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ABSTRACT 
 

Network servers make special demands that other types of applications may not 
make on memory allocators. We describe a simple malloc()  microbenchmark suite 
that tests the ability of malloc()  to divide its work efficiently among multiple 
threads and processors. The purpose of this suite is to determine the suitability of an 
operating system’s heap allocator for use with network servers running in an SMP 
environment. 
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1. Introduction 

Modern network servers often employ multithreading 
to leverage multi-CPU hardware and to increase I/O 
concurrency. As network services scale to tens of 
thousands of clients per server, they depend on the 
ability of the underlying operating system and ven-
dor-provided library routines to support multithread-
ing efficiently. 

The application-level memory allocator, or heap allo-
cator, is a system API that must scale well with the 
number of application threads and the number of 
processors in the system. Known in UNIX as mal-

loc() , the heap allocator makes use of several im-
portant system facilities, including mutex locking and 
virtual memory page allocation. Analyzing the per-
formance of malloc()  in a multithreaded and multi-
CPU environment can provide important information 
about potential system inefficiency. Finding ways to 
improve the performance of malloc()  can benefit 
the performance of any sophisticated multithreaded 
application, such as network servers. 

Network servers make special demands that other 
types of applications may not make on memory allo-
cators [5]. In this report we describe a simple mal-

loc()  microbenchmark suite that drives multi-
threaded loads to test the ability of malloc()  to di-
vide its work efficiently among multiple threads and 
processors. The purpose of this suite is to determine 
the suitability of an operating system’s heap allocator 
for use with network servers running in an SMP envi-
ronment. We discuss initial results of the bench-
marks, and show that malloc()  performance is im-
portant to overall network server scalability. 

2. Motivation for studying malloc()   

Larson and Krishnan give a good general description 
of network server applications and specifically, how 
they interact with a system’s heap allocator [5]. Net-
work servers are generally large long-running appli-
cations that employ multithreading and asynchronous 
I/O. They handle many small requests on behalf of 
client applications connected via a network such as 
TCP/IP, maintain some amount of state per connected 
client, and are often required to maintain low latency, 
high data throughput, and predictable response time. 
Unlike most test applications used in traditional 
memory allocator studies [8], network servers experi-
ence a potentially unbounded input set of unpredict-
able requests rather than a finite input set. 

The iPlanet directory server product is typical of 
many network server applications. It is a single multi-
threaded process that handles concurrent requests 
from many clients connected via TCP/IP. This soft-
ware is often deployed on SMP hardware to take ad-
vantage of the potential scalability of multiple proc-
essors. 

Using non-intrusive program counter sampling tools, 
iPlanet developers profiled a directory server running 
under several standard operating systems on four-
processor machines. A typical workload in this envi-
ronment causes classic lock contention symptoms 
when more than one processor is enabled, such as: 

o Decrease in application performance, 

o Increase in kernel mode time, and 

o Significant time spent in the thread scheduler and 
in the operating system’s low level lock code 

Further investigation indicated that the principle 
source of contention is the heap allocator. The direc-
tory server employs the operating system’s per-
process heap, which vendors often make thread-safe 

This paper will appear in the FREENIX track Proceed-
ings of the USENIX Annual Technical Conference, San 
Diego, CA, June 2000. 
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by adding a single lock to protect heap allocation 
logic. 

Several alternative solutions were proposed. 

1. Re-write the server to avoid making heavy use of 
the heap. After picking low hanging fruit, pro-
gress became very slow and many new bugs 
were introduced due to increased complexity. 

2. Implement per-thread storage within the server. 
This technique had been used with success in 
other iPlanet server products. However those 
products had been designed from scratch with 
per-thread storage. It would be very costly to re-
write a large existing application to use this 
technique. 

3. Replace the operating system’s heap allocator 
with an implementation that has more reasonable 
behavior in a multithreaded environment. This 
allows the server’s code base to remain un-
changed, offering considerable savings in time 
and stability compared with other options. 

The directory server development team prototyped 
and tested option 3. The performance improvement 
exceeded a factor of six on four-processor hardware. 
Subsequently a commercially developed heap alloca-
tor with enhancements to eliminate lock contention 
was integrated into the final version of the product. 

To further this effort we have created a set of simple, 
portable benchmark programs to assess the scalability 
of an operating system’s heap allocator as it interacts 
with low-level operating system facilities. We focus 
on simple benchmarks that treat each allocator as a 
black box, rather than use more complex trace-driven 
allocator simulations. Our tests are not meant to be 
scientific measurements of allocator performance, but 
rather to provide only an indication of relative accep-
tibility. In our experience, simple benchmarks can 
uncover basic architectural limitations that make an 
allocator inappropriate for use with network server 
applications. Furthermore, simple benchmarks are 
generally more portable. 

