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Abstract

The NFSv4 protocol includes features intended to
enhance its use in global, wide-area networks.  In this
paper we describe the design and implementation of a
prototype for global name space, transparent migra-
tion and fine-grained replication that uses and ex-
tends these features. In our system, directory migra-
tion and replication use the FS_LOCATIONS attribute
to redirect I/O requests.  For read/write replication,
server redirection provides concurrency and consis-
tency during replica updates.  Strict consistency is
guaranteed when the system is free of failures.  In
case of network partition or server failure, we offer
the option of increasing availability while relaxing
consistency by supporting ordered writes instead of
strict consistency. The result is a system built on the
Internet standard for distributed filing that features
good performance and scalability, high availability,
and fine-grained consistency.

1. Introduction

The Network File System [1, 2] is a popular distrib-
uted file system developed by Sun Microsystems in
the early 1980s.  The primary goal of NFS was to
give users at workstations transparent access to files
across a local area network (LAN).  Over its long
history, that original goal has been extended.

Version 3 of NFS, the popular and widely adopted
current version, was designed for an environment
quite different from today’s:

• Computers were much less powerful.
• Operating systems were much less reliable.
• Access to remote computers was largely limited to

LANs.
• The wide area network known as the Internet was

still in its infancy.
• Popular security mechanisms were easily

breached.

Today’s highly connected world, populated by com-
puters that would have been considered massively
powerful when NFSv3 was designed, presents prob-
lems for NFS over the Internet, where security, per-
formance, and interoperability are critical.  For ex-

ample, the security vulnerability reported by Som-
merfeld in 1987 [29], which allows an impostor to
gain unauthorized access to an NFS file system by
spoofing file handles, remains a potent threat to pre-
sent day NFSv3 deployments.

Version 4 of NFS [3] addresses these problems.
NFSv4 retains essential characteristics of previous
versions of NFS, yet also features improved access,
performance, and security over WANs. To adhere to
these goals, this paper focuses on mechanisms that
facilitate wide area interoperation and access: a
global name space and support for transparent migra-
tion and replication.

Naming plays an important role in distributed file
systems.  In wide area networking, several principles
guide the design of a distributed file system name
space.  First, a global name space that provides a
common frame of reference is desirable.  Second,
name space operations should scale well in the face
of wide or massive distribution.  Third, transparent
migration and replication require location independ-
ent naming.1

We pay particular attention to data replication.  There
are two primary reasons for replicating data.  First,
replicating data improves availability in the face of
failure by allowing users and applications to switch
from a failed data server to a working one.  Second,
replication improves performance by allowing access
to distributed data from nearby or lightly loaded
servers.  This is especially significant in allowing a
distributed system to scale in size and span.

The fundamental challenge to data replication is
keeping replicas synchronized when updates occur.
Although strong consistency guarantees are ideal,
performance and availability requirements often force
system designers to compromise.  We also take these
considerations into account.  Our server redirection
mechanism provides strict consistency without af-
fecting normal read performance when the system is

                                                            
1 By transparent migration and replication we mean using

abstract concepts and mechanisms to hide the fact that a
resource is migrated or replicated, thus presenting users
the appearance of a single unified system [6].



- 2 -

failure-free.  In the case of network partition failures,
we offer a choice of consistency models: strict con-
sistency or ordered writes, allowing different avail-
abilities.  File system workload reports and the
evaluation data collected with our prototype imple-
mentation suggest that our system offers most appli-
cations acceptable performance and consistency,
even distributed applications that span the Internet.

Our work is also motivated by the need for easy ad-
ministration of the file system.  In an environment in
which storage systems are becoming larger and more
complex, storage management plays a prominent and
increasing role and expense in system administration.
This makes ease of administration an important goal
in file system designs.  The past twenty years has
seen numerous research and development efforts in-
tended to facilitate file system administration.  For
example, in AFS, volumes were developed to orga-
nize data within a storage complex by breaking the
association between physical storage and the unit of
migration and replication [28].  Because they are in-
dependent of the physical configuration of the sys-
tem, volumes provide a degree of transparency in
addressing, accessing, and storing files.  This also
facilitates data movement and optimization of exist-
ing storage.

The lack of transparent file relocation support in
NFSv3 makes data movement among file servers a
cumbersome administration task, and can disrupt the
ongoing work of users and applications while data is
distributed to new locations.  Migration and replica-
tion address this problem: our design allows data to
be created, copied, removed, and relocated easily
within NFSv4 without disrupting service to clients.
We also provide a framework for automatic failover
and load balancing, which are highly desirable in the
wide area environment.

The remainder of this paper is organized as follows.
Section 2 introduces the system consistency and fail-
ure model. Section 3 presents the design of the sys-
tem.  Section 4 describes a prototype implementation.
Section 5 evaluates the performance of the prototype.
Section 6 discusses related work.  Section 7 summa-
rizes and concludes.

