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1. Introduction 

Hash tables are a venerable and well-understood data 
structure often used for high-performance applications 
because of their excellent average lookup time. Linux, 
an open-source POSIX-compliant operating system, 
relies on hash tables to manage pages, buffers, inodes, 
and other kernel-level data objects. 

Why worry about the kernel’s hash tables? As we 
show, Linux performance depends on the efficiency 
and scalability of these tables. On a small machine 
with 32M of physical RAM, a page cache hash table 
with 2048 buckets is probably large enough to hold all 
possible cache pages in chains shorter than three. 
However, a hash table this small cannot hold all 
possible pages on a larger machine with, say, 512M of 
physical RAM while maintaining short chains to keep 
lookup times quick. Keeping hash chains short is even 
more important on modern CPUs because of the effects 
of CPU cache pollution on overall system 
performance. Lookups on longer chains can push 
useful data out of CPU caches. 

Hash tables depend on good average case behavior to 
perform well. Average case behavior relies on the 
actual input data more often than we like to admit, 
especially when using simple shift-add hash functions. 
Statistical examination of specific hash functions used 
in combination with specific real world data can 
expose opportunities for performance improvement. 

It is also important to understand why hash tables are 
employed in preference to a more sophisticated data 
structure, such as a tree. Insertion into a hash table is 
O(1) if hashed objects are maintained in last-in first-
out (LIFO) order in each bucket. A tree insertion or 
deletion is O(log n). Object deletion and hash table 
lookup operations are often O(n/m) (where n is the 
number of objects in the table and m is the number of 
buckets), which approaches O(1) when the hash 
function spreads hashed objects evenly through the 
hash table and there are more hash buckets than objects 
to be stored. Finally, if designers are careful about hash 

table design, they can keep the average lookup time for 
both successful and unsuccessful lookups low (i.e. less 
than O(log n)) by using a large hash table and a hash 
function that thoroughly randomizes the key. 

In this report we analyze several critical hash tables in 
the Linux kernel, and describe minor tuning changes 
that can improve Linux performance by a significant 
margin. The remainder of this report is organized as 
follows. Section 2 outlines our methodology. In 
Section 3, we separately examine four critical kernel 
hash tables and show how modifications to each hash 
table affect overall system performance. Section 4 
reports results of combining the findings of Section 3. 
We discuss hash function theory as it applies on 
modern CPU architectures in Section 5, and Section 6 
concludes the report. 

2. Methodology  

Our goal is to improve system throughput. Therefore, 
the final measure of performance improvement is 
benchmark throughput. However, there are a number 
of metrics we can use to determine the “goodness” of a 
hash function with a given set of real-life input keys. In 
this section, we describe our benchmark procedures 
and the additional metrics we use to determine hash 
function goodness. 

We use the SPEC SDM benchmark suite to drive our 
tests [SPEC]. SDM emulates a multi-tasking software 
development workload with a fixed script of 
commands typically used by software developers, such 
as cc , ed, nroff , and spell . We model offered load 
by varying the number of concurrent instances of the 
script that run during the benchmark. The throughput 
values generated by the benchmark are in units of 
“scripts per hour.” Each value is calculated by 
measuring the elapsed time for a given benchmark run, 
then dividing by the number of concurrent scripts 
running during the benchmark run. The elapsed time is 
measured in hundredths of a second. 
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We benchmark two hardware bases: 

1. A four processor Dell PowerEdge 6300/450 
with 512M of RAM and a single Seagate 18G 
LVD SCSI hard drive. This machine uses 
450Mhz Xeon Pentium II’s, each with 512K of 
L2 cache. 

2. A two processor custom-built system with 
128M of RAM and a pair of 2G Quantum 
Fireball hard drives. This machine uses 200Mhz 
Pentium Pro CPUs with a 256K external level 2 
cache for each CPU, supported by the Intel 
i440FX chipset. 

At the time of these tests, these machines were loaded 
with the Red Hat 5.2 distribution using a 2.2.5 Linux 
kernel built with egcs 1.1.1, and using glibc 2.0 as 
installed with Red Hat. 

The dual Pentium Pro machine workloads vary from 
sixteen to sixty-four concurrent scripts. The sixteen 
script workload fits entirely in RAM and is CPU 
bound. The sixty-four script workload does not fit into 
RAM, thus it is bound by swap and file I/O. The four-
way system ran up to 128 scripts before exhausting the 
system file descriptor limit because plain 2.2.5 kernels 
used in this report do not contain large fdset  support. 
All of the 128 script benchmark fit easily into its 512M 
of physical memory, so this workload is designed to 
show how well the hash tables scale on large-memory 
systems when unconstrained by I/O and paging 
bottlenecks. 

On our dual Pentium Pro, both disks are used for 
benchmark data and swap partitions. The swap 
partitions are of equal priority and size. The 
benchmark data is stored on file systems mounted with 
the “noatime” and “nosync” options for best 
performance. Likewise, on the four-way, the 
benchmark file system is mounted with the “noatime” 
and “nosync” options, and only one swap partition is 
used. 

Hash performance depends directly on the laws of 
probability, so we are quite interested in the statistical 
behavior of the hash (i.e. its “goodness”). First, we 
generate hash table bucket size distribution histograms 
with special kernel instrumentation. This tells us: 

• What portion of total table buckets are unused 

• Whether a high percentage of hashed objects are 
contained in small buckets 

• The worst-case (largest) bucket size 

• Whether bucket size is normally distributed. A 
normal distribution indicates that the hash 
function spreads objects evenly among the hash 

buckets, allowing the hash table to approach its 
best average behavior 

Second, we measure the average number of objects 
searched per bucket during lookup operations. We 
count the average number of successful lookups 
separately from the average number of unsuccessful 
lookups because an unsuccessful lookup requires on 
average twice as many key comparisons. These search 
averages are one of the best indications of average 
bucket size and a direct measure of hash performance. 
Lowering them means better average hash 
performance. 

And finally, we are interested in how long it takes to 
compute the hash function. This value is estimated 
given a table of memory and CPU cycle times, 
estimating memory footprint and access rate, cache 
miss rate, and guessing at how well the instructions to 
compute the hash function will be scheduled by the 
CPU. We estimate these based on Hennessey and 
Patterson [Hen]. 

3. Four critical hash tables  

In this section we investigate the response to our 
tuning efforts of four critical kernel hash tables. These 
tables included the buffer cache, page cache, dentry 
cache, and inode cache hash tables.  