Traditional analysis of heap allocators has focused on 
efficient use of space and minimal CPU overhead [7]. 
Our study instead tests three areas of heap allocator 
behavior related to good performance and scalability 
of multithreaded network servers on multiprocessor 
hardware: 

1. Multithread scalability 

As we add physical processors and threads, heap con-
tention has direct impact on network server scalabil-
ity. Our first benchmark starts several threads that 
request and free memory from the heap allocator. On 

multiprocessor hardware, an ideal allocator would 
show linear speed-up for as many threads as there are 
processors in the system. 

It is well known that synchonization primitives add 
significant overhead to lightweight algorithms such 
as heap allocators. Berger and Blumofe claim that a 
single lock added to the allocator can slow it down by 
as much as 50% on modern hardware [1]. 

2. Unbounded memory consumption 

Allocating memory in one thread and freeing the 
same object in a different thread can cause some heap 
allocators to abandon areas of memory. We’d like to 
measure how much normal allocator operation frag-
ments the heap over time. This test specifically tar-
gets memory fragmentation caused by the allocator 
running in a multithreaded environment, rather than 
by pathological application behavior. 

Note that this is not a traditional way to analyze mal-

loc() ’s heap fragmentation. Many implementers 
have focused on space efficiency; i.e. the ability of an 
allocator to provide the greatest number of allocated 
objects for a given amount of virtual address space. 
In fact, for network servers, it is acceptable to allow 
some space or time inefficiency in trade for other 
benefits, such as reduced heap fragmentation over 
time. This means a multithreaded network server can 
run for longer periods without exhausting its memory 
space due to orphaned memory. 

3. Cache-conscious data placement 

Grunwald has shown the performance advantages of 
a cache-friendly allocator on modern SMP hardware 
[3]. In other words, the heap allocator can help re-
duce the effects of false cache line sharing and im-
prove effective memory bandwidth by assigning ob-
ject addresses with the specific characteristics of the 
CPU caches in mind. This is relevant to single proc-
essor hardware as well as SMP servers because mod-
ern CPUs rely more than ever on a memory hierarchy 
to bridge the gap between processor and memory 
speeds. 

Careful placement of heap-allocated objects can also 
result in a lower application page fault rate. While the 
cost of cache misses has increased significantly as 
processor speeds outpace memory speeds, the impact 
of page faults on application performance has be-
come even worse for similar reasons. 

One of the most effective ways to reduce an applica-
tion’s page fault rate is to use a space-efficient heap 
allocator. However space-efficiency may not provide 
the highest cache-friendliness [4]. Another effective 
way to reduce page faults is to add more memory to 
the system. It is often more difficult to expand the 
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size of CPU caches. Also, microprocessor cache de-
signs are generally made less efficient (worse cache 
hit rate) by size and cost requirements. Cache-
conscious libraries and application code offer one 
way to maximize the benefits of the CPU caches. 

A heap allocator can employ two mechanisms to in-
crease the effectiveness of the CPU caches and re-
duce false sharing that can cause wasted memory 
bandwidth on SMP hardware. First, a heap object 
shared among threads should never share a cache line 
with another heap object. Even small objects should 
reside in their own cache line, if practical. Wilson, 
and Johnstone et al., show that most modern alloca-
tors cause little real fragmentation beyond that caused 
by aligning objects to large address boundaries, so 
larger alignments may be a practical approach to re-
ducing false sharing among CPU caches [7, 4]. 

Second, the allocator should take as much advantage 
of temporal locality as possible. Gunwald postulates 
that objects allocated at the same time tend to be used 
and then freed together [3]. We expect this behavior 
to be especially relevant for thread memory alloca-
tion. 

3. A look at glibc’s malloc()  

The study described in this paper was initiated as 
iPlanet developers were in the process of porting the 
iPlanet directory and messaging servers to Linux. 
Given their experience with heap allocators in other 
operating systems, they wanted to know how Linux’s 
allocator compared to others. In this section we ex-
amine the Linux application-level heap allocator in 
detail. 

Modern distributions of Linux use glibc version 2.0 
and 2.1 as their C library. Glibc’s implementors have 
adopted Gloger’s ptmalloc as the glibc implementa-
tion of malloc()  [2]. Ptmalloc has many desirable 
properties, including multiple heaps to reduce conten-
tion among threads sharing a single C library invoca-
tion. 

