four concurrent scripts. The sixteen
script workload fits entirely in RAM and is CPU
bound. The sixty-four script workload does not fit into
RAM, thus it is bound by swap and file I/O. The four-
way system ran up to 128 scripts before exhausting the
system file descriptor limit because plain 2.2.5 kernels
used in this report do not contain large fdset support.
All of the 128 script benchmark fit easily into its 512M
of physical memory, so this workload is designed to
show how well the hash tables scale on large-memory
systems when unconstrained by I/O and paging
bottlenecks.

On our dual Pentium Pro, both disks are used for
benchmark data and swap partitions. The swap
partitions are of equal priority and size. The
benchmark data is stored on file systems mounted with
the “noatime” and “nosync” options for best
performance. Likewise, on the four-way, the
benchmark file system is mounted with the “noatime”
and “nosync” options, and only one swap partition is
used.

Hash performance depends directly on the laws of
probability, so we are quite interested in the statistical
behavior of the hash (i.e. its “goodness”). First, we
generate hash table bucket size distribution histograms
with special kernel instrumentation. This tells us:

• What portion of total table buckets are unused

• Whether a high percentage of hashed objects are
contained in small buckets

• The worst-case (largest) bucket size

• Whether bucket size is normally distributed. A
normal distribution indicates that the hash
function spreads objects evenly among the hash

buckets, allowing the hash table to approach its
best average behavior

Second, we measure the average number of objects
searched per bucket during lookup operations. We
count the average number of successful lookups
separately from the average number of unsuccessful
lookups because an unsuccessful lookup requires on
average twice as many key comparisons. These search
averages are one of the best indications of average
bucket size and a direct measure of hash performance.
Lowering them means better average hash
performance.

And finally, we are interested in how long it takes to
compute the hash function. This value is estimated
given a table of memory and CPU cycle times,
estimating memory footprint and access rate, cache
miss rate, and guessing at how well the instructions to
compute the hash function will be scheduled by the
CPU. We estimate these based on Hennessey and
Patterson [Hen].

3. Four critical hash tables

In this section we investigate the response to our
tuning efforts of four critical kernel hash tables. These
tables included the buffer cache, page cache, dentry
cache, and inode cache hash tables.

3.1 Page cache

The Linux page cache contains in-core file data while
the data is in use by processes running on the system.
It can also contain data that has no backing storage,
such as data in anonymous maps. The page cache hash
table in the plain 2.2.5 kernel comprises 2048 buckets,
and uses the following hash function from
include/linux/pagemap.h:

#define PAGE_HASH_BITS 11
#define
 PAGE_HASH_SIZE (1 << PAGE_HASH_BITS)

static inline unsigned long
 _page_hashfn(struct inode * inode,
 unsigned long offset)
{
#define i (((unsigned long) inode)/
 (sizeof(struct inode) &
 ~ (sizeof(struct inode) - 1)))
#define o (offset >> PAGE_SHIFT)
#define s(x) ((x)+((x)>>PAGE_HASH_BITS))

 return s(i+o) & (PAGE_HASH_SIZE-1);

#undef i
#undef o
#undef s
}

The hash function key is made up of two arguments:
the inode and the offset . The inode argument is a

 Linux Kernel Hash Table Behavior

 - 3 -

memory address of the in-core inode that contains the
data mapped into the requested page. The offset
argument is a memory address of the requested page
relative to a virtual address space. The result of the
function is an index into the page cache hash table.

This simple fast shift-add hash function is surprisingly
effective due to the pre-existing randomness of the
inode address and offset arguments. Our tests reveal
that bucket size remains acceptable as
PAGE_HASH_BITS is varied from 11 to 16.

Normally, the offset argument is page-aligned, but
when the page cache is doubling as the swap cache, the
offset argument can contain important index-
randomizing information in the lower bits. Stephen
Tweedie suggests [LKA] that adding the offset again,
unshifted, before computing s() would improve
bucket size distribution problems caused when hashing
swap cache pages. Our tests show that adding the
unshifted offset reduced bucket size distribution
anomolies, at a slight but measurable across-the-board
performance cost.

The following tables show relative throughput results
for kernels built with hash table tuning modifications.
The “reference” kernel is a plain 2.2.5 kernel with a
4000 entry process table. The “13-bit,” “14-bit,” and
“15-bit” kernels are plain 2.2.5 kernel with a 4000
entry process table and a 13, 14, and 15-bit (8192,
16384, and 32768 buckets) page cache hash table. The
“offset” kernel is just like the “14-bit” kernel, but
whose page cache hash function looks like this:

 return s(i+o+offset) & (PAGE_HASH_SIZE-1);

The “mult” kernel is the “14-bit” kernel with a
multiplicative hash function instead of the plain
additive one:

 return ((((unsigned long)inode + offset) *
 2654435761UL) >> \
 (32 - PAGE_HASH_BITS)) &
 (PAGE_HASH_SIZE-1);

See the section on multiplicative hashing for more
about how we derived this function.

Finally, the “rbtree” kernel was derived from a clean
2.2.5 kernel with a special patch applied, extracted
from Andrea Archangeli’s 2.2.5-arca10. This patch
implements the page cache with per-inode red-black
trees, a form of balanced binary tree [CLR], instead of
a hash table.

We ran each workload seven times, and take the results
from the middle five runs. The results in Table 1 are
averages and standard deviations for the middle five
benchmark runs for each workload. The timing result
is the total length of all the runs for that kernel,
including the two runs out of seven that were ignored
in the average calculations. Each set of runs for a given
kernel is benchmarked on a freshly rebooted system.
These are obtained on our dual Pentium Pro using
sixteen, thirty-two, forty-eight, and sixty-four
concurrent script workloads to show how performance
changes between CPU bound and I/O bound
workloads. We also want to push the machine into
swap to see how performance changes when the page
cache is used as a swap cache.