3.1 Page cache 

The Linux page cache contains in-core file data while 
the data is in use by processes running on the system. 
It can also contain data that has no backing storage, 
such as data in anonymous maps. The page cache hash 
table in the plain 2.2.5 kernel comprises 2048 buckets, 
and uses the following hash function from 
include/linux/pagemap.h: 

#define PAGE_HASH_BITS 11 
#define 
    PAGE_HASH_SIZE (1 << PAGE_HASH_BITS) 
 
static inline unsigned long 
    _page_hashfn(struct inode * inode, 
        unsigned long offset) 
{ 
#define i (((unsigned long) inode)/ 
        (sizeof(struct inode) & 
          ~ (sizeof(struct inode) - 1))) 
#define o (offset >> PAGE_SHIFT) 
#define s(x) ((x)+((x)>>PAGE_HASH_BITS)) 
 
        return s(i+o) & (PAGE_HASH_SIZE-1); 
 
#undef i 
#undef o 
#undef s 
} 
 

The hash function key is made up of two arguments: 
the inode  and the offset . The inode  argument is a 
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memory address of the in-core inode that contains the 
data mapped into the requested page. The offset  
argument is a memory address of the requested page 
relative to a virtual address space. The result of the 
function is an index into the page cache hash table. 

This simple fast shift-add hash function is surprisingly 
effective due to the pre-existing randomness of the 
inode address and offset arguments. Our tests reveal 
that bucket size remains acceptable as 
PAGE_HASH_BITS is varied from 11 to 16. 

Normally, the offset  argument is page-aligned, but 
when the page cache is doubling as the swap cache, the 
offset  argument can contain important index-
randomizing information in the lower bits. Stephen 
Tweedie suggests [LKA] that adding the offset again, 
unshifted, before computing s()  would improve 
bucket size distribution problems caused when hashing 
swap cache pages. Our tests show that adding the 
unshifted offset reduced bucket size distribution 
anomolies, at a slight but measurable across-the-board 
performance cost. 

The following tables show relative throughput results 
for kernels built with hash table tuning modifications. 
The “reference” kernel is a plain 2.2.5 kernel with a 
4000 entry process table. The “13-bit,” “14-bit,” and 
“15-bit” kernels are plain 2.2.5 kernel with a 4000 
entry process table and a 13, 14, and 15-bit (8192, 
16384, and 32768 buckets) page cache hash table. The 
“offset” kernel is just like the “14-bit” kernel, but 
whose page cache hash function looks like this: 

    return s(i+o+offset) & (PAGE_HASH_SIZE-1); 
 

The “mult” kernel is the “14-bit” kernel with a 
multiplicative hash function instead of the plain 
additive one: 

    return ((((unsigned long)inode + offset) * 
        2654435761UL) >> \ 
            (32 - PAGE_HASH_BITS)) & 
                (PAGE_HASH_SIZE-1); 
 

See the section on multiplicative hashing for more 
about how we derived this function.  

Finally, the “rbtree” kernel was derived from a clean 
2.2.5 kernel with a special patch applied, extracted 
from Andrea Archangeli’s 2.2.5-arca10. This patch 
implements the page cache with per-inode red-black 
trees, a form of balanced binary tree [CLR], instead of 
a hash table. 

We ran each workload seven times, and take the results 
from the middle five runs. The results in Table 1 are 
averages and standard deviations for the middle five 
benchmark runs for each workload. The timing result 
is the total length of all the runs for that kernel, 
including the two runs out of seven that were ignored 
in the average calculations. Each set of runs for a given 
kernel is benchmarked on a freshly rebooted system. 
These are obtained on our dual Pentium Pro using 
sixteen, thirty-two, forty-eight, and sixty-four 
concurrent script workloads to show how performance 
changes between CPU bound and I/O bound 
workloads. We also want to push the machine into 
swap to see how performance changes when the page 
cache is used as a swap cache. 

According to our own kernel program counter profiling 
results, defining PAGE_HASH_BITS as 13 bits is 
enough to take find_page()  out of the top kernel 

kernel table size 
(buckets) 

16 scripts 32 scripts 48 scripts 64 scripts total elapsed 

reference 2048 1864.7 s=3.77 1800.8 s=8.51 1739.9 s=3.61 1644.6 
s=29.35 

50 min 25 sec 

13-bit 8192 1875.8 s=5.59 1834.0 s=3.71 1765.5 s=3.01 1683.3 
s=17.39 

49 min 43 sec 

14-bit 16384 1877.2 s=5.35 1830.8 s=3.81 1770.5 s=3.84 1694.3 
s=41.42 

49 min 35 sec 

15-bit 32768 1875.4 
s=10.72 

1832.4 s=3.97 1770.3 s=3.97 1691.2 
s=20.05 

49 min 36 sec 

offset 16384 1880.0 s=2.78 1843.7 
s=14.65 

1774.5 s=4.30 1685.4 
s=33.46 

49 min 40 sec 

mult 16384 1876.4 s=6.45 1836.8 s=6.45 1773.7 s=5.20 1691.7 
s=25.32 

49 min 29 sec 

rbtree N/A 1874.9 s=6.57 1817.0 s=5.59 1755.3 s=3.01 1670.8 
s=17.26 

50 min 3 sec 

Table 1. Benchmark throughput comparison of different hash functions in the page cache hash table. This table compares the 
performance of several Linux kernels using differently tuned hash tables in the page cache. Total benchmark elapsed time shows the 
multiplicative hash function improves performance the most. 
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CPU users during most heavy VM loads on large-
memory machines. However, increasing it further can 
help reduce the real elapsed time required for an 
average lookup, thus improving system performance 
even more. As one might expect, increasing the hash 
table size had little effect on smaller workloads. To 
show the effects of increased table size on a high-end 
machine, we ran 128 script benchmarks on our four-
way 512M Dell PowerEdge. The kernels used in this 
test are otherwise unchanged reference kernels 
compiled with 4000 process slots. The results are 
averages of five runs on each kernel. 

The gains in inter-run variance are significant for 
larger memory machines. It is also clear that overall 
performance improves for tables larger than 8192 
buckets, although not to the same degree that it 
improves for a table size increase of 2048 to 8192 
buckets. 