Ptmalloc, based on Doug Lea’s original implementa-
tion of malloc()  [6], had several goals, including 
improved portability, space and time utilization, and 
added tunable parameters to control allocation behav-
ior. Gloger’s update to Lea’s original retains these 
desirable behaviors, adds good multithreading behav-
ior, and features several nice debugging extensions. 
The C library is built on most Linux distributions 
with debugging extensions and tunability disabled, so 
it is necessary to rebuild the C library or pre-load a 
separate version of malloc()  in order to take advan-
tage of these features. Alternatively, an application 

can invoke mallopt(3)  to enable some of these 
features. 

Ptmalloc maintains a linked list of subheaps. To re-
duce lock contention, ptmalloc searchs for the first 
unlocked subheap and grabs memory from it to fulfill 
a malloc()  request. If ptmalloc doesn’t find an 
unlocked heap, it creates a new one. This is a simple 
way to grow the number of subheaps as appropriate 
without adding complicated schemes for hashing on 
thread or processor ID, or maintaining workload sta-
tistics. However, there is no facility to shrink the sub-
heap list and nothing stops the heap list from growing 
without bound. There are some (not infrequent) 
pathological cases where a producer thread allocates 
objects so often that it causes freeing threads to re-
lease objects into other subheaps, resulting in un-
bounded heap growth. 

Ptmalloc makes use of both mmap()  and sbrk()  
when allocating heap arenas. Malloc()  uses sbrk()  
for allocation requests smaller than 32 pages, and 
mmap()  for allocation requests larger than 32 pages. 
In general these system calls are essentially the same 
under the covers. Both use anonymous maps to pro-
vide large pageable areas of virtual memory to proc-
esses. Sbrk()  can allocate only a fraction of the full 
virtual address space, however: sbrk()  is not smart 
enough to allocate around pre-existing mappings, 
such as system libraries, that may appear in the mid-
dle of the address space. Later versions (post 2.1.3) 
of glibc have special logic to retry an arena allocation 
with mmap()  if sbrk()  fails. Kernel functions that 
use sbrk() , such as dynamic library loading, can 
also stop working if the application fills up its virtual 
address space. 

Possible ways to help performance in this area in-
clude optimizing the allocation of anonymous maps 
and reducing and amortizing the overhead of these 
system calls by having malloc()  allocate subheaps 
in larger chunks. We have already provided a version 
of sbrk()  for the Linux kernel that removes acquisi-
tion of the global kernel lock in most paths (see 
mm/mmap.c in Linux kernel versions 2.3.5 through 
2.3.7). This allows sbrk()  to outperform mmap()  of 
anonymous pages in the general case. In addition, 
making sbrk()  work more flexibly when a process’s 
virtual address space becomes fragmented improves 
malloc()  performance for applications like network 
servers and large databases that allocate large quanti-
ties of small objects. Finally, improving the mecha-
nism by which the kernel memory manager locates 
free areas in a process’s virtual address space would 
provide significant benefits as address spaces become 
crowded with heap and text areas, and maps. 
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4. Benchmark description 

There are three microbenchmarks in this suite., each 
exploring a different set of heap allocator characteris-
tics. 

o Benchmark 1 examines the heap allocator’s abil-
ity to use multiple threads and processors effi-
ciently. 

o Benchmark 2 focuses on the heap allocator’s 
ability to prevent orphaned objects and fragmen-
tation due to multiple heaps. 

o Benchmark 3 tests the heap allocator’s ability to 
reduce false cache line sharing (cache ping-
ponging) on SMP hardware. 

All benchmark programs are available on the project 
website. 

4.1. Benchmark 1 

We created a simple multithreaded program that in-
vokes malloc()  and free()  in a loop, and times 
the results. To measure the effects of multithreading 
on heap accesses, we compare the results of running 
this program on a single process with the results of 
two processes running this program on a dual proces-
sor, and one process running this test in two threads 
on a dual processor. This tells us how well malloc()  
scales with multiple threads accessing the same li-
brary and heaps. 

We expect that, if a malloc()  implementation is 
efficient, the two thread run will work as hard as the 
two process run. If it’s not efficient, the two process 
run may perform well, but the two thread run will 
perform badly. Typically we’ve found that in a poorly 
performing implementation, a high context switch 
count as a result of contention for mutexes protecting 
the heap and other shared resources wastes a substan-
tial amount of kernel time. 