According to our own kernel program counter profiling
results, defining PAGE_HASH_BITS as 13 bits is
enough to take find_page() out of the top kernel

kernel table size
(buckets)

16 scripts 32 scripts 48 scripts 64 scripts total elapsed

reference 2048 1864.7 s=3.77 1800.8 s=8.51 1739.9 s=3.61 1644.6
s=29.35

50 min 25 sec

13-bit 8192 1875.8 s=5.59 1834.0 s=3.71 1765.5 s=3.01 1683.3
s=17.39

49 min 43 sec

14-bit 16384 1877.2 s=5.35 1830.8 s=3.81 1770.5 s=3.84 1694.3
s=41.42

49 min 35 sec

15-bit 32768 1875.4
s=10.72

1832.4 s=3.97 1770.3 s=3.97 1691.2
s=20.05

49 min 36 sec

offset 16384 1880.0 s=2.78 1843.7
s=14.65

1774.5 s=4.30 1685.4
s=33.46

49 min 40 sec

mult 16384 1876.4 s=6.45 1836.8 s=6.45 1773.7 s=5.20 1691.7
s=25.32

49 min 29 sec

rbtree N/A 1874.9 s=6.57 1817.0 s=5.59 1755.3 s=3.01 1670.8
s=17.26

50 min 3 sec

Table 1. Benchmark throughput comparison of different hash functions in the page cache hash table. This table compares the
performance of several Linux kernels using differently tuned hash tables in the page cache. Total benchmark elapsed time shows the
multiplicative hash function improves performance the most.

Lever

 - 4 -

CPU users during most heavy VM loads on large-
memory machines. However, increasing it further can
help reduce the real elapsed time required for an
average lookup, thus improving system performance
even more. As one might expect, increasing the hash
table size had little effect on smaller workloads. To
show the effects of increased table size on a high-end
machine, we ran 128 script benchmarks on our four-
way 512M Dell PowerEdge. The kernels used in this
test are otherwise unchanged reference kernels
compiled with 4000 process slots. The results are
averages of five runs on each kernel.

The gains in inter-run variance are significant for
larger memory machines. It is also clear that overall
performance improves for tables larger than 8192
buckets, although not to the same degree that it
improves for a table size increase of 2048 to 8192
buckets.

The “rbtree” kernel performs better than the
“reference” kernel. It also scores very well in inter-run
variance. A big advantage of this implementation is
that it is more space efficient, especially on small

machines, as it doesn’t require contiguous pages for a
hash table. We predicted the “offset” kernel to perform
better when the system was swapping, but it appears to
perform worse than both the “mult” and the “14-bit”
kernel on the heaviest workload. Finally, the “mult”
kernel appears to have the smoothest overall results,
and the shortest overall elapsed time.

Because of the overall goodness of the existing hash
function, the biggest gain occurs when the page cache
hash table size is increased. This has performance
benefits for machines of all memory sizes; as hash
table size increases, more pages are hashed into
buckets that contain only a single page, decreasing
average lookup time.

Increasing the page cache hash table’s bucket count
even further continues to improve performance,
especially for large memory machines. However, for
use on generic hardware, 13 bits accounts for 8 pages
worth of hash table, which is probably the practical
upper limit for small memory machines.

Table 2. Benchmark throughput comparison of different hash table sizes in the page cache hash table. This table shows
benchmark performance of our tweaked kernels on large memory hardware. This test shows how performance changes when the
data structure is heavily populated, and the system is not swapping.

table size, in
buckets

average throughput average throughput,
minus first run

maximum
throughput

elapsed time

2048 4282.8 s=29.96 4295.2 s=11.10 4313.0 12 min 57 sec
8192 4387.3 s=23.10 4398.5 s=5.88 4407.5 12 min 40 sec
32768 4405.3 s=5.59 4407.4 s=4.14 4413.8 12 min 49 sec

Apr 27 17:17:51 pillbox kernel: Buffer cache total lookups: 296481 (hit rate: 54%)
Apr 27 17:17:51 pillbox kernel: hash table size is 16384 buckets
Apr 27 17:17:51 pillbox kernel: hash table contains 37256 objects
Apr 27 17:17:51 pillbox kernel: largest bucket contains 116 buffers
Apr 27 17:17:51 pillbox kernel: find_buffer() iterations/lookup: 2155/1000
Apr 27 17:17:51 pillbox kernel: hash table histogram:
Apr 27 17:17:51 pillbox kernel: size buckets buffers sum-pct
Apr 27 17:17:51 pillbox kernel: 0 12047 0 0
Apr 27 17:17:51 pillbox kernel: 1 1037 1037 2
Apr 27 17:17:51 pillbox kernel: 2 381 762 4
Apr 27 17:17:51 pillbox kernel: 3 295 885 7
Apr 27 17:17:51 pillbox kernel: 4 325 1300 10
Apr 27 17:17:51 pillbox kernel: 5 399 1995 16
Apr 27 17:17:51 pillbox kernel: 6 188 1128 19
Apr 27 17:17:51 pillbox kernel: 7 303 2121 24
Apr 27 17:17:51 pillbox kernel: 8 160 1280 28
Apr 27 17:17:51 pillbox kernel: 9 169 1521 32
Apr 27 17:17:51 pillbox kernel: 10 224 2240 38
Apr 27 17:17:51 pillbox kernel: 11 64 704 40
Apr 27 17:17:51 pillbox kernel: 12 49 588 41
Apr 27 17:17:51 pillbox kernel: 13 15 195 42
Apr 27 17:17:51 pillbox kernel: 14 3 42 42
Apr 27 17:17:51 pillbox kernel: 15 4 60 42
Apr 27 17:17:51 pillbox kernel: >15 721 21398 100

Histogram 1. Full buffer cache using the old hash function. This histogram demonstrates how poorly the Linux buffer cache
spreads buffers across the buffer cache hash table. Most of the buffers are stored in hash buckets that contain more than 15 other
buffers. This slows benchmark throughput markedly.