The “rbtree” kernel performs better than the 
“reference” kernel. It also scores very well in inter-run 
variance. A big advantage of this implementation is 
that it is more space efficient, especially on small 

machines, as it doesn’t require contiguous pages for a 
hash table. We predicted the “offset” kernel to perform 
better when the system was swapping, but it appears to 
perform worse than both the “mult” and the “14-bit” 
kernel on the heaviest workload. Finally, the “mult” 
kernel appears to have the smoothest overall results, 
and the shortest overall elapsed time. 

Because of the overall goodness of the existing hash 
function, the biggest gain occurs when the page cache 
hash table size is increased. This has performance 
benefits for machines of all memory sizes; as hash 
table size increases, more pages are hashed into 
buckets that contain only a single page, decreasing 
average lookup time. 

Increasing the page cache hash table’s bucket count 
even further continues to improve performance, 
especially for large memory machines. However, for 
use on generic hardware, 13 bits accounts for 8 pages 
worth of hash table, which is probably the practical 
upper limit for small memory machines. 

Table 2. Benchmark throughput comparison of different hash table sizes in the page cache hash table. This table shows 
benchmark performance of our tweaked kernels on large memory hardware. This test shows how performance changes when the 
data structure is heavily populated, and the system is not swapping. 

table size, in 
buckets 

average throughput average throughput, 
minus first run 

maximum 
throughput 

elapsed time 

2048 4282.8 s=29.96 4295.2 s=11.10 4313.0 12 min 57 sec 
8192 4387.3 s=23.10 4398.5 s=5.88 4407.5 12 min 40 sec 
32768 4405.3 s=5.59 4407.4 s=4.14 4413.8 12 min 49 sec 

Apr 27 17:17:51 pillbox kernel: Buffer cache total lookups: 296481  (hit rate: 54%) 
Apr 27 17:17:51 pillbox kernel:  hash table size is 16384 buckets 
Apr 27 17:17:51 pillbox kernel:  hash table contains 37256 objects 
Apr 27 17:17:51 pillbox kernel:  largest bucket contains 116 buffers 
Apr 27 17:17:51 pillbox kernel:  find_buffer() iterations/lookup: 2155/1000 
Apr 27 17:17:51 pillbox kernel:  hash table histogram: 
Apr 27 17:17:51 pillbox kernel:   size  buckets  buffers  sum-pct 
Apr 27 17:17:51 pillbox kernel:     0    12047        0       0 
Apr 27 17:17:51 pillbox kernel:     1     1037     1037       2 
Apr 27 17:17:51 pillbox kernel:     2      381      762       4 
Apr 27 17:17:51 pillbox kernel:     3      295      885       7 
Apr 27 17:17:51 pillbox kernel:     4      325     1300      10 
Apr 27 17:17:51 pillbox kernel:     5      399     1995      16 
Apr 27 17:17:51 pillbox kernel:     6      188     1128      19 
Apr 27 17:17:51 pillbox kernel:     7      303     2121      24 
Apr 27 17:17:51 pillbox kernel:     8      160     1280      28 
Apr 27 17:17:51 pillbox kernel:     9      169     1521      32 
Apr 27 17:17:51 pillbox kernel:    10      224     2240      38 
Apr 27 17:17:51 pillbox kernel:    11       64      704      40 
Apr 27 17:17:51 pillbox kernel:    12       49      588      41 
Apr 27 17:17:51 pillbox kernel:    13       15      195      42 
Apr 27 17:17:51 pillbox kernel:    14        3       42      42 
Apr 27 17:17:51 pillbox kernel:    15        4       60      42 
Apr 27 17:17:51 pillbox kernel:   >15      721    21398     100 

Histogram 1. Full buffer cache using the old hash function. This histogram demonstrates how poorly the Linux buffer cache
spreads buffers across the buffer cache hash table. Most of the buffers are stored in hash buckets that contain more than 15 other
buffers. This slows benchmark throughput markedly. 
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3.2 Buffer cache 

Linux holds dirty data blocks about to be written to 
disk in its buffer cache. The buffer cache hash table in 
the plain 2.2.5 kernel comprises 32768 buckets, and 
uses this hash function from fs/buffer.c: 

#define _hashfn(dev,block) 
(((unsigned)(HASHDEV(dev)^block)) &  
bh_hash_mask) 
 

This function adds no randomness to either argument, 
simply xor-ing them together, and truncating the result. 

Histogram 1 tells the whole story. Histogram 1 was 
obtained during several heavy runs of our benchmark 
suite on the dual Pentium Pro. Each histogram divides 
its output into several columns. First, the “buckets” 
column reports the observed number of buckets in the 
hash table containing “size” objects; there are 1037 
buckets observed to contain a single buffer in this 
example. The “buffers” column reports how many 
buffers are found in buckets of that size, a product of 
the size and observed bucket count. The “sum-pct” 
column is the cumulative percentage of buffers 
contained in buckets of that size and smaller. In other 
words, in the Histogram 1, 28% of all buffers in the 
hash table are stored in buckets containing 8 or fewer 
buffers, and 42% of all buffers were stored in buckets 
containing 15 or fewer buffers. The number of empty 
buckets in the hash table is the value reported in the 
“buckets” column for size 0. 

The average bucket size for 37,000+ buffers stored in a 
16384 bucket table should be about 3 (that is, O(n/m), 

where n is the number of objects contained in the hash 
table, and m is the number of hash buckets). The 
largest bucket contains 116 buffers, almost 2 orders of 
magnitude more than the expected average, even 
though the hash table is less than twenty-seven percent 
utilized (16384 total buckets minus 12047 empty 
buckets, divided by 16384 total buckets gives us 0.27). 
At one point during the benchmark, the author 
observed buckets containing more than 340 buffers. 

After the benchmark is over, most of the buffers still 
reside in large buckets; see Histogram 2. Eighty-five 
percent of the buffers in this cache are contained in 
buckets with more than 15 buffers in them, even 
though there are 16167 empty buckets -- an effective 
bucket utilization of less than two percent! 