We are also interested in the behavior of malloc()  
and the system on which it’s running as we increase 
the number of threads past the number of physical 
CPUs present in the system. Many researchers con-
jecture that the most efficient way to run heavily 
loaded servers is to keep the ratio of busy threads to 
physical CPUs as close to 1:1 as possible. We’d like 
to know the penalty as the ratio increases. 

For each test, the benchmark makes 10 million bal-
anced malloc()  and free()  requests, for the fol-
lowing reasons: 

1. Increasing the sample size increases the statisti-
cal significance of the average results. 

2. Running the test over a longer time allows 
elapsed time measurements with greater preci-
sion because short timings are hard to measure 
precisely. 

3. Start-up costs (e.g. library initialization) are am-
ortized over a larger number of requests, and 
thus disappear into the noise. 

4.2. Benchmark 2 

While many multithreaded applications use and free 
heap-allocated objects in the same thread, network 
servers sometimes free heap-allocated memory in a 
different thread than it was allocated. Larson and 
Krishnan have simulated this behavior with a bench-
mark that we use here in a simplified form [5]. The 
original benchmark uses a uniform random distribu-
tion of request sizes, but we use a single request size. 
This simplifies the benchmark logic and the interpre-
tation of the results [9]. Also server applications tend 
to use only a few request sizes [4]. Larson’s goal was 
to create multiple stresses on allocators, but we sim-
ply want to force the allocator to leak memory. 

Our single thread benchmark starts by allocating a 
fixed number of objects from the heap, saving their 
addresses in an array. The array is passed to a freshly 
created thread, whose job is to replace a random sub-
set of the originally allocated objects one at a time, 
create a new thread, then pass the array to it and exit. 
Each new thread is referred to as a “round.” After 
each run completes we record the number of minor 
page faults, which is proportional to the number of 
pages required by the allocator during the benchmark 
run. Linux records a minor page fault for each page 
allocated with sbrk() . 

The multithread benchmark is much the same, except 
there are several threads concurrently replacing ob-
jects and creating new threads. In this way, threads 
obtain storage allocated in another thread, and must 
operate on this storage while the heap is under con-
tention; these are the two conditions necessary to 
cause heap leakage. We observe this indirectly with 
the “minor page fault” statistic returned by the time  
command. 

Notice that each thread replaces a single object at a 
time. This fixes the total amount of heap in use dur-
ing a benchmark run between mn and m(n-1) ob-
jects, where m is the number of threads and n is the 
fixed number of pre-allocated objects. Now it is clear 
why we use a fixed instead of a randomly distributed 
object size. Because the benchmark fixes the total 
amount of heap storage in use at any given time, a 
perfect allocator should produce the same number of 
minor page faults for each run. Real allocators, how-
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ever, show a wide variation in their final heap size 
because of heap leakage. 

4.3. Benchmark 3 

This benchmark tests how well the heap allocator 
places data (i.e., chooses addresses for data objects) 
with regard to CPU cache efficiency on multiproces-
sor machines. If heap objects smaller than a cache 
line are placed in the same cache line, or if two ob-
jects overlap in a single cache line, the cache line will 
“ping-pong” between processor caches if the objects 
are modified by concurrent threads running on differ-
ent processors. 

Cache behavior is difficult to measure. Other studies 
in this area often use trace-driven simulations and 
synthetic allocators to discover cache behavior [3]. 
This is because applications can use heap objects in a 
variety of ways, blurring the impact and causes of 
cache misses and page faults. 

Our goal is to create a simple, portable benchmark 
that indicates whether cache ping-ponging may result 
from heap allocated objects shared between multiple 
threads. To test for false sharing, we allocate n k-
sized objects, where n is a number less than or equal 
to the number of physical processors in the system, 
and k is a number close to the cache line size of the 
system’s CPUs. We pass one allocated object to each 
of n threads. Each thread then writes into its object a 
fixed number of times. The thread writes at the front 
and the back of the object, in case the object overlaps 
cache lines. We then wait for all threads to finish, 
recording the elapsed time for all threads to complete. 
We run this test for increasing object sizes. 

Note that this basic alignment test does not expose 
slow-downs due to cache ping-ponging of variables 
internal to malloc() , such as free list data structures 
or boundary tags. 

5. Specific tests and results 

In this section we describe our benchmark measure-
ments, and discuss the results of each test. 

