

CITI Technical Report 01-12

Linux NFS Client Write Performance

Chuck Lever, Network Appliance, Incorporated
<cel@netapp.com>

Peter Honeyman, CITI, University of Michigan
<honey@citi.umich.edu>

ABSTRACT

We introduce a simple sequential write benchmark and use it to improve the
Linux NFS client’s write performance. We reduce the latency of the write()
system call, improve SMP write performance, and reduce kernel CPU process-
ing during sequential writes. Memory write throughput to NFS files improves by
more than a factor of three.

October 2, 2001

 Center for Information Technology Integration
 University of Michigan
 535 West William Street
 Ann Arbor, MI 48103-4943

This document was written as part of the Linux Scalability Project at CITI, U-M. The work described here was sup-
ported via a grant from Network Appliance, Incorporated. For more information, see our home page.

If you have comments or suggestions, email <nfs-perf@citi.umich.edu> .

Copyright © 2001 by the Regents of the University of Michigan, and by Network Appliance, Inc. All rights reserved.

Trademarked material referenced in this document is copyright by its respective owner.

Linux NFS Client Write Performance

Chuck Lever, Network Appliance, Incorporated
<cel@netapp.com>

Peter Honeyman, CITI, University of Michigan
<honey@citi.umich.edu>

1. Introduction

As Linux becomes a permanent fixture of many corpo-
rate infrastructures, the performance of its Network File
System client emerges as critical to the success of com-
plex corporate applications such as database and mail
services [4, 5]. Efficient access to shared data in labora-
tories that make extensive use of Linux workstations
also depends on good NFS client performance.

To understand NFS client performance issues, we de-
veloped a simple file system benchmark that measures
write latency and throughput. Our interest is not simply
to identify specific problems in the Linux client, but
also to understand general challenges to NFS client
performance measurement. In this paper, we describe
the benchmark and use it to identify several opportuni-
ties to improve application write performance to files
stored in NFS.

The remainder of this paper is organized as follows. In
Section 2, we detail the development of the benchmark
and identify issues that distinguish client from server
performance benchmarking. In Section 3, we use this
benchmark to expose and correct latencies in the Linux
write() system call. In Section 4, we outline future
areas of exploration and conclude the paper.

2. Benchmarking NFS clients

In this section we develop a rationale for a simple se-
quential write benchmark based on Bonnie [1]. This
benchmark was developed on specialized hardware
(described later in this report) that includes SMP Linux
NFS clients connected to a prototype Network Appli-
ance F85 filer via gigabit Ethernet.

2.1. Client versus Server benchmarking

NFS is a “client makes right” design: the client is re-
sponsible for ordering bytes, managing network and
server congestion, and otherwise handling the complex
issues of implementing a distributed file system. This
leaves the server simple and scalable [7, 8]. Satyanara-
yanan, et al. [5] justifies this architecture by pointing
out that in typical client/server distributed systems,
“workstations have cycles to burn.” Consequently, an
NFS client tends to be complex, which interferes with
performance and correct behavior.

Benchmarking NFS servers is fairly well understood. A
typical NFS server benchmark is SPEC SFS [6]. To
remove client behavioral and performance variations
from benchmark results, SPEC SFS uses its own user-
space NFS client to access NFS servers under test.
Likewise, NFS client performance depends on the per-
formance of networks and servers, but it is problematic
to operate an NFS client without any server. A slow
server or network can cause application performance
problems. As we demonstrate, faster server perform-
ance can also hamper client performance on naïve
benchmarks. The relationship between client and server
must be carefully considered when dissecting client
performance issues.

One way to measure client performance is to eliminate
performance bottlenecks from downstream components,
using fast networking technologies and non-volatile
RAM on the server, and to push the client as hard as
possible to see what breaks. Another approach com-
pares client performance and behavior under more typi-
cal workloads across a variety of networking conditions
and server types.

We use both approaches in this study. Our hardware test
bed consists of high-performance SMP Linux client
hardware connected, via a high-performance gigabit
Ethernet switch, to a prototype Network Appliance F85

 - 1 -

Lever, Honeyman

filer. Also included in our test bed are a four CPU
Linux server, and several single-CPU Solaris NFS cli-
ents. Comparing behavior and performance among
these clients and servers exposes performance issues
that might otherwise escape attention.