 Linux Kernel Hash Table Behavior

 - 5 -

3.2 Buffer cache

Linux holds dirty data blocks about to be written to
disk in its buffer cache. The buffer cache hash table in
the plain 2.2.5 kernel comprises 32768 buckets, and
uses this hash function from fs/buffer.c:

#define _hashfn(dev,block)
(((unsigned)(HASHDEV(dev)^block)) &
bh_hash_mask)

This function adds no randomness to either argument,
simply xor-ing them together, and truncating the result.

Histogram 1 tells the whole story. Histogram 1 was
obtained during several heavy runs of our benchmark
suite on the dual Pentium Pro. Each histogram divides
its output into several columns. First, the “buckets”
column reports the observed number of buckets in the
hash table containing “size” objects; there are 1037
buckets observed to contain a single buffer in this
example. The “buffers” column reports how many
buffers are found in buckets of that size, a product of
the size and observed bucket count. The “sum-pct”
column is the cumulative percentage of buffers
contained in buckets of that size and smaller. In other
words, in the Histogram 1, 28% of all buffers in the
hash table are stored in buckets containing 8 or fewer
buffers, and 42% of all buffers were stored in buckets
containing 15 or fewer buffers. The number of empty
buckets in the hash table is the value reported in the
“buckets” column for size 0.

The average bucket size for 37,000+ buffers stored in a
16384 bucket table should be about 3 (that is, O(n/m),

where n is the number of objects contained in the hash
table, and m is the number of hash buckets). The
largest bucket contains 116 buffers, almost 2 orders of
magnitude more than the expected average, even
though the hash table is less than twenty-seven percent
utilized (16384 total buckets minus 12047 empty
buckets, divided by 16384 total buckets gives us 0.27).
At one point during the benchmark, the author
observed buckets containing more than 340 buffers.

After the benchmark is over, most of the buffers still
reside in large buckets; see Histogram 2. Eighty-five
percent of the buffers in this cache are contained in
buckets with more than 15 buffers in them, even
though there are 16167 empty buckets -- an effective
bucket utilization of less than two percent!

Clearly a better hash function is needed for the buffer
cache hash table. The following table compares
benchmark throughput results from the reference
kernel (unmodified 2.2.5 kernel with 4000 process
slots, as above) to results obtained after replacing the
buffer cache hash function with several different hash
functions. Here is our multiplicative hash function:

#define _hashfn(dev,block) ((((block) *
 2654435761UL) >> SHIFT) &
 bh_hash_mask)

We tested variations of this function (SHIFT value is
fixed at 11, or varies depending on the table size). We
also tried a shift-add hash function to see if the
multiplicative hash was really best. The shift-add
function comes from Peter Steiner, and uses a shift and
subtract ((block << 7) - block) to effectively multiply

Apr 27 17:30:49 pillbox kernel: Buffer cache total lookups: 3548568 (hit rate: 78%)
Apr 27 17:30:49 pillbox kernel: hash table size is 16384 buckets
Apr 27 17:30:49 pillbox kernel: hash table contains 2644 objects
Apr 27 17:30:49 pillbox kernel: largest bucket contains 80 buffers
Apr 27 17:30:49 pillbox kernel: find_buffer() iterations/lookup: 1379/1000
Apr 27 17:30:49 pillbox kernel: hash table histogram:
Apr 27 17:30:49 pillbox kernel: size buckets buffers sum-pct
Apr 27 17:30:49 pillbox kernel: 0 16167 0 0
Apr 27 17:30:49 pillbox kernel: 1 110 110 4
Apr 27 17:30:49 pillbox kernel: 2 10 20 4
Apr 27 17:30:49 pillbox kernel: 3 3 9 5
Apr 27 17:30:49 pillbox kernel: 4 1 4 5
Apr 27 17:30:49 pillbox kernel: 5 0 0 5
Apr 27 17:30:49 pillbox kernel: 6 3 18 6
Apr 27 17:30:49 pillbox kernel: 7 1 7 6
Apr 27 17:30:49 pillbox kernel: 8 6 48 8
Apr 27 17:30:49 pillbox kernel: 9 2 18 8
Apr 27 17:30:49 pillbox kernel: 10 1 10 9
Apr 27 17:30:49 pillbox kernel: 11 2 22 10
Apr 27 17:30:49 pillbox kernel: 12 3 36 11
Apr 27 17:30:49 pillbox kernel: 13 3 39 12
Apr 27 17:30:49 pillbox kernel: 14 3 42 14
Apr 27 17:30:49 pillbox kernel: 15 1 15 15
Apr 27 17:30:49 pillbox kernel: >15 68 2246 100

Histogram 2. Buffer cache using the old hash function, after benchmark is complete. This histogram shows that, even after
the benchmark completes, most buffers in the cache remain in hash buckets containing more than 15 other buffers.
Additionally, 3,000+ buffers stored in about 220 buckets, although more than 16,000 empty buckets remain. Over time, buffers
tend to congregate in large buckets, and system performance suffers.

Lever

 - 6 -

by a Mersenne prime (block * 127). Multiplication by
a Mersenne prime is easy to calculate, as it reduces to a
subtraction and a shift operation.

#define _hashfn(dev,block) \
 (((block << 7) - block + (block >> 10)
 + (block >> 18)) &
 bh_hash_mask)

This series of tests consists of five runs of 128
concurrent scripts on the four-way Dell PowerEdge
system. We report an average result for all five runs,
and an average result without the first run. The five-
run average and the total elapsed time show how good
or bad the first run, which warms the system caches
after a reboot, can be. The four-run average indicates
the steady-state operation of the buffer cache.