5.1. Benchmark 1 results and discussion 

This basic test compares the performance of two 
threads sharing the same C library with the perform-
ance of two threads using their own separate in-
stances of the C library. As discussed above, we hope 
to find out if sharing a C library (and thus “sharing” 
the heap) scales as well as using separate instances of 
the C library. We find that the shared test performs 
almost as well as the independent test, losing only 
about 10% of elapsed time. We therefore expect mal-

loc()  to scale well as the number of threads sharing 
the same C library increases. 

The benchmark host for the following tests is a dual 
processor 200MHZ Pentium Pro with 128Mb of RAM 
and an Intel i440FX mainboard. The operating sys-
tem is Red Hat’s 5.1 Linux, which uses glibc 2.0.61. 
We replaced the 5.1 distribution’s kernel with kernel 
version 2.2.0-pre4. Gettimeofday() ’s resolution on 
this hardware is 2-3 microseconds. During the tests, 
the machine was at run level 5, but was otherwise 
quiescent. 

Our first test simply runs the benchmark five times in 
a single thread to show heap performance when it is 
not contended. On our hardware, ten million alloca-
tion and release requests for 512 bytes takes an aver-
age of 23.280357 seconds, with a standard deviation 
of 0.005543. 

The next test compares the run times of two concur-
rent threads that share a heap with the run times of 
two concurrent processes that each has their own 
heap. Ideally both sets of runs should be the same on 
a dual processor machine. Each thread or process 
makes 10 million allocation and free requests for 512 
bytes each. The averages reported in Table 1 are over 
three test runs. 

During this test, top  showed that both threads were 
using between 98% and 99.9% of both CPUs. System 
(kernel) time was between 0.7% and 1.1% total. 

We now examine the behavior of malloc()  as we 
increase the number of working threads past the num-
ber of physical CPUs in the system. In this series of 
tests, each thread makes 10 million allocate/free 
requests for an 8192 byte object. Each reported aver-
age is taken over five benchmark runs. 

                                                 
1 Note that glibc 2.0 and 2.1 use nearly identical versions of 
malloc() . 

 thread 1, seconds thread 2, seconds 
Avg 26.040385, 

s=0.013097 
26.063408, 
s=0.006530 

 

 process 1, seconds process 2, seconds 
Avg 23.309635, 

s=0.014586 
23.314431, 
s=0.014267 

TABLE 1. Average elapsed time for single heap per proc-
ess versus multiple heaps per process. The two-threaded 
single heap test runs almost as fast as the two-process two-
heap test, indicating acceptable heap contention. “s” is the 
standard deviation. 
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FIGURE 1. Elapsed run-time versus increasing thread 
count. Run-time increases with the expected slope as 
thread count increases, demonstrating acceptable heap con-
tention on this hardware. Error bars indicate standard de-
viation. 

Figure 1 shows that average elapsed time increases 
linearly with the number of threads at a constant 
slope of m/n, where n is the number of processors (n 
= 2 in our case) and m is the number of seconds for a 
single thread run (m = 23 seconds in our case). 

Lastly we measure the linearity of the relationship we 
discovered in the last tests over a much greater num-
ber of threads. This tells us how the library scales 
with increasing thread count. This table contains av-
erage elapsed time measurements (in seconds) for 
each thread making 10 million requests of 4100 bytes 
each. 
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FIGURE 2. Elapsed run-time with larger thread count. 
On dual processor hardware, increasing thread counts have 
little effect on heap contention. 

Figure 2 illustrates that the increase in elapsed time is 
fairly linear with increasing thread count, for counts 
much larger than the number of configured physical 
CPUs on the system. 

Solaris tests 

We ran the same series of tests on Solaris 2.6 (patch 
level 105181-16) running on a two CPU 400Mhz Sun 
Ultra AX-MP with 2G of RAM. The machine was 
otherwise quiescent during these runs. 

Single thread timing 

Single thread run time for this test averages 
6.0535318 seconds, with a standard deviation of 
0.0328919. 

Two-thread v. Two-process 

Each thread or process makes 10 million requests of 
512 bytes each. Table 2 shows the results of two 
threads running concurrently accessing the same heap 
and two processes running concurrently on two inde-
pendent heaps. As before, these averages were ob-
tained over three benchmark runs. 

Here we observe massive heap contention. The two-
thread run is almost an order of magnitude worse 
than the two-process run. While the Solaris heap al-
locator is the fastest single thread allocator (6 second 
runs on 400MHZ UltraSPARC II CPUs versus 10 
second runs on 500MHZ Pentium III CPUs, described 
below), it clearly does not scale over multiple proces-
sors. 