Clearly a better hash function is needed for the buffer 
cache hash table. The following table compares 
benchmark throughput results from the reference 
kernel (unmodified 2.2.5 kernel with 4000 process 
slots, as above) to results obtained after replacing the 
buffer cache hash function with several different hash 
functions. Here is our multiplicative hash function: 

#define _hashfn(dev,block) ((((block) * 
    2654435761UL) >> SHIFT) & 
        bh_hash_mask) 
 

We tested variations of this function (SHIFT value is 
fixed at 11, or varies depending on the table size). We 
also tried a shift-add hash function to see if the 
multiplicative hash was really best. The shift-add 
function comes from Peter Steiner, and uses a shift and 
subtract ((block << 7) - block) to effectively multiply 

Apr 27 17:30:49 pillbox kernel: Buffer cache total lookups: 3548568 (hit rate: 78%) 
Apr 27 17:30:49 pillbox kernel:  hash table size is 16384 buckets 
Apr 27 17:30:49 pillbox kernel:  hash table contains 2644 objects 
Apr 27 17:30:49 pillbox kernel:  largest bucket contains 80 buffers 
Apr 27 17:30:49 pillbox kernel:  find_buffer() iterations/lookup: 1379/1000 
Apr 27 17:30:49 pillbox kernel:  hash table histogram: 
Apr 27 17:30:49 pillbox kernel:   size  buckets  buffers  sum-pct 
Apr 27 17:30:49 pillbox kernel:     0    16167        0       0 
Apr 27 17:30:49 pillbox kernel:     1      110      110       4 
Apr 27 17:30:49 pillbox kernel:     2       10       20       4 
Apr 27 17:30:49 pillbox kernel:     3        3        9       5 
Apr 27 17:30:49 pillbox kernel:     4        1        4       5 
Apr 27 17:30:49 pillbox kernel:     5        0        0       5 
Apr 27 17:30:49 pillbox kernel:     6        3       18       6 
Apr 27 17:30:49 pillbox kernel:     7        1        7       6 
Apr 27 17:30:49 pillbox kernel:     8        6       48       8 
Apr 27 17:30:49 pillbox kernel:     9        2       18       8 
Apr 27 17:30:49 pillbox kernel:    10        1       10       9 
Apr 27 17:30:49 pillbox kernel:    11        2       22      10 
Apr 27 17:30:49 pillbox kernel:    12        3       36      11 
Apr 27 17:30:49 pillbox kernel:    13        3       39      12 
Apr 27 17:30:49 pillbox kernel:    14        3       42      14 
Apr 27 17:30:49 pillbox kernel:    15        1       15      15 
Apr 27 17:30:49 pillbox kernel:   >15       68     2246     100 

Histogram 2. Buffer cache using the old hash function, after benchmark is complete. This histogram shows that, even after
the benchmark completes, most buffers in the cache remain in hash buckets containing more than 15 other buffers.
Additionally, 3,000+ buffers stored in about 220 buckets, although more than 16,000 empty buckets remain. Over time, buffers
tend to congregate in large buckets, and system performance suffers. 
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by a Mersenne prime (block * 127). Multiplication by 
a Mersenne prime is easy to calculate, as it reduces to a 
subtraction and a shift operation. 

#define _hashfn(dev,block) \ 
 (((block << 7) - block + (block >> 10) 
    + (block >> 18)) & 
        bh_hash_mask) 
 

This series of tests consists of five runs of 128 
concurrent scripts on the four-way Dell PowerEdge 
system. We report an average result for all five runs, 
and an average result without the first run. The five-
run average and the total elapsed time show how good 
or bad the first run, which warms the system caches 
after a reboot, can be. The four-run average indicates 
the steady-state operation of the buffer cache. 

On a Pentium II with 512K of level 2 cache, the shift-
add hash shows a higher average throughput than the 

multplicative variants. On CPUs with less pipelining, 
the race is somewhat closer, probably because the 
shift-add function, when performed serially, can 
sometimes take as long as multiplication. However, the 
shift-add function also has the lowest variance in this 
test, and the highest first-run throughput, making it a 
clear choice for use as the buffer cache hash function.  

We also tested with smaller hash table sizes to 
demonstrate that buffer cache throughput can be 
maintained using fewer buckets. Our test results bear 
this out; in fact, often these functions appear to work 
better with fewer buckets. Reducing the size of the 
buffer cache hash table saves more than a dozen 
contiguous pages (in the existing kernel, this hash table 
already consumes a contiguous 32 pages). 

Histogram 3 shows what a preferred bucket size 

kernel table size average 
throughput 

avg throughput, 
minus first run 

maximum 
throughput 

elapsed time 

reference 32768 4282.8 s=29.96 4295.2 s=11.10 4313.0 12 min 57 sec 
mult, shift 16 32768 4369.3 s=19.35 4376.4 s=14.53 4393.2 12 min 45 sec 
mult, shift 11 32768 4380.8 s=12.09 4382.8 s=11.21 4394.0 12 min 50 sec 
shift-add 32768 4388.9 s=21.90 4397.2 s=11.70 4415.5 12 min 31 sec 
mult, shift 11 16384 4350.5 s=99.75 4394.6 s=15.59 4417.2 12 min 41 sec 
mult, shift 17 16384 4343.7 s=61.17 4369.9 s=17.39 4390.2 12 min 46 sec 
shift-add 16384 4390.2 s=22.55 4399.6 s=8.52 4408.3 12 min 37 sec 
mult, shift 18 8192 4328.9 s=16.61 4333.7 s=15.05 4349.6 12 min 41 sec 
shift-add 8192 4362.5 s=13.37 4362.8 s=14.90 4382.3 12 min 45 sec 

Table 3. Benchmark throughput comparison of different hash functions in the buffer cache hash table. We report the results 
of benchmarking several new buffer cache hash functions in this table. Using a sophisticated multiplicative hash function appears to 
boost overall system throughput the most. 