On a Pentium II with 512K of level 2 cache, the shift-
add hash shows a higher average throughput than the

multplicative variants. On CPUs with less pipelining,
the race is somewhat closer, probably because the
shift-add function, when performed serially, can
sometimes take as long as multiplication. However, the
shift-add function also has the lowest variance in this
test, and the highest first-run throughput, making it a
clear choice for use as the buffer cache hash function.

We also tested with smaller hash table sizes to
demonstrate that buffer cache throughput can be
maintained using fewer buckets. Our test results bear
this out; in fact, often these functions appear to work
better with fewer buckets. Reducing the size of the
buffer cache hash table saves more than a dozen
contiguous pages (in the existing kernel, this hash table
already consumes a contiguous 32 pages).

Histogram 3 shows what a preferred bucket size

kernel table size average
throughput

avg throughput,
minus first run

maximum
throughput

elapsed time

reference 32768 4282.8 s=29.96 4295.2 s=11.10 4313.0 12 min 57 sec
mult, shift 16 32768 4369.3 s=19.35 4376.4 s=14.53 4393.2 12 min 45 sec
mult, shift 11 32768 4380.8 s=12.09 4382.8 s=11.21 4394.0 12 min 50 sec
shift-add 32768 4388.9 s=21.90 4397.2 s=11.70 4415.5 12 min 31 sec
mult, shift 11 16384 4350.5 s=99.75 4394.6 s=15.59 4417.2 12 min 41 sec
mult, shift 17 16384 4343.7 s=61.17 4369.9 s=17.39 4390.2 12 min 46 sec
shift-add 16384 4390.2 s=22.55 4399.6 s=8.52 4408.3 12 min 37 sec
mult, shift 18 8192 4328.9 s=16.61 4333.7 s=15.05 4349.6 12 min 41 sec
shift-add 8192 4362.5 s=13.37 4362.8 s=14.90 4382.3 12 min 45 sec

Table 3. Benchmark throughput comparison of different hash functions in the buffer cache hash table. We report the results
of benchmarking several new buffer cache hash functions in this table. Using a sophisticated multiplicative hash function appears to
boost overall system throughput the most.

Apr 27 18:14:50 pillbox kernel: Buffer cache total lookups: 287696 (hit rate: 54%)
Apr 27 18:14:50 pillbox kernel: hash table size is 16384 buckets
Apr 27 18:14:50 pillbox kernel: hash table contains 37261 objects
Apr 27 18:14:50 pillbox kernel: largest bucket contains 11 buffers
Apr 27 18:14:50 pillbox kernel: find_buffer() iterations/lookup: 242/1000
Apr 27 18:14:50 pillbox kernel: hash table histogram:
Apr 27 18:14:50 pillbox kernel: size buckets buffers sum-pct
Apr 27 18:14:50 pillbox kernel: 0 2034 0 0
Apr 27 18:14:50 pillbox kernel: 1 3317 3317 8
Apr 27 18:14:50 pillbox kernel: 2 4034 8068 30
Apr 27 18:14:50 pillbox kernel: 3 3833 11499 61
Apr 27 18:14:50 pillbox kernel: 4 2082 8328 83
Apr 27 18:14:50 pillbox kernel: 5 712 3560 93
Apr 27 18:14:50 pillbox kernel: 6 222 1332 96
Apr 27 18:14:50 pillbox kernel: 7 78 546 98
Apr 27 18:14:50 pillbox kernel: 8 46 368 99
Apr 27 18:14:50 pillbox kernel: 9 19 171 99
Apr 27 18:14:50 pillbox kernel: 10 5 50 99
Apr 27 18:14:50 pillbox kernel: 11 2 22 100
Apr 27 18:14:50 pillbox kernel: 12 0 0 100
Apr 27 18:14:50 pillbox kernel: 13 0 0 100
Apr 27 18:14:50 pillbox kernel: 14 0 0 100
Apr 27 18:14:50 pillbox kernel: 15 0 0 100
Apr 27 18:14:50 pillbox kernel: >15 0 0 100

Histogram 3. Full buffer cache using the mult-11 hash function. This histogram of buffer cache hash bucket sizes shows
marked improvement. Most buffers reside in small buckets, thus most buffers in the buffer cache can be found after checking
fewer than two or three other buffers in the same bucket.

 Linux Kernel Hash Table Behavior

 - 7 -

distribution histogram looks like. These runs were
made with the mult-11 hash function and a 16384
bucket hash table. This histogram snapshot was made
at approximately the same points during the
benchmark as the examples above.

After the benchmark completes, the hash table returns
to a nominal state. We can also see that the measured
iterations per loop average is an order of magnitude
less than with the original hash function.

We’d like to underscore some of the good statistical
properties demonstrated in Histogram 3. First, the
bucket size distributions shown in this histogram
approach the shape of a bell curve, suggesting that the
hash function is doing a good job of randomizing the
keys. The height of the distribution occurs for buckets
of size 3 (our expected average), which is about n/m,
where n is the number of stored objects, and m is the
number of buckets. A perfect distribution centers on
the expected average, and has very short tails on either
side, only one or two buckets. While the distribution in
Histogram 3 is somewhat skewed, observations of
tables that are even more full show that the curve
becomes less skewed as it fills; that is, as the expected
average grows away from zero, the shape of the size
distribution more closely approximates the normal
distribution. In all cases we’ve observed, the tail of the
skew is fairly short, and there appear to be few
degenerations of the hash (where one or more very
large buckets appear).

Second, in both Histogram 3 and 4, about 68% of all
buffers contained in the hash table are stored in
buckets containing the expected average number of
buffers or less. Sixty-eight percent of all samples is the
expected standard deviation. And third, the number of
empty buckets in the first example above is only
12.4%, meaning more than 87% of all buckets in the
table are used.