Thread scalability 

In this test, each thread makes 10 million requests of 
8192 bytes. The averages are over five runs for each 
thread count. 

 thread 1, seconds thread 2, seconds 
Avg 54.272971, 

s=1.146125 
54.407517, 
s=0.833170 

 

 process 1, seconds process 2, seconds 
Avg 6.024991, 

s=0.018403 
6.053607, 
s=0.054665 

TABLE 2. Average elapsed time for single heap per process 
versus multiple heaps per process, Solaris. The shared single 
heap test is almost an order of magnitude worse than the test 
using separate heaps. 
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FIGURE 3. Elapsed run time versus increasing thread 
count, Solaris. The slope of this graph far exceeds the 
expected slope of 6 seconds divided by 2 processors. Lock 
contention is clearly a limiting factor when using a UP 
allocator on SMP systems. 

Running five threads concurrently on dual processor 
Sun hardware appears to be twenty times more ex-
pensive than running a single thread. 

Adding more CPUs 

In this section, we present results from the same tests 
run on a machine with four CPUs running Linux. The 
hardware used in these tests is an Intel SC450NX 
with 512Mb of RAM and four 500MHZ Xeon Pen-
tium III CPUs with 512Kb of L2 cache each. We 
loaded this machine with the Red Hat 6.1 distribu-
tion, and upgraded it’s kernel to 2.2.13. It is other-
wise quiescent during these tests. 

Single thread timing 

Single thread elapsed run time for this test averages 
10.393376 seconds, with a standard deviation of 
0.001243. 

Two-thread v. Two-process 

As before, this test compares the elapsed time of two 
threads sharing a heap with the elapsed time of two 
processes with independent heaps. 

We observe in Table 3 that there is some added ex-
pense to using multiple threads instead of multiple 
processes, although it is about 20% on four processor 
hardware. While this could be improved, it is not as 
bad as an order of magnitude slowdown. 

Thread scalability 

Each thread makes 10 million requests of 8192 bytes. 
Each test is run five times. 
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FIGURE 4. Elapsed run time versus increasing thread 
count, 4-way Linux. Scalability on 4 processor hardware is 
very good. 

Run Time in seconds 
1 12.587744 
2 12.587753 
3 14.862689 
4 12.578893 
5 12.577891 
6 14.844941 
7 12.579065 
8 12.578305 
9 14.841121 
10 12.576630 
11 12.577823 
12 14.836253 
13 12.584923 
14 12.584535 
15 14.856683 

TABLE 4. Variance in elapsed run time, 4-way Linux. Note 
that most runs have a 12.6 second elapsed time. Only a few 
have elapsed time of about 14.8, pushing the average elapsed 
time higher. This variance is thought to be due to allocator 
variables that are improperly aligned with regard to hardware 
caches. 

 thread 1, 
seconds 

thread 2, 
seconds 

Avg 12.393250, 
s=0.000422 

12.397936, 
s=0.000432 

 

 process 1, 
seconds 

process 2, 
seconds 

Avg 10.394361, 
s=0.000822 

10.395771, 
s=0.000890 

TABLE 3. Average elapsed time for single heap per 
process versus multiple heaps per process, 4-way 
Linux.  More processors mean slightly more heap conten-
tion. Elapsed time for shared heap test is only 20% slower 
than for test using separate heaps. 
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Notice that the average elapsed time jumps twice: 
once when going from one thread to multiple threads, 
and once when there are more threads than there are 
physical CPUs in the system. 

A closer examination of the raw data for the three-
thread run, shown in Table 4, illustrates an interesting 
variance in the elapsed time results. Sometimes the 
threads complete in 12.6 seconds, and sometimes 
they run for about 14.8 seconds. We see similar vari-
ances in the runs with more threads. These are likely 
due to what Larson refers to as cache sloshing. When 
allocator variables, such as free list pointers or condi-
tion variables, are poorly placed in memory, they 
cause cache lines to bounce between CPU caches. In 
this test, this appears to cause sporadic 20% slow-
downs in the runs. We explore this phenomenon fur-
ther in the section describing benchmark 3. 

5.2 Benchmark 2 results and discussion 

For benchmark 2, our first benchmark system is a 
custom-built 400MHZ AMD K6-2 with 64Mb of 
RAM. Our system is loaded with the Red Hat 6.0 
distribution, running kernel 2.2.14. During these 
tests, it is running a normal workstation load consist-
ing of several xterms, a gvim  session, and Netscape 
Navigator. 