2.2. Benchmarking on Linux

Our experience with performance measurement on
Linux has taught us to expect large variations in per-
formance between individual benchmark runs on the
same O/S version and software and hardware configura-
tions.

Other benchmarks run by the authors in the past have
revealed inexplicable variations in performance of sev-
eral parts of the Linux kernel, including the virtual
memory subsystem, the scheduler, and parts of the sys-
tem whose correctness depend on the global kernel
lock. There are often one or more outlying data points
that skew average results, often masking relevant
behavior. Such variations are not common in commer-
cial operating systems such as Solaris. The best
benchmark results on Linux are excellent, but they are
too often hampered by the outliers, leaving only moder-
ate to good performance on average. Several
measurements reported here illustrate this phenomenon.

To address this, we generally report single run results in
this paper. The “shape” of the results is typically consis-
tent from run to run, including any highly variable out-
lying results. We are most interested in trends rather
than precise measurements, noting any anomalies.

2.3. Simple write benchmark

We started by measuring the Linux NFS client with
Bonnie to understand several aspects of Linux client
performance in combination, under a simple but typical
load. We then refined our benchmark to include only a
small part of the suite of tests performed by Bonnie.

The benchmark we describe here measures sequential
write throughput. Write throughput depends on the be-
havior of the kernel’s VM, networking, and RPC layers,
and offers a generic picture of file system performance.
In addition, raw write performance is important to many
typical real world workloads.

Both read and write operations are network-intensive
because data is transmitted along with these requests.
However, client O/S caching moderates the perform-
ance of application read requests on the client; writes
reflect network efficiencies and latencies more directly
[4]. Using sequential writes we minimize disk latency

(i.e., seek time) on the server. We considered testing
against a memory-only server, but we chose to design a
benchmark that does not require atypical server modifi-
cations. Thus we have a simple and typical application
to run on the client that exercises many of the critical
paths between client and server.

We based our benchmark program on the block sequen-
tial write portion of the Bonnie file system benchmark.
This test measures how quickly an application can write
8 KB chunks into a fresh file. Writing into a fresh file
narrows our focus to write code pathways because the
client does not read any preexisting file data from the
server to complete write requests.

Bonnie includes the final close() call in elapsed time
and throughput calculations to capture I/O that occurs
after the last write(). However, for many local fi le
systems, dirty data remains in the system’s data cache
after the final close() operation. To make fair com-
parisons between NFS (which always flushes com-
pletely before last close) and local file systems (which
may delay flushing), our benchmark reports three
throughput results: one for all writes, one for the subse-
quent flush operation, and one for the final close opera-
tion. Each result is a throughput measurement reported
in megabytes per second (MBps), and is calculated by
dividing the total number of bytes written by the
amount of time from the beginning of the benchmark
until just after the respective operation (writes, flush,
close).

Our benchmark also reports system call latency. One
can calculate throughput by dividing average system
call latency into the average byte size of each request.
Reducing system call latency has immediate positive
effects on throughput.

However, to get to the heart of system call misbehavior,
it is sometimes necessary to record actual, and not av-
erage latency. As we demonstrate, jitter (variation in
latency from one call to the next) drastically degrades
data throughput in our test, and is easily revealed when
examining actual results rather than computed averages.

3. Write latencies in the Linux NFS client

We now report results of our benchmark on an SMP
Linux client against files on a Linux NFS server and a
Network Appliance filer. Our goal is to identify and
correct write performance problems.

 - 2 -

 Linux NFS write performance

3.1. Systems under test

In this section, we document the systems used during
these tests.

Client system: Our client software runs on a dual proc-
essor Pentium III system based on the ServerWorks III
LE chipset. The processors are 933 MHz FC-PGA
packages with 256 KB of level 2 cache. The front-side
bus and SDRAM speed is 133 MHz. There is 256 MB
of PC133 registered SDRAM in this system. The client
has one 30GB IBM Deskstar 70GXP EIDE UDMA100
drive. Because of limitations in the ServerWorks south
bridge, the IDE controller runs in multiword DMA
mode 2. The ServerWorks chipset supports two 64-
bit/66 MHz PCI slots; there is a Netgear GA 620T gi-
gabit Ethernet NIC in one of these that supports
1000base-T (copper). The Netgear card uses the Alteon
Tigon II chipset. This system runs a Linux 2.4.4 kernel
with the Red Hat 7.1 distribution.