3.3 Dentry cache

The Linux 2.2 kernel has a directory entry cache, or
dentry cache, that is designed to speed up file system
performance by mapping file names directly to the in-
core address of the inode struct associated with the file.
The plain 2.2.5 kernel uses a hash table with 1024
buckets to manage the dentry cache. A simple shift-add
hash function is employed:

#define D_HASHBITS 10
#define D_HASHSIZE (1UL << D_HASHBITS)
#define D_HASHMASK (D_HASHSIZE-1)

static inline struct list_head * d_hash(
 struct dentry * parent,
 unsigned long hash)
{
 hash += (unsigned long) parent;
 hash = hash ^
 (hash >> D_HASHBITS) ^
 (hash >> D_HASHBITS*2);
 return dentry_hashtable +
 (hash & D_HASHMASK);
}

Apr 27 18:27:19 pillbox kernel: Buffer cache total lookups: 3530977 (hit rate: 78%)
Apr 27 18:27:19 pillbox kernel: hash table size is 16384 buckets
Apr 27 18:27:19 pillbox kernel: hash table contains 2717 objects
Apr 27 18:27:19 pillbox kernel: largest bucket contains 6 buffers
Apr 27 18:27:19 pillbox kernel: find_buffer() iterations/lookup: 215/1000
Apr 27 18:27:19 pillbox kernel: hash table histogram:
Apr 27 18:27:19 pillbox kernel: size buckets buffers sum-pct
Apr 27 18:27:19 pillbox kernel: 0 14302 0 0
Apr 27 18:27:19 pillbox kernel: 1 1555 1555 57
Apr 27 18:27:19 pillbox kernel: 2 442 884 89
Apr 27 18:27:19 pillbox kernel: 3 73 219 97
Apr 27 18:27:19 pillbox kernel: 4 5 20 98
Apr 27 18:27:19 pillbox kernel: 5 3 15 99
Apr 27 18:27:19 pillbox kernel: 6 4 24 100
Apr 27 18:27:19 pillbox kernel: 7 0 0 100
Apr 27 18:27:19 pillbox kernel: 8 0 0 100
Apr 27 18:27:19 pillbox kernel: 9 0 0 100
Apr 27 18:27:19 pillbox kernel: 10 0 0 100
Apr 27 18:27:19 pillbox kernel: 11 0 0 100
Apr 27 18:27:19 pillbox kernel: 12 0 0 100
Apr 27 18:27:19 pillbox kernel: 13 0 0 100
Apr 27 18:27:19 pillbox kernel: 14 0 0 100
Apr 27 18:27:19 pillbox kernel: 15 0 0 100
Apr 27 18:27:19 pillbox kernel: >15 0 0 100

Histogram 4. Buffer cache using the mult-11 hash function, after the benchmark is complete. The reader can compare this
histogram with the earlier one that reports the buffer cache bucket size distribution after the benchmark has completed. As buffers
are removed from the buffer cache, the bucket size distribution remains good when using the multiplicative hash function.

Lever

 - 8 -

The arguments for this function are the address of the
parent directory’s dentry structure, and a hash value
obtained by a simplified CRC algorithm on the target
entry’s name. This function appears to work fairly
well, but we want to improve it nonetheless.

Andrea Arcangeli suggests that shrinking the dcache
slightly more aggressively might reduce the number of
objects in the table enough to help improve dcache
hash lookup times [LKA]. We test this idea by adding
a couple of lines from his 2.2.5-arca10 patch: In
fs/dcache.c, function shrink_dcache_memory() , we
replace prune_dcache(found) with:

 prune_dcache(dentry_stat.nr_unused /
 (priority+1));

and move the shrink_dcache_memory() call in
do_try_to_free_pages() close to the top of the
loop so that it will be invoked more often. In Table 4,
we show results from several different kernels. First,
results from the reference 2.2.5 kernel are repeated,
then a kernel that is like the reference kernel, except
the dcache hash table is increased to 16384 buckets,
and the xor operations are replaced with addition when
computing the hash function. The “shrink” kernel is a
2.2.5 kernel like the “14-bit” kernel except that it more
aggressively shrinks the dcache, as explained above.
The “mult” kernels use a multiplicative hash function
similar to the buffer cache hash function, instead of the
existing dcache hash function:

static inline struct list_head * d_hash(
 struct dentry * parent,
 unsigned long hash)
{
 hash += (unsigned long) parent;
 hash = (hash * 2654435761UL) >> SHIFT;
 return dentry_hashtable +
 (hash & D_HASHMASK);
}

where SHIFT is either 11 or 17. The “shrink+mult”
kernels combine the effects of both multiplicative
hashing and shrinking the dcache.

The following results are average results from five
benchmark runs of 128 concurrent scripts on the four-
way Dell PowerEdge. The timing results are the
elapsed time for all five runs on each kernel.

Some may argue that shrinking the dcache
unnecessarily might lower the overall effectiveness of
the cache, but we believe that shrinking the cache more
aggressively will help, rather than hurt, overall system
performance because a smaller cache allows faster
lookups and causes less CPU cache pollution. In
combination with an appropriate multiplicative hash
function, such as the one used in the “shrink+mult 11”
kernel, elapsed time and average throughput stays high
enough to make it the fastest kernel benchmarked in
this series.