We choose 40 bytes as our fixed request size. Other 
studies have shown that network servers use only a 
few object sizes, and they are in the neighborhood of 
40 bytes [4, 5]. Our array contains 10,000 objects per 
thread. We vary the number of worker thread recrea-
tions (rounds) from 1 to 8. One round means the main 
thread starts worker threads that stop when they are 
finished. Two rounds mean the main thread creates 
worker threads, which, when they are finished, each 
create a new thread, which finish and stop, and so on. 

Our first test runs a single thread while increasing the 
number of rounds in each run. This test demonstrates 
that, when there is no heap contention, memory utili-
zation shows no variation as the memory objects are 
passed among threads. It also indicates how much 
memory is consumed by a single 
pthread_create()  so we may subtract that from 
later benchmark runs. 

Based on our single thread test results, we formulate 
a minimum page fault count predictor as follows. A 
single thread, single round run that allocates a one 
block array requires 14 page faults. Allocating 10,000 
blocks per thread requires 127.6 pages (this is 40,000 
bytes for each array, and 400,000 bytes for the ob-
jects themselves, plus a constant for memory man-
agement). Finally, each round requires an additional 
1.1 pages per thread. 
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FIGURE 5. Number of rounds vs. number of minor page 
faults. For our single thread run, each round (creation of 
another thread) requires a single minor page fault over and 
above heap management needs. Thus each 
pthread_create()  requires one extra page in the heap. 

Our lower bound page fault count predictor becomes: 

mpf lower = 14 + 1.1tr  + 127.6t 

Where mpf lower is the lower bound minor page fault 
count, t is the initial number of threads and r  is the 
number of test rounds. 

The next test increases the number of threads from 
one to three to see how multithreading changes the 
behavior of the allocator. As before, the test is run 
five times for each fixed round count. Average. 
,minimum, and maximum minor page fault results are 
reported in Figure 6. 

We predict page fault count to increase by three (one 
for each thread) for each additional test round. In 
fact, at the beginning of the series shown in Figure 6, 
the minimum page fault count for each run series 
starts at 399 and increases by 3 for each additional 
round, as predicted. However, large variances in the 
number of minor page faults and larger minimum 
page fault counts than predicted indicate that some 
heap leakage occurs as round count increases. 

The relative difference between the minimum and 
maximum page fault count in each test ranges be-
tween 25% and 50% of the measured minimum page 
fault count. As the number of test rounds increases, 
this difference becomes less, suggesting that over 
time, bad allocator behavior is mitigated by statistical 
opportunity. 
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FIGURE 6. Number of rounds vs. number of minor page 
faults, three thread run. This run shows marked variances 
resulting from heap leakage. Heap size grows faster than 
we predicted based on what is consumed, per-thread, in the 
first test series. 

Our final uniprocessor test increases the thread count 
to seven. We want to see if increasing thread count 
causes larger variations or if they stay the same. 
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FIGURE 7. Number of rounds vs. number of minor page 
faults, seven thread run. Inter-run heap size variations 
appear to decrease with increasing thread count. 

Figure 7 shows that while minimum page fault count 
is always larger than the predicted lower bound, the 
relative difference between minimum and maximum 
page fault counts is less in the seven thread run than 
in the three thread run, ranging from 9% to 18% of 
the minimum page fault count. This suggests that as 
workload increases (both thread concurrency and 
thread recycling) statistical behavior levels out im-
balances between subheaps. 

We try our seven thread run on an Intel SC450NX 
with 512Mb of RAM and four 500MHZ Xeon Pen-
tium III CPUs with 512Kb of L2 cache each. We 
loaded this machine with the Red Hat 6.1 distribu-
tion, and upgraded it’s kernel to 2.2.14. This test 

gives an indication of how heap behavior changes 
when there is real thread concurrency. We step up the 
number of rounds to force behavior that might expose 
itself after a server application has been running over 
a long period. 
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FIGURE 8. Number of rounds vs. number of minor page 
faults, seven threads on four CPUs. The slope of the ac-
tual page fault count follows our predictor function, so the 
allocator is behaving reasonably well. 

Even on a four processor server, malloc()  on Linux 
appears to behave well. The minor page fault count 
averaged over five runs increases with approximately 
the same slope as our predictor function. The actual 
values are offset from the predicted values by nearly 
a constant. While there is some unpredictability in the 
amount of heap required for each test run, the heap 
doesn’t appear to grow in an unbounded manner as 
the amount of heap activity increases. 