NetApp filer: The Network Appliance filer is a proto-
type F85 with eighteen 36 GB Seagate 336704LC SCSI
drives. The F85 has a single 833 MHz FC-PGA Pen-
tium III with 256 KB of level 2 cache, 256 MB of
RAM, and 64 MB of NVRAM. The system supports
several 64-bit/66 MHz PCI slots that contain a Q-Logic
ISP 1280 SCSI controller and a fiber optic gigabit
Ethernet card, probably based on the Al teon chipset.
Data stored on this system is contained in RAID 4 vol-
umes. This system runs a pre-release of Network Ap-
pliance’s DATA ONTAP operating system1. Special
options enabled on the test volume include the
no_atime_update option, which eliminates seek-
intensive inode write activity during workloads that
consist mostly of read requests. The test volume con-
tains eight disks. Snapshots are enabled during these
tests.

Linux server: Our Linux NFS server is a four-way Intel
system based on the i450NX mainboard. There are four
500 MHz Katmai Pentium III CPUs, each with 512 KB
of level 2 cache. The front-side bus and SDRAM speeds
are 133 MHz. The system contains 512 MB of SDRAM
and six Seagate SCSI LVD drives of varying model,
controlled by a Symbios 53c896 SCSI controller. The
system is network-connected via a Netgear GA 620T
1000base-T Ethernet NIC installed in a 32-bit/33 MHz
PCI slot. This system runs a Linux 2.4.4 kernel with the
Red Hat 7.1 distribution. NFS files stored on this sys-
tem reside on a single physical disk (no RAID).

1 Benchmark results produced on prototype hardware and
software do not necessarily reflect the performance of any
released product.

0

50000

100000

150000

200000

0 50 100 150 200 250 300 350 400 450 500

w
rit

e
th

ro
ug

hp
ut

 (
K

B
/s

ec
)

file size (MB)

Figure 1 - Local v. NFS write throughput

Linux NFS server
Netapp filer

local ext2

Figure 1. Local v. NFS memory write performance.
Write throughput is measured for test files between
the sizes of 25 MB and 450 MB. Note that the large
peak in memory write performance for local files does
not appear for NFS files. NFS memory write through-
put remains constrained to network/server through-
put.

These systems are connected to a single Extreme Net-
works Summit7i Ethernet switch. The copper connec-
tions are made via CAT6 UTP cabling, and the fiber
connection to the filer is standard multi-mode. Jumbo
packets are not enabled on the switch or on any of the
systems under test during these benchmarks. Unless
otherwise mentioned, all networking speeds are fixed at
one Gbps, full duplex.

Both the Network Appliance filer and the Linux NFS
server are mounted with NFS version 3,
rsize=wsize=8192. The Network Lock Manager is dis-
abled.

3.2. Local versus network write performance

To begin, we compare the performance of sequential
writes into a local file system (ext2 on the client) to the
performance of sequential writes into a networked file
system (NFS served from the filer and from the Linux
NFS server). Ext2 memory write performance is a tar-
get for NFS client memory write performance.

This test calculates write throughput by dividing the
total number of bytes written by the elapsed time re-
quired for all of the write() system calls to com-
plete. Figure 1 shows throughput results that include
only write calls, not including the final flush() and
close() calls included. The latter results are not in-
cluded because ext2 usually does not flush after
close().

 - 3 -

Lever, Honeyman

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000

ac
tu

al
 w

rit
e(

)
sy

st
em

 c
al

l l
at

en
cy

 (
m

ill
is

ec
s)

count of write() system calls

Figure 2 - Actual write latency over time

Linux 2.4.4 against NetApp filer

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000 6000 7000

ac
tu

al
 w

rit
e(

)
sy

st
em

 c
al

l l
at

en
cy

 (
m

ill
is

ec
s)

count of write() system calls

Figure 3 - Actual write latency over time (no flushing)

Linux 2.4.4 against NetApp filer

Figure 2. Write() system call latency. This figure
shows the first 1000 write system calls during a 40
MB benchmark run. Periodically, write system calls
take more than 19 milliseconds, increasing the mean
latency, and thus overall throughput.