Table 4. Benchmark throughput comparison of different hash functions in the inode cache hash table. Increasing the size
of the inode cache hash table has clear performance benefits, as this table shows. Replacing the hash function in this cache
actually hurts performance.

kernel average throughput maximum throughput elapsed time
reference 4282.8 s=29.96 4313.0 12 min 57 sec
14 bit 4375.2 s=25.92 4397.4 12 min 42 sec
mult, shift 11 4368.7 s=62.65 4406.2 12 min 39 sec
mult, shift 17 4375.9 s=10.40 4389.0 12 min 40 sec
shrink 4368.7 s=33.36 4390.7 12 min 40 sec
shrink + mult 11 4380.4 s=13.53 4396.5 12 min 35 sec
shrink + mult 17 4368.5 s=16.21 4383.6 12 min 42 sec

kernel average throughput elapsed time
reference 4282.8 s=29.96 12 min 57 sec
12 bit 4361.3 s= 11.15 12 min 36 sec
mult 4346.0 s=20.87 12 min 52 sec
14 bit 4368.3 s= 20.41 12 min 54 sec

Table 5. Benchmark throughput comparison of different hash functions in the dcache cache hash table. This table shows
that increasing the hash table size in the dentry cache has significant benefits for system throughput, decreasing benchmark
elapsed time by 15 seconds. Other changes decrease elapsed time by only a few seconds.

 Linux Kernel Hash Table Behavior

 - 9 -

3.4 Inode cache

The dentry cache, described above, provides a fast way
of mapping directory entries to inodes. Kernel
developers expected the dentry cache to reduce the
need for an efficient inode cache. Thus, when the
dentry cache was implemented, the inode cache hash
table was reduced to 256 buckets (8 bit hash). As we
shall see, this has had a more profound impact on
system performance than expected.

The inode cache hash function is a shift-add function
similar to the dentry cache hash function.

#define HASH_BITS 8
#define HASH_SIZE (1UL << HASH_BITS)
#define HASH_MASK (HASH_SIZE-1)

static inline unsigned long hash(
 struct super_block *sb,
 unsigned long i_ino)
{
 unsigned long tmp = i_ino |
 (unsigned long) sb;
 tmp = tmp + (tmp >> HASH_BITS) +
 (tmp >> HASH_BITS*2);
 return tmp & HASH_MASK;
}

Histogram 5 shows why this table is too small. The
hash chains are extremely long. In addition, the hit rate
shows that most lookups are unsuccessful, meaning
that almost every lookup request has to traverse the
entire bucket. The number of iterations per lookup is
almost 40!

Even though there are an order of magnitude fewer

lookups in the inode cache than there are in the other
caches, this cache is still clearly a performance
bottleneck. To demonstrate this, we ran tests on four
different hash functions. Our reference kernel results
(from Table 1) reappear in Table 5 for convenience.
The “12-bit” kernel is the same as the reference kernel
except that the hash table size has been increased to
4096 buckets. The “mult” kernel has 4096 inode cache
hash table buckets as well, and uses the multiplicative
hash function introduced above. The “14-bit” kernel is
the same as the reference kernel except that the hash
table size has been increased to 16384 buckets.

The 12 bit hash table is the clear winner. Increasing the
hash table size further helps performance slightly, but
also increases inter-run variance to such an extent that
total elapsed time is longer than for the “12-bit” kernel.
Adding multiplicative hashing doesn’t help much here
because the table is already fairly full and well-
balanced.

4. Combination testing

In this section, we optimize all four hash tables, and
benchmark the resulting kernels. Our benchmarks are
ten 128 script runs on the four-way Dell.

We selected optimizations among the best results
shown above, then tried them in combination. We find
that there are some performance relationships among
the various caches, so we show the results for the best
combinations that we tried.

Apr 27 17:23:31 pillbox kernel: Inode cache total lookups: 189321 (hit rate: 3%)
Apr 27 17:23:31 pillbox kernel: hash table size is 256 buckets
Apr 27 17:23:31 pillbox kernel: hash table contains 9785 objects
Apr 27 17:23:31 pillbox kernel: largest bucket contains 54 inodes
Apr 27 17:23:31 pillbox kernel: find_inode() iterations/lookup: 38978/1000
Apr 27 17:23:31 pillbox kernel: hash table histogram:
Apr 27 17:23:31 pillbox kernel: size buckets inodes sum-pct
Apr 27 17:23:31 pillbox kernel: 0 0 0 0
Apr 27 17:23:31 pillbox kernel: 1 0 0 0
Apr 27 17:23:31 pillbox kernel: 2 0 0 0
Apr 27 17:23:31 pillbox kernel: 3 0 0 0
Apr 27 17:23:31 pillbox kernel: 4 0 0 0
Apr 27 17:23:31 pillbox kernel: 5 0 0 0
Apr 27 17:23:31 pillbox kernel: 6 0 0 0
Apr 27 17:23:31 pillbox kernel: 7 0 0 0
Apr 27 17:23:31 pillbox kernel: 8 0 0 0
Apr 27 17:23:31 pillbox kernel: 9 0 0 0
Apr 27 17:23:31 pillbox kernel: 10 0 0 0
Apr 27 17:23:31 pillbox kernel: 11 0 0 0
Apr 27 17:23:31 pillbox kernel: 12 0 0 0
Apr 27 17:23:31 pillbox kernel: 13 0 0 0
Apr 27 17:23:31 pillbox kernel: 14 0 0 0
Apr 27 17:23:31 pillbox kernel: 15 0 0 0
Apr 27 17:23:31 pillbox kernel: >15 256 9785 100

Histogram 5. Full inode cache using the old hash function. This histogram shows what happens when too many objecst are
stored in an undersized hash table. Every inode in this hash table resides in a bucket that contains, on average, 37 other objects.
Combined with the very low hit rate, this results in a significant negative performance impact.

Lever

 - 10 -

“Reference” kernel

The “Reference” kernel is a stock 2.2.5 Linux kernel
with 4000 process slots:

• a 32768 bucket buffer hash table with a one-
to-one hash function

• a 2048 bucket page hash table with a simple
shift-add hash function

• a 256 bucket inode hash table with a simple
shift-add hash function

• a 1024 bucket dentry hash table with a simple
shift-add hash function

Kernel “A”

Kernel “A” is a plain 2.2.5 Linux kernel with 4000
process slots and:

• a 16384 bucket hash table using the multiply
and shift-by-11 hash function

• a 8192 bucket page cache with the
multiplicative hash function described in the
page cache section

• a 2048 bucket inode hash table using a
slightly modified shift-add hash function

• a 8192 bucket dcache hash table with addition
instead of XOR in its hash function.