5.3 Benchmark 3 results and discussion 

Benchmark 3 was run on our Intel SC450NX server 
containing four 500MHZ Pentium III CPUs, each 
with 512K of Level 2 cache, a typical SMP server 
configuration. The benchmark starts one or more 
threads that attempt to write into a heap-allocated 
object 100 million times. A single thread running the 
benchmark on this hardware completes in 2.102 to 
2.103 seconds. This result is independent of object 
size because we write only a single byte at the front 
and back of each object. 

Figure 9 compares the elapsed time of the benchmark 
against properly cache-aligned objects versus the 
same benchmark with arbitrarily aligned objects. Two 
threads compete with each other in this test. The test 
runs on object sizes between three and 52 bytes in 
order to vary the alignment of the objects with re-
spect to hardware cache lines. 
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FIGURE 9. Cache sharing between two threads. Cache 
line sharing results in twice the amount of elapsed time per 
write operation. From this test, it is clear that heap alloca-
tors that prevent cache line sharing can boost application 
performance. 

Here we clearly see that cache line sharing between 
two CPUs can cause a slow-down of more than half 
when the object is being concurrently modified. In 
other words, if two objects happen to overlap in a 
cache line, it can take more than twice as long for 
writes into each object to complete. Figure 10 shows 
the same test with the thread count increased from 
two to three. While each object’s cache line is poten-
tially shared between only two CPUs at a time, there 
is still a large penalty. 
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FIGURE 10. Cache sharing between three threads. This 
test shows the impact of false cache sharing among three 
processors due to improper heap object alignment. 

Figure 11 depicts the same test with thread count 
increased from three to four. 

Four threads modifying independent cache lines on 
this hardware can run almost as fast as a single 
thread. As soon as cache line sharing occurs, write 
performance is greatly reduced, sometimes by as 
much as a factor of four. 
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FIGURE 11. Cache sharing between four threads. This 
test shows large elapsed time variances as well as substan-
tial slowdowns in write operations. 

The precise results obtained in the tests that used 
normally aligned objects are not repeatable because 
the addresses of objects returned by malloc()  are 
somewhat nondeterministic. However we observe 
that some of the time objects are aligned in such a 
way that false sharing occurs and application per-
formance suffers. 

While it is common wisdom that cache line sharing 
can affect application behavior, these tests demon-
strate conclusively that this impact can be substantial. 
We note that this test artificially highlights alignment 
problems. Real applications will likely not be as pro-
foundly affected by object misalignment. 

6. Conclusions and Future Work 

Our tests show that the malloc()  implementation 
used in glibc 2.0 and 2.1 handles increasing numbers 
of threads effectively while adding little overhead, 
even for a large number of threads. We find expected 
performance curves as offered load increased. Other 
studies, such as Berger and Blumofe, that have in-
creased the number of CPUs in their systems far past 
four have found that glibc malloc() ’s performance 
degrades for large numbers of CPUs [1]. However for 
the two- and four- CPU systems commonly used in 
today’s server farms, glibc’s malloc()  performs 
acceptably well. 

Many allocators cause unbounded heap growth when 
an application allocates objects in one thread and 
releases them in another. Our benchmarks show that, 
even under contention, glibc’s allocator becomes less 
efficient, but doesn’t show pathological heap growth. 

We also note potential slow-downs that can result 
from poor alignment of heap objects with respect to 
the Level 1 CPU cache line size. These slow-downs 
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can be mitigated either by careful application design 
or by accepting a heap allocator that aligns objects 
automatically to cache line boundaries, and thereby 
increases heap fragmentation. Application developers 
might make use of two different allocation mecha-
nisms: one for thread-private objects that provides 
tight alignment to reduce fragmentation and memory 
utilization, and one for objects that may be shared 
among threads that uses cache-aware alignment to 
reduce false cache sharing. 

In the future, we plan to run tests that include two 
important areas not considered in this paper. Heap 
allocator latency should show little or no change as 
network servers remain up over time. We plan to cre-
ate a benchmark to measure latency changes over 
server uptime. We also plan to test our assumptions 
about the allocation patterns of large-scale network 
servers by instrumenting heavily used servers to gen-
erate trace data. 

Wilson, Zorn, and many others have spent consider-
able effort optimizing the basic algorithms for single 
threaded allocation. However, a close examination of 
the performance relationship between the C library’s 
memory allocator and OS primitives such as 
mutexes, mmap() , and sbrk()  might show some 
interesting trade-offs. 

Finally, we plan to examine the performance and 
scalability of kernel-level memory allocators with 
these same criteria in mind. The kernel’s slab alloca-
tor uses a single spin lock in each slab cache to con-
trol access among multiple threads. This has the same 
performance implications as using a single spin lock 
at the user level. 
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