Writes to local files are very fast while there is still
memory available to cache dirty data. Yet, the NFS cli-
ent constrains write throughput to network speeds. In
the next section, we explore this limitation.

3.3. Periodic latency spikes

Early in our testing we discovered that write() sys-
tem call latency varies wildly but periodically. To ex-
plore write() system call latency, we execute our
benchmark against a single 40 MB file residing on the
Network Appliance filer, and report latency for
write() system calls during the test. A typical result
is shown in Figure 2.

While most writes complete within 300 microseconds,
there is a periodic jump in latency, approximately every
85 system calls. The latency for these slow system calls
is over 19 milliseconds. While there are relatively few
of these slow calls (37 out of 2560 calls in this run, or
about 1.4%), they inflate the mean latency for the run
from 139.6 microseconds per call (excluding the 37
calls exceeding 1 millisecond) to 482.1 microseconds
per call, multiplying the mean write() system call
latency by 3.45.

We observed similar results with both the Network Ap-
pliance filer and the Linux NFS server. The latency
spikes do not appear in write requests on the wire.

Figure 3. Write() system call latency without peri-
odic flushes. We show an entire benchmark run with a
100 MB file. The latency axis is the same as Figure 2.
The periodic spikes in write system call latency are
gone, but average latency grows worse over time.

Eliminating spiky latency behavior seems likely to
lower average write latency and improve write through-
put. We instrumented the Linux NFS client’s write code
path to record the time required for each step of a
write() system call. We use the Linux kernel’s
do_gettimeofday() kernel function to capture
wall clock time on either side of a target section of
code, then record the timings in the kernel log.

We discovered several places where the Linux NFS
client delays writing threads to keep memory usage in
check. It delays writers when the number of pending
write requests for an inode or mounted file system ex-
ceeds fixed limits. When the per-inode request count
grows larger than MAX_REQUEST_SOFT (whose value
is 192 in the 2.4.4 kernel) the NFS client forces the
writer thread to schedule all pending writes for that
inode and wait for their completion before completing
the current request. When the per-mount request count
grows larger than MAX_REQUEST_HARD (whose value
is 256 in the 2.4.4 kernel) the NFS client puts any
thread writing to that file system to sleep until another
thread signals there are fewer than
MAX_REQUEST_HARD requests. Each internal write
request is no larger than a page.

Every system call in our test generates two write re-
quests (8192 bytes is two pages, thus two requests).
After the test makes 90 write()calls, at least 180
internal requests are queued on the test file’s inode. If
the server is lagging, there may be requests from writes
older than the past 90 system calls. Therefore, every 80
to 90 system calls, the client flushes the inode’s write

 - 4 -

 Linux NFS write performance

request queue. This is the cause of the spiky latency
seen in Figure 2.

In the Linux NFS client, there is a separate daemon that
flushes cached write requests behind a writing applica-
tion, called nfs_flushd. Ideally, the client should
cache as many requests as it can in available memory
[3]. There is no need to flush write requests unless the
application requests it (via fsync() or close() for
example), or unless the client cannot allocate more
memory for new requests, in which case the VFS layer
blocks the writer.

After removing the redundant flushing logic from the
client, we ran our benchmark again. We see in Figure 3
that this eliminates the periodic latency spikes. How-
ever, mean latency does not improve: for the entire run
(6400 writes) the average latency is 484.7 microsec-
onds. The figure shows that latency increases over time.
This suggests that as write requests build up in the cli-
ent, data structure traversal becomes a performance-
limiting factor.

3.4. List scans and sequential write performance

Experience tells us that scalability problems are often
the result of lengthy data structure traversals. To estab-
lish whether data structure traversal limits throughput in
this case, we use a kernel-profiling tool that provides a
sample-driven histogram of kernel execution that pin-
points areas of heavy CPU usage in the kernel.

The profiler reveals two functions in the NFS client that
consume significant CPU resources during the bench-
mark run: nfs_find_request() and
nfs_update_request(), both of which use the
inline function _nfs_find_request(). This
helper function scans a sorted list of an inode’s write
requests to find a request that matches an application’s
current write request. The list is maintained in order of
increasing page offset in the file.