Kernel “B”

Kernel “B” is a plain 2.2.5 Linux kernel with 4000
process slots and:

• a 16384 bucket buffer hash table with Peter
Steiner’s shift-add hash function

• a 8192 bucket page cache with the
multiplicative hash function described in the
page cache section

• a 2048 bucket inode hash table using a
slightly modified shift-add hash function

• a 8192 bucket dcache hash table with addition
instead of XOR in its hash function.

Kernel “C”

Kernel “C” is a plain 2.2.5 Linux kernel with 4000

process slots and:

• a 16384 bucket hash table using the multiply
and shift-by-11 hash function

• a 8192 bucket page cache with the reference
kernel’s hash function

• a 2048 bucket inode hash table using a
slightly modified shift-add hash function

• a 8192 bucket dcache hash table with addition
instead of XOR in its hash function.

Kernel “D”

Kernel “D” is a plain 2.2.5 Linux kernel with 4000
process slots and:

• a 16384 bucket has table using the multiply
and shift-by-11 hash function

• a 8192 bucket page cache with the offset hash
function described above

• a 2048 bucket inode hash table using a
slightly modified shift-add hash function

• a 8192 bucket dcache hash table with addition
instead of XOR in its hash function

Examining Table 6, we’d like to select a combination
that reduces inter-run variance and elapsed time, as
well as maximizes throughput and minimizes hash
table memory footprint. While kernel “C” offers the
highest maximum throughput, its inter-run variance is
also largest. On the other hand, kernel “D” has the
second highest average throughput, the shortest
elapsed time, and the best inter-run variance. This
seems like a reasonable compromise.

A patch against Linux 2.2.5 is available for kernel “D”
at our website. See Appendix A.

5. Multiplicative hashing

Hash function alternatives include:

• Using an untransformed key

• Modulus hashing

• Multiplicative hashing

• Using an inexpensive but sub-optimal shift-

kernel average throughput maximum throughput elapsed time
Reference 4300.7 s=15.73 4321.1 26 min 41 sec
Kernel A 4582.9 s=12.55 4592.8 25 min 24 sec
Kernel B 4577.9 s=16.22 4602.0 25 min 18 sec
Kernel C 4596.2 s=22.30 4619.5 25 min 18 sec
Kernel D 4591.3 s=10.98 4608.9 25 min 15 sec

Table 6. Benchmark throughput comparison of multiple kernel hash optimizations. Combining improvements in each of the
four caches we studied results in an elapsed time improvement of almost a minute and a half.

 Linux Kernel Hash Table Behavior

 - 11 -

add hash function

• Using a “correct” shift-add hash function

• Using a hash function driven by one or more
random tables

• Architecture-specific hash functions (e.g.
multiplication on fast, modern processors, and
something else on older processors)

Multiplicative hashing is a form of modulus hashing
that is less expensive because the results are often as
good but a multiplication operation is used instead of a
division operation. Multiplicative hashing is
controversial because of the expense of multiplication
instructions on some hardware types. For example, on
68030 CPUs, popular in old Sun and Macintosh
computers, multiplication requires up to 44 CPU
cycles for a 32-bit multiplication, whereas a memory
load only requires an extra 2 cycles per instruction
[Mot]. On a hardware architecture like the 68030 that
has little caching, fast load times compared to CPU
operations, and expensive multiplication, a
multiplicative hash might be inferior even if it cuts the
average number of loop iterations per lookup request
by a factor of four or more.

However, it turns out that several of the alternatives are
just as expensive, or even more expensive, than
multiplicative hashing. Random table-driven hash
functions require several table lookups, and several
shifts, logical AND operations, and additions. An e-
mail message from the linux-kernel mailing list [LKA]
explains the problem; see Appendix B.

On our example 68030, shifting requires between 4
and 10 cycles, and addition operations aren’t free
either. If the instructions that implement the hash
function are many, they will likely cause instruction
cache contention that will be worse for performance
than a multiplication operation. In general, a proper
shift-add hash function is almost as expensive in CPU
cycles as a multiplicative hash. On a modern
superscalar processor, shifting and addition operations
can occur in parallel as long as there are no address
generation interlocks (AGIs). An AGI occurs when the
results of one operation are required to form an address
in a later operation that might otherwise have been
parallelized by superscalar CPU hardware [Schmit,
P2]. AGIs are much more likely for a table-driven hash
function.

Multiplicative hash functions are often very concise.
The hash functions we tried above, for example,
compile to three instructions on ia32, comprising 15
bytes. Included in the 15 bytes are all the constants
involved in the calculation, leaving only the key itself
to be loaded as data. In other words, the whole hash

function fits into a single line in the CPU’s instruction
cache on contemporary hardware. The shift-add hash
functions are generally lengthy, requiring several cache
lines to contain, multiple loads of the key, and register
allocation contention.

The question becomes, finally, how many CPU cycles
should be spent by the hash function to get a
reasonable bucket size distribution? In most practical
situations, a simple shift-add function suffices.
However, one should always test with actual data
before deciding on a hash function implementation.
Hashing on block numbers, as the Linux buffer cache
does, turns out to require a particularly good hash
function, as disk block numbers exhibit a great deal of
regularity.

5.1 A Little Theory

Our multiplicative hash functions were derived from
[Knuth], p. 513ff. The theory posits that machine
multiplication by a large number that is likely to cause
overflow is the same as finding the modulus by a
different number. We won’t repeat Knuth here, but
suffice it to say that choosing such a number is
complicated. In brief, our choice is based on finding a
prime that is in golden ratio to the machine’s word size
(2 to the 32nd in our case). Primality isn’t strictly
necessary, but it adds certain desirable qualities to the
hash function. See Knuth for a discussion of these
desirable qualities.