Apr 27 18:14:50 pillbox kernel: Buffer cache total lookups: 287696  (hit rate: 54%) 
Apr 27 18:14:50 pillbox kernel:  hash table size is 16384 buckets 
Apr 27 18:14:50 pillbox kernel:  hash table contains 37261 objects 
Apr 27 18:14:50 pillbox kernel:  largest bucket contains 11 buffers 
Apr 27 18:14:50 pillbox kernel:  find_buffer() iterations/lookup: 242/1000 
Apr 27 18:14:50 pillbox kernel:  hash table histogram: 
Apr 27 18:14:50 pillbox kernel:   size  buckets  buffers  sum-pct 
Apr 27 18:14:50 pillbox kernel:     0     2034        0       0 
Apr 27 18:14:50 pillbox kernel:     1     3317     3317       8 
Apr 27 18:14:50 pillbox kernel:     2     4034     8068      30 
Apr 27 18:14:50 pillbox kernel:     3     3833    11499      61 
Apr 27 18:14:50 pillbox kernel:     4     2082     8328      83 
Apr 27 18:14:50 pillbox kernel:     5      712     3560      93 
Apr 27 18:14:50 pillbox kernel:     6      222     1332      96 
Apr 27 18:14:50 pillbox kernel:     7       78      546      98 
Apr 27 18:14:50 pillbox kernel:     8       46      368      99 
Apr 27 18:14:50 pillbox kernel:     9       19      171      99 
Apr 27 18:14:50 pillbox kernel:    10        5       50      99 
Apr 27 18:14:50 pillbox kernel:    11        2       22     100 
Apr 27 18:14:50 pillbox kernel:    12        0        0     100 
Apr 27 18:14:50 pillbox kernel:    13        0        0     100 
Apr 27 18:14:50 pillbox kernel:    14        0        0     100 
Apr 27 18:14:50 pillbox kernel:    15        0        0     100 
Apr 27 18:14:50 pillbox kernel:   >15        0        0     100 

Histogram 3. Full buffer cache using the mult-11 hash function. This histogram of buffer cache hash bucket sizes shows 
marked improvement. Most buffers reside in small buckets, thus most buffers in the buffer cache can be found after checking 
fewer than two or three other buffers in the same bucket. 
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distribution histogram looks like. These runs were 
made with the mult-11 hash function and a 16384 
bucket hash table. This histogram snapshot was made 
at approximately the same points during the 
benchmark as the examples above. 

After the benchmark completes, the hash table returns 
to a nominal state. We can also see that the measured 
iterations per loop average is an order of magnitude 
less than with the original hash function. 

We’d like to underscore some of the good statistical 
properties demonstrated in Histogram 3. First, the 
bucket size distributions shown in this histogram 
approach the shape of a bell curve, suggesting that the 
hash function is doing a good job of randomizing the 
keys. The height of the distribution occurs for buckets 
of size 3 (our expected average), which is about n/m, 
where n is the number of stored objects, and m is the 
number of buckets. A perfect distribution centers on 
the expected average, and has very short tails on either 
side, only one or two buckets. While the distribution in 
Histogram 3 is somewhat skewed, observations of 
tables that are even more full show that the curve 
becomes less skewed as it fills; that is, as the expected 
average grows away from zero, the shape of the size 
distribution more closely approximates the normal 
distribution. In all cases we’ve observed, the tail of the 
skew is fairly short, and there appear to be few 
degenerations of the hash (where one or more very 
large buckets appear). 

Second, in both Histogram 3 and 4, about 68% of all 
buffers contained in the hash table are stored in 
buckets containing the expected average number of 
buffers or less. Sixty-eight percent of all samples is the 
expected standard deviation. And third, the number of 
empty buckets in the first example above is only 
12.4%, meaning more than 87% of all buckets in the 
table are used. 

3.3 Dentry cache  

The Linux 2.2 kernel has a directory entry cache, or 
dentry cache, that is designed to speed up file system 
performance by mapping file names directly to the in-
core address of the inode struct associated with the file. 
The plain 2.2.5 kernel uses a hash table with 1024 
buckets to manage the dentry cache. A simple shift-add 
hash function is employed: 

#define D_HASHBITS     10 
#define D_HASHSIZE     (1UL << D_HASHBITS) 
#define D_HASHMASK     (D_HASHSIZE-1) 
 
static inline struct list_head * d_hash( 
    struct dentry * parent, 
        unsigned long hash) 
{ 
    hash += (unsigned long) parent; 
    hash = hash ^ 
        (hash >> D_HASHBITS) ^ 
        (hash >> D_HASHBITS*2); 
    return dentry_hashtable + 
        (hash & D_HASHMASK); 
} 
 

Apr 27 18:27:19 pillbox kernel: Buffer cache total lookups: 3530977  (hit rate: 78%) 
Apr 27 18:27:19 pillbox kernel:  hash table size is 16384 buckets  
Apr 27 18:27:19 pillbox kernel:  hash table contains 2717 objects  
Apr 27 18:27:19 pillbox kernel:  largest bucket contains 6 buffers  
Apr 27 18:27:19 pillbox kernel:  find_buffer() iterations/lookup: 215/1000 
Apr 27 18:27:19 pillbox kernel:  hash table histogram: 
Apr 27 18:27:19 pillbox kernel:   size  buckets  buffers  sum-pct  
Apr 27 18:27:19 pillbox kernel:     0    14302        0       0 
Apr 27 18:27:19 pillbox kernel:     1     1555     1555      57       
Apr 27 18:27:19 pillbox kernel:     2      442      884      89       
Apr 27 18:27:19 pillbox kernel:     3       73      219      97       
Apr 27 18:27:19 pillbox kernel:     4        5       20      98       
Apr 27 18:27:19 pillbox kernel:     5        3       15      99       
Apr 27 18:27:19 pillbox kernel:     6        4       24     100      
Apr 27 18:27:19 pillbox kernel:     7        0        0     100      
Apr 27 18:27:19 pillbox kernel:     8        0        0     100      
Apr 27 18:27:19 pillbox kernel:     9        0        0     100      
Apr 27 18:27:19 pillbox kernel:    10        0        0     100      
Apr 27 18:27:19 pillbox kernel:    11        0        0     100      
Apr 27 18:27:19 pillbox kernel:    12        0        0     100      
Apr 27 18:27:19 pillbox kernel:    13        0        0     100      
Apr 27 18:27:19 pillbox kernel:    14        0        0     100      
Apr 27 18:27:19 pillbox kernel:    15        0        0     100      
Apr 27 18:27:19 pillbox kernel:   >15        0        0     100      

Histogram 4. Buffer cache using the mult-11 hash function, after the benchmark is complete. The reader can compare this
histogram with the earlier one that reports the buffer cache bucket size distribution after the benchmark has completed. As buffers
are removed from the buffer cache, the bucket size distribution remains good when using the multiplicative hash function. 
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The arguments for this function are the address of the 
parent directory’s dentry structure, and a hash value 
obtained by a simplified CRC algorithm on the target 
entry’s name. This function appears to work fairly 
well, but we want to improve it nonetheless. 