Removing periodic write request flushing makes this
per-inode list much longer. The sequential nature of the
benchmark causes the client to traverse completely the
list during each write system call, only to find no
matching request, whereupon the client adds the new
request to the end of the list.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000 6000 7000

w
rit

e
la

te
nc

y
in

 m
ill

is
ec

on
ds

 p
er

 c
al

l

count of write() system calls

Figure 4 - Actual write latency over time (scalable lists)

Linux 2.4.4 against NetApp filer

Figure 4. Write latency with scalable data struc-
tures. Write latency remains low even as the number
of outstanding requests increases for the entirety of
this benchmark run against a 100 MB file. For com-
parison, the latency axis is the same as in Figures 2
and 3.

To correct this scalability defect, we implemented a
hash table, similar to other hash tables in the Linux ker-
nel, to manage the client’s outstanding write requests.
This hash table supplements the per-inode write request
list. Finding a pending write request is now much faster,
at a memory cost of eight bytes per request and eight
bytes per inode.

The Linux VFS layer passes write requests no larger
than a page to file systems, one at a time. Before the
NFS client builds an RPC request, it maintains these
page write requests on a per-inode list, ordered by page
offset. Our modification inserts requests into a hash
table based on the requesting inode and the page offset
of the request. All requests to the same page in the same
inode are kept in the same hash bucket, so any overlap-
ping requests are detected by searching all the requests
in a single bucket (the client usually caches only a sin-
gle write request per page to maintain write ordering, so
this is normally not an issue). Write requests are coa-
lesced into wsize chunks just before the client gener-
ates write RPCs.

We see the improvement in Figure 4. Write system call
latency during this run averages 136.9 microseconds
per call, about the same as the mean for the original
2.4.4 client when latency spikes are excluded (see Fig-
ure 2). The sustained memory throughput of our se-
quential write benchmark is now almost 115 MBps,
compared to 28 MBps in Figure 1 for a 100 MB file.

 - 5 -

Lever, Honeyman

Figure 5 - Latency histogram, Linux 2.4.4 client

0
100
200
300
400
500
600
700
800
900

1000

0
0.0

6
0.1

2
0.1

8
0.2

4 0.3 0.3
6

0.4
2

0.4
8

Write() system call latency, in milliseconds

N
um

be
r o

f c
al

ls

Network Appliance F85 Linux 2.4 NFS server

Figure 5. Write latency against different servers.
This figure shows the latency of write calls during a
benchmark run against a 30 MB file. Both runs have
about the same minimum latency, but the filer run has
a number of calls that take longer than the Linux run.
The average latency of client memory writes increases
when a file is stored on a faster server.

The client attempts to find a matching previous write
request twice during each write() system call. Be-
fore it handles the current request, it looks for incom-
patible requests that might need to be flushed first. An
example of an incompatible request might be a request
generated by another application in a locked region
outside the current request, but on the same page; to
maintain proper write ordering, such a request needs to
be flushed before the current request. A slight addi-
tional improvement here might occur if the search for
incompatible requests was combined with the second
search for a matching request (in nfs_updatepage).

We also notice a gap of greatly reduced jitter for a few
hundred calls in the middle of Figure 4. This gap ap-
pears in several runs against the filer. A possible expla-
nation appears at the end of the next section.

3.5. Global kernel lock on SMP hardware

Using the above modifications (no extra flushing in the
write path, and a scalable hash table to track write re-
quests), we compare write throughput performance of
our client against a Network Appliance filer and against
a four-way Linux NFS server.

Figure 6 - Latency histogram, Linux 2.4.4 client

0
100
200
300
400
500
600
700
800
900

1000

0
0.0

6
0.1

2
0.1

8
0.2

4 0.3 0.3
6

0.4
2

0.4
8

Write() system call latency, in milliseconds

N
um

be
r o

f c
al

ls

Network Appliance F85 Linux 2.4 NFS Server

Figure 6. Write latency with less lock contention.
This figure shows maximum latency and latency
variation (jitter) is clearly reduced. On average, filer
writes still take longer than writes to the Linux NFS
server, but the difference is small. Minimum latency
remains roughly the same, suggesting that latency
variation, in this case, is the result of lock contention.

During a typical benchmark run with a 5 MB file, the
filer sustains about 38 MBps of network throughput.
Our benchmark reports it can generate about 115 MBps
of writes. On the other hand, the Linux NFS server can
sustain only 26 MBps of network throughput (less than
70% of the filer’s network throughput), yet our bench-
mark can write at a rate greater than 138 MBps (20%
faster than the filer run).