We selected 2654435761 as our multiplier. It is prime,
and its value divided by 2 to the 32nd is a very good
approximation of the golden ratio [CRC, LKP].

(sqrt(5) - 1) / 2 = 0.618033989

2654435761 / 4294967296 = 0.618033987

To obtain the best effects of this “division” we need to
choose the correct shift value. This is usually the word
size, in bits, minus the hash table size, in bits. This
shifts the most significant bits of the result of the
“division” down to where they can be used as the hash
table index, preserving the greatest effects of the
golden ratio. However, sometimes experimentation
reveals a better shift value for a given set of input data.

6. Conclusions and Future Work

Careful selection and optimization of kernel hash
tables can boost performance significantly, and
improve inter-run variance as well, maximizing system
throughput. However, selecting a good hash function
and benchmarking its effectiveness can be tedious.
Usually, the most significant performance optimization
comes from increasing the size of a hash table.

Lever

 - 12 -

To extend this study the cache instrumentation patch
should be re-written to use a file in /proc instead of
writing to system console log, and should be integrated
into the stock kernel as a “Kernel Hacking”
configuration option. The tuning patch should be
benchmarked on 64-bit hardware to see if another
constant needs to be chosen there. A benchmark run on
older architectures, such as MC68000, should
determine if these changes will seriously degrade
performance on older machines.

We could also investigate the performance difference
between inlining the page cache management routines
(which eliminates the subroutine call overhead) and
leaving them as stand-alone routines (which means
they have a smaller L1 cache footprint). A separate
swap cache hash function might also optimize the
separate uses of the page cache hash tables.

As well, there are still open questions about why
shrinking the dentry cache more aggressively can
help performance. A study could focus on the cost of a
dentry cache miss versus the cost of a page fault or
buffer cache miss. Discovering alternative ways of
triggering a dentry cache prune operation, or
alternate ways of calculating the prune priority, may
also be prudent.

Finally, there is still opportunity to analyze even more
carefully the real keys and hash functions in use in
several of the tables we’ve analyzed here, as well as
several tables we didn’t visit in this report, such as the
uid and pid hash tables, and the vma data structures.

7. Acknowlegements

The author gratefully acknowleges the input and
contributions of the following persons: Peter Steiner,
Andrea Arcangeli, Iain McClatchie , Paul F. Dietz ,
Janos Farkas, Dr. Horst von Brand, and Stephen C.
Tweedie, as well as the many others who contributed
directly and indirectly to the work described in this
report. Special thanks go to Dr. Charles Antonelli and
Prof. Gary Tyson for providing the hardware
benchmarked in this report. Thanks also to the
reviewers for their input.

References

[LKA] linux-kernel archives

[CRC] CRC Standard Mathematical Tables, 25th
Edition, William H. Beyer, Ed., CRC Press,
Inc., 1978.

[CLR] T. H. Cormen, C. E. Leiserson, and R. L.
Rivest, Introduction to Algorithms, MIT
Press, 1990.

[Hen] D. A. Patterson and J. L. Hennessy, Computer
Architecture: A Quantitative Approach, 2nd
Edition, Morgan Kaufmann, 1996.

[Knuth] D. E. Knuth, The Art of Computer
Programming, Volume 3: Sorting and
Searching, 2nd Ed., Addison-Wesley, 1998.

[Schmit] M. L. Schmit, Pentium(tm) Processor
Optimization Tools, Academic Press, Inc.,
1995.

[SPEC] Standard Performance Evaluation
Corporation, System Development Multitask
Benchmark SPEC, 1991

[Mot] MC68030 User’s Manual, Volume 2,
Motorola, Incorporated, 1998.

[P2] Pentium II processor reference manuals.

[LKP] The Largest Known Primes,
www.utm.edu/research/primes/largest.html,
1998.

 Linux Kernel Hash Table Behavior

 - 13 -

Appendix A: Kernel patches

Our research has identified some kernel modifications
that may be of use to others in the Linux kernel
development community. For more information on
these modifications, see the Linux Scalability Project
web site:

http://www.citi.umich.edu/projects/linux-
scalability

Appendix B: E-mail

Date: Thu, 15 Apr 1999 15:01:54 -0700
From: Iain McClatchie
To: Paul F. Dietz
Cc: linux-kernel@vger.rutgers.edu
Subject: Re: more on hash functions

I got a few suggestions about how to use multiple lookups with a
single table. All the suggestions make the hash function itself
slower, and attempt to fix an issue -- hash distribution -- that
doesn't appear to be a problem. I thought I should explain why
the table lookup function is slow.

A multiplication has a scheduling latency of either 5 or 9 cycles on a
P6. Four memory accesses take four cycles on that same P6. So the core
operations for the two hash function are actually very similar in delay,
and the table lookup appears to have a slight edge. The difference is
in the overhead.

A multiplicative hash, at minimum, requires the loading of a constant,
a multiplication, and a shift. Egcs actually transforms some constant
multiplications into a sequence of shifts and adds which may have
shorter latency, but essentially, the shift (and nothing else) goes in
series with the multiplication and as a result the hash function has
very little latency overhead.

A table lookup hash spends quite a lot of time unpacking the bytes
from the key, and furthurmore uses a load slot to unpack each byte.
This makes for 8 load slots, which take 1 cycle each. Even if
fully parallelized with unpacking, we end up with a fair bit of
latency. Worse yet, egcs runs out of registers and ends up shifting
the key value in place on the stack twice, which gobbles two load and
two store slots.

Bottom line: CPUs really suck at bit-shuffling and even byte-shuffling.
If there is some clever way to code the byte unpacking in the table
lookup hash function, perhaps using the x86's trick register file,
it might end up faster than the multiplicative hash.

-Iain