Andrea Arcangeli suggests that shrinking the dcache 
slightly more aggressively might reduce the number of 
objects in the table enough to help improve dcache 
hash lookup times [LKA]. We test this idea by adding 
a couple of lines from his 2.2.5-arca10 patch: In 
fs/dcache.c, function shrink_dcache_memory() , we 
replace prune_dcache(found)  with: 

    prune_dcache(dentry_stat.nr_unused / 
        (priority+1)); 
 

and move the shrink_dcache_memory()  call in 
do_try_to_free_pages()  close to the top of the 
loop so that it will be invoked more often. In Table 4, 
we show results from several different kernels. First, 
results from the reference 2.2.5 kernel are repeated, 
then a kernel that is like the reference kernel, except 
the dcache hash table is increased to 16384 buckets, 
and the xor operations are replaced with addition when 
computing the hash function. The “shrink” kernel is a 
2.2.5 kernel like the “14-bit” kernel except that it more 
aggressively shrinks the dcache, as explained above. 
The “mult” kernels use a multiplicative hash function 
similar to the buffer cache hash function, instead of the 
existing dcache hash function: 

static inline struct list_head * d_hash( 
    struct dentry * parent, 
    unsigned long hash) 
{ 
    hash += (unsigned long) parent; 
    hash = (hash * 2654435761UL) >> SHIFT; 
    return dentry_hashtable + 
        (hash & D_HASHMASK); 
} 
 

where SHIFT is either 11 or 17. The “shrink+mult” 
kernels combine the effects of both multiplicative 
hashing and shrinking the dcache. 

The following results are average results from five 
benchmark runs of 128 concurrent scripts on the four-
way Dell PowerEdge. The timing results are the 
elapsed time for all five runs on each kernel. 

Some may argue that shrinking the dcache 
unnecessarily might lower the overall effectiveness of 
the cache, but we believe that shrinking the cache more 
aggressively will help, rather than hurt, overall system 
performance because a smaller cache allows faster 
lookups and causes less CPU cache pollution. In 
combination with an appropriate multiplicative hash 
function, such as the one used in the “shrink+mult 11” 
kernel, elapsed time and average throughput stays high 
enough to make it the fastest kernel benchmarked in 
this series. 

Table 4. Benchmark throughput comparison of different hash functions in the inode cache hash table.  Increasing the size 
of the inode cache hash table has clear performance benefits, as this table shows. Replacing the hash function in this cache 
actually hurts performance. 

kernel average throughput maximum throughput elapsed time 
reference 4282.8 s=29.96 4313.0 12 min 57 sec 
14 bit 4375.2 s=25.92 4397.4  12 min 42 sec 
mult, shift 11 4368.7 s=62.65 4406.2 12 min 39 sec 
mult, shift 17 4375.9 s=10.40 4389.0 12 min 40 sec 
shrink 4368.7 s=33.36 4390.7 12 min 40 sec 
shrink + mult 11 4380.4 s=13.53 4396.5 12 min 35 sec 
shrink + mult 17 4368.5 s=16.21 4383.6 12 min 42 sec 

kernel average throughput elapsed time 
reference 4282.8 s=29.96 12 min 57 sec 
12 bit 4361.3 s= 11.15 12 min 36 sec 
mult 4346.0 s=20.87 12 min 52 sec 
14 bit 4368.3 s= 20.41 12 min 54 sec 

Table 5. Benchmark throughput comparison of different hash functions in the dcache cache hash table. This table shows 
that increasing the hash table size in the dentry  cache has significant benefits for system throughput, decreasing benchmark 
elapsed time by 15 seconds. Other changes decrease elapsed time by only a few seconds. 
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3.4 Inode cache 

The dentry cache, described above, provides a fast way 
of mapping directory entries to inodes. Kernel 
developers expected the dentry cache to reduce the 
need for an efficient inode cache. Thus, when the 
dentry cache was implemented, the inode cache hash 
table was reduced to 256 buckets (8 bit hash). As we 
shall see, this has had a more profound impact on 
system performance than expected. 

The inode cache hash function is a shift-add function 
similar to the dentry cache hash function. 

#define HASH_BITS       8 
#define HASH_SIZE       (1UL << HASH_BITS) 
#define HASH_MASK       (HASH_SIZE-1) 
 
static inline unsigned long hash( 
    struct super_block *sb, 
    unsigned long i_ino) 
{ 
    unsigned long tmp = i_ino | 
        (unsigned long) sb; 
    tmp = tmp + (tmp >> HASH_BITS) + 
        (tmp >> HASH_BITS*2); 
    return tmp & HASH_MASK; 
} 
 

Histogram 5 shows why this table is too small. The 
hash chains are extremely long. In addition, the hit rate 
shows that most lookups are unsuccessful, meaning 
that almost every lookup request has to traverse the 
entire bucket. The number of iterations per lookup is 
almost 40! 

Even though there are an order of magnitude fewer 

lookups in the inode cache than there are in the other 
caches, this cache is still clearly a performance 
bottleneck. To demonstrate this, we ran tests on four 
different hash functions. Our reference kernel results 
(from Table 1) reappear in Table 5 for convenience. 
The “12-bit” kernel is the same as the reference kernel 
except that the hash table size has been increased to 
4096 buckets. The “mult” kernel has 4096 inode cache 
hash table buckets as well, and uses the multiplicative 
hash function introduced above. The “14-bit” kernel is 
the same as the reference kernel except that the hash 
table size has been increased to 16384 buckets. 

The 12 bit hash table is the clear winner. Increasing the 
hash table size further helps performance slightly, but 
also increases inter-run variance to such an extent that 
total elapsed time is longer than for the “12-bit” kernel. 
Adding multiplicative hashing doesn’t help much here 
because the table is already fairly full and well-
balanced. 

4. Combination testing  

In this section, we optimize all four hash tables, and 
benchmark the resulting kernels. Our benchmarks are 
ten 128 script runs on the four-way Dell. 

We selected optimizations among the best results 
shown above, then tried them in combination. We find 
that there are some performance relationships among 
the various caches, so we show the results for the best 
combinations that we tried. 