To explore this discrepancy, we again examine write
latency. Figure 5 shows a histogram of write() sys-
tem call latencies. While some of these calls take less
than 100 microseconds, many take longer. The distribu-
tion shows there are more slow calls when the file re-
sides on the faster of the two servers.

Surprisingly, the client buffers writes more efficiently
when it is sending data to a slow server. We verif ied this
result with a server on 100 Mbps Ethernet. The bench-
mark writes to memory even faster with this server,
which sustains less than 10 MBps per second of net-
work throughput. This suggests that the RPC
implementation or network layer is impeding the NFS
client’s write path.

 - 6 -

 Linux NFS write performance

 Normal No lock

NetApp filer 115 MBps 140 MBps

Linux NFS server 138 MBps 147 MBps

Table 1. Client memory write throughput, before
and after lock modification. Removing the global
kernel lock from the RPC layer causes improvement in
memory write throughput for files residing on both the
Network Appliance filer and the Linux NFS server.
Even though the Network Appliance filer is faster
than the Linux NFS server is, the client’s lack of scal-
ability slows memory write throughput to it more.

Kernel execution profiling shows that the global kernel
lock taken in nfs_commit_write() is under con-
tention on SMP hardware. The lock text section is the
fourth largest CPU consumer in the kernel, exercised
more than twice as often as the fifth largest consumer.
A profile analysis of this section shows that the lock
taken in nfs_commit_write() is the only con-
tributor to CPU time sampled in the lock section.

On SMP hardware, even a single writer thread uses
more than one CPU, because data that is not flushed
during a write() system call is flushed later by the
NFS client’s write-behind daemon, nfs_flushd.
Kernel lock contention results when both the single
writer thread and the flush daemon generate network
write requests. Nfs_flushd holds the global kernel
lock whenever it is awake and flushing requests. We
suspected the flush daemon was causing contention, but
after removing the global kernel lock from the daemon,
we found little improvement.

We therefore instrumented the write path to find out
where the most time is spent, and found that the kernel
spends 50 microseconds per write request in the net-
work layer (sock_sendmsg() is called from the
RPC layer for each RPC request). This accounts for
almost 90% of the time per request spent waiting in the
NFS client’s write path to acquire the kernel lock.

During the development of the Linux 2.3 kernel, the
global kernel lock was removed from Linux’s network
implementation. Because it is now no longer necessary
to hold the kernel lock while calling the network layer,
it is safe to release the lock before calling
sock_sendmsg(), then reacquire the lock when it
returns, as long as the RPC layer does not require that
the lock be held over the call. This allows other writing
processes to make progress while the network layer
sends the current request.

Figure 6 illustrates the improvement in write() sys-
tem call latency that occurs after removing the kernel
lock around sock_sendmsg(). During this run, our
calculated results also improve: the mean write()
system call latency drops for both benchmark runs on
the new client (127 versus 149 microseconds for the
filer, 105 versus 113 microseconds for Linux), and the
filer’s maximum latency also drops, from 381 micro-
seconds to 292 microseconds. In calculating these aver-
ages, we excluded the first data point in all four runs.
The latency for the first write() system call was al-
most a millisecond during two of the runs.

Note also that the minimum latency hardly changes.
This agrees with the idea that the latency variation is
not a code path issue, but results from the writer waiting
to acquire a resource, such as a lock.

Running our 5 MB benchmark again with the lock
modification, the benchmark application generates al-
most 140 MB of data every second (almost a 22% in-
crease over the original throughput of 115 MB per sec-
ond). The benchmark generates 147 MB per second of
data against a test file on the Linux server. Lock conten-
tion measured by the profiler is almost entirely gone.
Application write throughput for the F85 and for the
Linux NFS server are now almost in the same ballpark.
These results are summarized in Table 1.

Even though the Network Appliance filer provides bet-
ter network throughput than the Linux NFS server does,
applications writing to files on the filer are slowed by
the lack of client scalability. Despite the fact that less
client processing is required for filer writes because
they don’t require an additional COMMIT RPC, client
throughput to a fast server is hampered by lock conten-
tion, the cost of sending data to the server faster, and
the cost of handling reply interrupts at a higher rate.
Simply put, as servers become faster, a client must do
the same amount of work in a shorter amount of time.