Apr 27 17:23:31 pillbox kernel: Inode cache total lookups: 189321  (hit rate: 3%) 
Apr 27 17:23:31 pillbox kernel:  hash table size is 256 buckets 
Apr 27 17:23:31 pillbox kernel:  hash table contains 9785 objects 
Apr 27 17:23:31 pillbox kernel:  largest bucket contains 54 inodes 
Apr 27 17:23:31 pillbox kernel:  find_inode() iterations/lookup: 38978/1000 
Apr 27 17:23:31 pillbox kernel:  hash table histogram: 
Apr 27 17:23:31 pillbox kernel:   size  buckets    inodes sum-pct 
Apr 27 17:23:31 pillbox kernel:     0        0        0       0 
Apr 27 17:23:31 pillbox kernel:     1        0        0       0 
Apr 27 17:23:31 pillbox kernel:     2        0        0       0 
Apr 27 17:23:31 pillbox kernel:     3        0        0       0 
Apr 27 17:23:31 pillbox kernel:     4        0        0       0 
Apr 27 17:23:31 pillbox kernel:     5        0        0       0 
Apr 27 17:23:31 pillbox kernel:     6        0        0       0 
Apr 27 17:23:31 pillbox kernel:     7        0        0       0 
Apr 27 17:23:31 pillbox kernel:     8        0        0       0 
Apr 27 17:23:31 pillbox kernel:     9        0        0       0 
Apr 27 17:23:31 pillbox kernel:    10        0        0       0 
Apr 27 17:23:31 pillbox kernel:    11        0        0       0 
Apr 27 17:23:31 pillbox kernel:    12        0        0       0 
Apr 27 17:23:31 pillbox kernel:    13        0        0       0 
Apr 27 17:23:31 pillbox kernel:    14        0        0       0 
Apr 27 17:23:31 pillbox kernel:    15        0        0       0 
Apr 27 17:23:31 pillbox kernel:   >15      256     9785     100 

Histogram 5. Full inode cache using the old hash function. This histogram shows what happens when too many objecst are
stored in an undersized hash table. Every inode in this hash table resides in a bucket that contains, on average, 37 other objects.
Combined with the very low hit rate, this results in a significant negative performance impact. 
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“Reference” kernel 

The “Reference” kernel is a stock 2.2.5 Linux kernel 
with 4000 process slots:  

• a 32768 bucket buffer hash table with a one-
to-one hash function 

• a 2048 bucket page hash table with a simple 
shift-add hash function 

• a 256 bucket inode hash table with a simple 
shift-add hash function 

• a 1024 bucket dentry hash table with a simple 
shift-add hash function 

Kernel “A” 

Kernel “A” is a plain 2.2.5 Linux kernel with 4000 
process slots and: 

• a 16384 bucket hash table using the multiply 
and shift-by-11 hash function 

• a 8192 bucket page cache with the 
multiplicative hash function described in the 
page cache section 

• a 2048 bucket inode hash table using a 
slightly modified shift-add hash function 

• a 8192 bucket dcache hash table with addition 
instead of XOR in its hash function. 

Kernel “B” 

Kernel “B” is a plain 2.2.5 Linux kernel with 4000 
process slots and: 

• a 16384 bucket buffer hash table with Peter 
Steiner’s shift-add hash function 

• a 8192 bucket page cache with the 
multiplicative hash function described in the 
page cache section 

• a 2048 bucket inode hash table using a 
slightly modified shift-add hash function  

• a 8192 bucket dcache hash table with addition 
instead of XOR in its hash function. 

Kernel “C” 

Kernel “C” is a plain 2.2.5 Linux kernel with 4000 

process slots and:  

• a 16384 bucket hash table using the multiply 
and shift-by-11 hash function 

• a 8192 bucket page cache with the reference 
kernel’s hash function 

• a 2048 bucket inode hash table using a 
slightly modified shift-add hash function  

• a 8192 bucket dcache hash table with addition 
instead of XOR in its hash function. 

Kernel “D” 

Kernel “D” is a plain 2.2.5 Linux kernel with 4000 
process slots and:  

• a 16384 bucket has table using the multiply 
and shift-by-11 hash function 

• a 8192 bucket page cache with the offset hash 
function described above 

• a 2048 bucket inode hash table using a 
slightly modified shift-add hash function  

• a 8192 bucket dcache hash table with addition 
instead of XOR in its hash function 

Examining Table 6, we’d like to select a combination 
that reduces inter-run variance and elapsed time, as 
well as maximizes throughput and minimizes hash 
table memory footprint. While kernel “C” offers the 
highest maximum throughput, its inter-run variance is 
also largest. On the other hand, kernel “D” has the 
second highest average throughput, the shortest 
elapsed time, and the best inter-run variance. This 
seems like a reasonable compromise. 

A patch against Linux 2.2.5 is available for kernel “D” 
at our website. See Appendix A. 

5. Multiplicative hashing 

Hash function alternatives include:  

• Using an untransformed key  

• Modulus hashing  

• Multiplicative hashing  

• Using an inexpensive but sub-optimal shift-

kernel average throughput maximum throughput elapsed time 
Reference 4300.7 s=15.73 4321.1 26 min 41 sec 
Kernel A 4582.9 s=12.55 4592.8 25 min 24 sec 
Kernel B 4577.9 s=16.22 4602.0 25 min 18 sec 
Kernel C 4596.2 s=22.30 4619.5 25 min 18 sec 
Kernel D 4591.3 s=10.98 4608.9 25 min 15 sec 

Table 6. Benchmark throughput comparison of multiple kernel hash optimizations. Combining improvements in each of the 
four caches we studied results in an elapsed time improvement of almost a minute and a half. 
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add hash function  

• Using a “correct” shift-add hash function  

• Using a hash function driven by one or more 
random tables 

• Architecture-specific hash functions (e.g. 
multiplication on fast, modern processors, and 
something else on older processors) 

Multiplicative hashing is a form of modulus hashing 
that is less expensive because the results are often as 
good but a multiplication operation is used instead of a 
division operation. Multiplicative hashing is 
controversial because of the expense of multiplication 
instructions on some hardware types. For example, on 
68030 CPUs, popular in old Sun and Macintosh 
computers, multiplication requires up to 44 CPU 
cycles for a 32-bit multiplication, whereas a memory 
load only requires an extra 2 cycles per instruction 
[Mot]. On a hardware architecture like the 68030 that 
has little caching, fast load times compared to CPU 
operations, and expensive multiplication, a 
multiplicative hash might be inferior even if it cuts the 
average number of loop iterations per lookup request 
by a factor of four or more. 

However, it turns out that several of the alternatives are 
just as expensive, or even more expensive, than 
multiplicative hashing. Random table-driven hash 
functions require several table lookups, and several 
shifts, logical AND operations, and additions. An e-
mail message from the linux-kernel mailing list [LKA] 
explains the problem; see Appendix B. 