During a test with a single application writer thread
contending with a single flusher thread, we find less
than ideal scaling. On a client with a single CPU, we
expect to find the flusher thread taking some CPU time
away from a user-level writer thread, increasing as
server throughput increases. On a client with more than
one CPU, however, the writer thread and the flusher
thread should not interfere. We suspect that faster serv-
ers will exhibit even worse performance on SMP Linux
clients until this issue is properly addressed.

Recall the short period in Figure 4 during which
write() system call latency is much lower on aver-
age. This is likely due to reduced SMP lock contention
on the client that occurs when the filer briefly stops

 - 7 -

Lever, Honeyman

responding to network write requests during a file sys-
tem checkpoint [2]. In effect, the filer behaves like an
infinitely slow server during this period, momentarily
eliminating SMP lock contention on the client. While
the flusher thread does not make any forward progress,
only the application writer thread is active. Other
threads do not interfere with the writer, allowing the
client to return control quickly to the application.

In future work, we hope to explain why the network
layer takes more than 50 microseconds per RPC request
on a 933 MHz processor. We suspect IP fragmentation
is a major expense. Jumbo packets, a feature of gigabit
Ethernet, may help by reducing the need for fragment-
ing and reassembling large RPC requests in the IP layer.

However, we have demonstrated that removing the
global kernel lock from the write path yeilds consider-
able improvements in throughput and application con-
currency. Currently the RPC layer requires the global
kernel lock to ensure the integrity of its internal data
structures. Removing the global kernel lock from the
RPC layer will allow a system with multiple network
interfaces to process more than one RPC request at a
time and allow concurrent writes to separate files and to
separate servers from separate client CPUs.

3.6. Final measurement

Figure 7 illustrates how our modifications have im-
proved client write performance. With our modifica-
tions NFS write performance is very good while there is
memory to buffer write requests, but drops to the
server’s throughput level as the client exhausts memory.

The left side of Figure 7 shows that memory write per-
formance to NFS files is considerably improved. Write
performance is no longer limited to network and server
speeds. Client scalability defects continue to cause
memory writes to files on the Network Appliance filer
to be 7 MBps slower than to files on the Linux NFS
server. The right side of Figure 7 shows that as client
memory is exhausted, the filer sustains greater network
write throughput than the Linux NFS server can.

Throughput for the local test and the test against the
Linux NFS server immediately trail off for file sizes
that exceed the physical memory size of the client, but
the benchmark is able to sustain high data throughput
longer when the test file resides on the Network Appli-
ance filer. We conjecture that the filer’s NVRAM acts
as an extension of the client’s page cache, allowing
writes to the server to proceed at near local memory
speed until the server’s NVRAM is full.

0

50000

100000

150000

200000

0 50 100 150 200 250 300 350 400 450 500

w
rit

e
th

ro
ug

hp
ut

 (
K

B
/s

ec
)

file size (MB)

Figure 7 - Local v. NFS write throughput (enhanced)

Linux NFS server
Netapp filer

local ext2

Figure 7. Local v. NFS memory write performance,
revisited. Write throughput is measured for test files
between the sizes of 25 MB and 450 MB. NFS write
throughput is considerably better than in Figure 1.
Application write throughput no longer tracks net-
work write throughput for NFS files. Maximum mem-
ory write throughput is nearly the same for both serv-
ers tested.

With workloads that hold a file open for a long time and
write asynchronously (that is, without the requirement
that data be made permanent before the write() sys-
tem call is complete), the Linux NFS server has a slight
advantage. This advantage disappears as client scalabil-
ity concerns are addressed. Where applications write
then immediately flush or close, or where applications
require data permanence before a write() system call
returns, the Network Appliance filer, with its greater
network and disk throughput, performs better. Though
memory writes are slightly slower on the client, appli-
cations regain control sooner after they flush or close a
file when writing to a faster server. As client scalability
improves, applications can take advantage of improved
memory write throughput and better network through-
put.

4. Future work and conclusion

In this paper, we describe a simple sequential write
benchmark to measure file system write latency and
throughput. We show how this benchmark reveals per-
formance and scalability problems in the Linux NFS
client, and we describe several modifications to the
Linux NFS client that improve application write latency
and throughput.