On our example 68030, shifting requires between 4 
and 10 cycles, and addition operations aren’t free 
either. If the instructions that implement the hash 
function are many, they will likely cause instruction 
cache contention that will be worse for performance 
than a multiplication operation. In general, a proper 
shift-add hash function is almost as expensive in CPU 
cycles as a multiplicative hash. On a modern 
superscalar processor, shifting and addition operations 
can occur in parallel as long as there are no address 
generation interlocks (AGIs). An AGI occurs when the 
results of one operation are required to form an address 
in a later operation that might otherwise have been 
parallelized by superscalar CPU hardware [Schmit, 
P2]. AGIs are much more likely for a table-driven hash 
function. 

Multiplicative hash functions are often very concise. 
The hash functions we tried above, for example, 
compile to three instructions on ia32, comprising 15 
bytes. Included in the 15 bytes are all the constants 
involved in the calculation, leaving only the key itself 
to be loaded as data. In other words, the whole hash 

function fits into a single line in the CPU’s instruction 
cache on contemporary hardware. The shift-add hash 
functions are generally lengthy, requiring several cache 
lines to contain, multiple loads of the key, and register 
allocation contention. 

The question becomes, finally, how many CPU cycles 
should be spent by the hash function to get a 
reasonable bucket size distribution? In most practical 
situations, a simple shift-add function suffices. 
However, one should always test with actual data 
before deciding on a hash function implementation. 
Hashing on block numbers, as the Linux buffer cache 
does, turns out to require a particularly good hash 
function, as disk block numbers exhibit a great deal of 
regularity. 

5.1 A Little Theory 

Our multiplicative hash functions were derived from 
[Knuth], p. 513ff. The theory posits that machine 
multiplication by a large number that is likely to cause 
overflow is the same as finding the modulus by a 
different number. We won’t repeat Knuth here, but 
suffice it to say that choosing such a number is 
complicated. In brief, our choice is based on finding a 
prime that is in golden ratio to the machine’s word size 
(2 to the 32nd in our case). Primality isn’t strictly 
necessary, but it adds certain desirable qualities to the 
hash function. See Knuth for a discussion of these 
desirable qualities. 

We selected 2654435761 as our multiplier. It is prime, 
and its value divided by 2 to the 32nd is a very good 
approximation of the golden ratio [CRC, LKP]. 

(sqrt(5) - 1 ) / 2 = 0.618033989 

2654435761 / 4294967296 = 0.618033987 

To obtain the best effects of this “division” we need to 
choose the correct shift value. This is usually the word 
size, in bits, minus the hash table size, in bits. This 
shifts the most significant bits of the result of the 
“division” down to where they can be used as the hash 
table index, preserving the greatest effects of the 
golden ratio. However, sometimes experimentation 
reveals a better shift value for a given set of input data. 

6. Conclusions and Future Work 

Careful selection and optimization of kernel hash 
tables can boost performance significantly, and 
improve inter-run variance as well, maximizing system 
throughput. However, selecting a good hash function 
and benchmarking its effectiveness can be tedious. 
Usually, the most significant performance optimization 
comes from increasing the size of a hash table. 
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To extend this study the cache instrumentation patch 
should be re-written to use a file in /proc  instead of 
writing to system console log, and should be integrated 
into the stock kernel as a “Kernel Hacking” 
configuration option. The tuning patch should be 
benchmarked on 64-bit hardware to see if another 
constant needs to be chosen there. A benchmark run on 
older architectures, such as MC68000, should 
determine if these changes will seriously degrade 
performance on older machines. 

We could also investigate the performance difference 
between inlining the page cache management routines 
(which eliminates the subroutine call overhead) and 
leaving them as stand-alone routines (which means 
they have a smaller L1 cache footprint). A separate 
swap cache hash function might also optimize the 
separate uses of the page cache hash tables. 

As well, there are still open questions about why 
shrinking the dentry  cache more aggressively can 
help performance. A study could focus on the cost of a 
dentry  cache miss versus the cost of a page fault or 
buffer cache miss. Discovering alternative ways of 
triggering a dentry  cache prune operation, or 
alternate ways of calculating the prune priority, may 
also be prudent. 

Finally, there is still opportunity to analyze even more 
carefully the real keys and hash functions in use in 
several of the tables we’ve analyzed here, as well as 
several tables we didn’t visit in this report, such as the 
uid  and pid  hash tables, and the vma data structures. 
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Appendix A: Kernel patches 

Our research has identified some kernel modifications 
that may be of use to others in the Linux kernel 
development community.  For more information on 
these modifications, see the Linux Scalability Project 
web site: 

http://www.citi.umich.edu/projects/linux-
scalability 

Appendix B: E-mail 

Date: Thu, 15 Apr 1999 15:01:54 -0700 
From: Iain McClatchie  
To: Paul F. Dietz  
Cc: linux-kernel@vger.rutgers.edu 
Subject: Re: more on hash functions 
 
I got a few suggestions about how to use multiple lookups with a 
single table.  All the suggestions make the hash function itself 
slower, and attempt to fix an issue -- hash distribution -- that 
doesn't appear to be a problem.  I thought I should explain why 
the table lookup function is slow. 
 
A multiplication has a scheduling latency of either 5 or 9 cycles on a 
P6.  Four memory accesses take four cycles on that same P6.  So the core 
operations for the two hash function are actually very similar in delay, 
and the table lookup appears to have a slight edge.  The difference is 
in the overhead. 
 
A multiplicative hash, at minimum, requires the loading of a constant, 
a multiplication, and a shift.  Egcs actually transforms some constant 
multiplications into a sequence of shifts and adds which may have 
shorter latency, but essentially, the shift (and nothing else) goes in 
series with the multiplication and as a result the hash function has 
very little latency overhead. 
 
A table lookup hash spends quite a lot of time unpacking the bytes 
from the key, and furthurmore uses a load slot to unpack each byte. 
This makes for 8 load slots, which take 1 cycle each.  Even if 
fully parallelized with unpacking, we end up with a fair bit of 
latency.  Worse yet, egcs runs out of registers and ends up shifting 
the key value in place on the stack twice, which gobbles two load and 
two store slots. 
 
Bottom line: CPUs really suck at bit-shuffling and even byte-shuffling. 
If there is some clever way to code the byte unpacking in the table 
lookup hash function, perhaps using the x86's trick register file, 
it might end up faster than the multiplicative hash. 
 
-Iain 