We also demonstrate some interesting aspects of client
benchmarking. Where NFS server benchmarking is a
direct measurement of on-the-wire behavior, NFS client

 - 8 -

 Linux NFS write performance

measurement is a subtle and indirect affair, best accom-
plished using comparison. Standard file system per-
formance benchmarks are useful in assessing client
performance, but a single benchmark run may not tell
the whole story. Interesting client behaviors emerge
when comparing benchmark runs against several differ-
ent servers.

Using comparison, we have confirmed interactions be-
tween client and server implementations that hamper
application performance with fast servers and networks.
A Linux client paired with a fast server exposes scal-
ability issues in the client. Escalating server perform-
ance must be matched by attention to client scalability .

We want to assess further the impact of the global ker-
nel lock on the scalability of the Linux NFS client. Fur-
ther, we want to continue investigating why slower
servers allow faster memory write throughput on Linux
NFS clients, and why, in general, there continues to be
so much variance between benchmark runs on Linux.

We especially want to prove our comparative method-
ology within real application domains. These tech-
niques are also valuable for surveying NFSv4 client
implementations. Finally, we hope to explore improve-
ments to the Linux NFS client that affect its behavior in
corner cases that face advanced deployments outside
the research lab, such as its file locking and specialized
caching behavior, and its performance with databases
combined with network-attached storage.

Acknowledgements

The authors gratefully acknowledge the assistance of
the following: Andy Adamson, Kendrick Smith, Brian
Pawlowski and Sudheer Miryala at Network Appliance,
Spencer Shepler and Sun Microsystems, James
Newsome, Steve Molloy, and especially Trond Mykle-
bust for his helpfulness and thorough work on the Linux
NFS client so far. Special thanks also to reviewers. The
Intel Corporation provided hardware used in this study.

A patch against Linux kernel 2.4.4 that includes the
modifications discussed in this paper is available at the
CITI U-M web site:

 http://www.citi.umich.edu/projects/nfs-perf/patches/

References

1. Bray, T. Bonnie Source Code. Netnews Posting. 1990.

2. Hitz, D., Lau, J., and Malcolm, M. “File System Design
for an NFS File Server Appliance.” USENIX Technical
Conference Proceedings, Winter 1994.

3. Macklem, R. “Not Quite NFS, Soft Cache Consistency
for NFS.” USENIX Technical Conference Proceedings,
Winter 1994.

4. Ousterhout, J. and Douglis, F. “Beating the I/O Bottle-
neck: A Case for Log-Structured File Systems.” ACM
Symposium on Operating System Principles, 23, January
1989.

5. Satyanarayanan, M., Howard, J.H., Nichols, D.N., Side-
botham, R.N., Spector, A.Z. and West, M.J. “The ITC
Distributed File System: Principles and Design.” Pro-
ceedings of the 10th ACM Symposium on Operating Sys-
tem Principles, December, 1985.

6. Standard Performance Evaluation Corporation. SPEC
SFS97. www.spec.org/osg/sfs97/ .

7. Sun Microsystems, Inc. “RFC 1094 - NFS: Network File
System Protocol specification.” IETF Network Working
Group. March 1989.

8. Sun Microsystems, Inc. “RFC 1813 - NFS: Network File
System Version 3 Protocol Specification.” IETF Network
Working Group. June 1995.

 - 9 -

http://www.citi.umich.edu/projects/nfs-perf/patches/

	Linux NFS Client Write Performance
	Abstract
	Linux NFS Client Write Performance
	Introduction
	Benchmarking NFS clients
	Client versus Server benchmarking
	Benchmarking on Linux
	Simple write benchmark

	Write latencies in the Linux NFS client
	Systems under test
	Local versus network write performance
	Periodic latency spikes
	List scans and sequential write performance
	Global kernel lock on SMP hardware
	Final measurement

	Future work and conclusion
	Acknowledgements
	References

	Figure 1. Local v. NFS memory write performance.
	Figure 2. Write() system call latency.
	Figure 3. Write() system call latency without periodic flushes.
	Figure 4. Write latency with scalable data structures.
	Figure 5. Write latency against different servers.
	Figure 6. Write latency with less lock contention.
	Figure 7. Local v. NFS memory write performance, revisited.
	Table 1. Client memory write throughput, before and after lock modification.