2. System Model

2.1 Consistency Model

The main problem introduced by replication is main-
taining consistent copies: any time a replica is up-
dated, that copy becomes different from the others.
To synchronize replicas, we need to propagate up-
dates in a way that hides temporary inconsistencies,

but doing so may degrade performance, especially in
large-scale distributed systems.  The performance
problem is easier to solve if consistency guarantees
can be relaxed.

Most distributed file systems provide one of four
consistency models:

• Strict consistency in file systems gives “one
copy” semantics, i.e., a guarantee that all I/O op-
erations yield identical results at all nodes at all
times [2].  Strict consistency guarantees that any
read to a shared data item X returns the value
stored by the most recent write operation on X.

• An essential correctness criterion for replicated
databases, known as one-copy serializability, re-
quires that the concurrent execution of transactions
on replicated data be equivalent to a serial execu-
tion on non-replicated data [16].  A quiescent, fail-
ure-free system eventually achieves agreement at
all replicas.  In file systems, this is equivalent to
enforcing ordered writes.  Applications do not
necessarily see updates simultaneously, but they
are guaranteed to see them in the same order.

• The popularity and success of NFSv3 prove that
many applications can briefly tolerate some degree
of inconsistency.  In a time bound inconsistency
model, a client may access an old version copy of
data if the update to the object was made in the
bound time.  After the bound time, clients are
guaranteed to see the updated data.  This consis-
tency model is often implemented in systems using
periodic messages to check data consistency or to
detect network partitions.

• Some distributed file systems adopt optimistic
replication to trade consistency for availability.
In these systems, any copy can be read or updated
at anytime.  This is important for applications that
require continuous access to data.  However,
overlapping optimistic reads and writes can intro-
duce inconsistencies during partition, forcing op-
timistic systems to provide conflict detection
schemes and resolution heuristics.

Strict consistency, although ideal, comes at a great
cost, so it is not unusual for a distributed file system
to relax consistency for performance or availability.
Furthermore, not all applications need strict guaran-
tees.  Based on these considerations, we offer the
option of relaxing our strict consistency guarantee in
a failure-free system to guaranteeing ordered writes
in the case of node or network failure. We stop short
of supporting time bound inconsistency because of
the cost in network overhead [23] and demonstrated
inconsistent access in day-to-day operation [25].
Although optimistic replication addresses the former
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problem, it exacerbates the latter; we rule out opti-
mistic replication so that we can offer conflict-free
guarantees.

2.2 Failure Model

A system that does not adequately provide the serv-
ices for which it was designed fails. There are several
types of failure in distributed systems, omission fail-
ure, performance failure and Byzantine failure [9].

An omission failure occurs when a component fails
to respond to a service request. Typical omission
failures include replication server or communication
link crashes.  A performance failure occurs when a
system component fails to respond to a service re-
quest within the time limit specified for the delivery
of that service. Occasional message delays caused by
overloaded replicas or network congestion are exam-
ples of performance faults. An important subclass of
omission and performance failures is partition fail-
ure.  Partition failure occurs when a network failure
partitions replicas into two or more communicating
groups. Byzantine failure is also called arbitrary or
malicious failure [17, 18]. In Byzantine failure, com-
ponents may act in arbitrary, even malicious ways.
Compromised security can lead to Byzantine failure.

Although security breach is increasingly common in
the Internet, Byzantine failure is beyond the scope of
the work described here, which narrows our focus to
two kinds of failure: crashed nodes and partitioned
networks.  Furthermore, we assume these failures are
rare, although this does not affect the security or cor-
rectness of our protocol. Finally, rapid and dramatic
changes in server state or network conditions are not
the focus of this paper.

3. Design

To cope with the requirements of a wide area envi-
ronment, we pursue the following goals in our de-
sign.

A single global name space. A global name space
for all files in the system encourages collaborative
work and dissemination of information by providing
everyone a common frame of reference.  Users on
any NFS client, anywhere in the world, can then use
an identical rooted path name to refer to a file or di-
rectory.

Performance.  Good system performance is always a
critical goal.  Our design aims to make common ac-
cesses fast.  Insights from workload analysis of real
file systems [15, 24–26] guide our design.  We con-
sider the following cases, ordered by expected fre-
quency.

• Exclusive read: most common.  Support for
replication should add negligible overhead to the
cost of unshared reads.

• Shared read: common.  Blaze [15, 24] observes
that files that are used by multiple workstations
make up a significant proportion of read traffic.
For example, in testing, files shared by more than
one user make up more than 60% of read traffic,
and files shared by more than ten users make up
more than 30% of read traffic.  This motivates us
to impose minimal additional cost for shared reads.

• Exclusive write: less common.  Workload studies
show that writes are less common than reads in file
systems.  When we consider access patterns for
data that need to be replicated in wide area net-
work, this difference should become even larger.
This allows us to design a replication file system
within which data updates are more expensive than
in one-server-copy cases, and still get good aver-
age-case performance.

• Write with concurrent access: infrequent.  A
longer delay can be tolerated when a user tries to
access an object being updated by another client.

• Server failure and network partition: rare.  Spe-
cial failure recovery procedures can be used when
a server crashes or a network partitions.  During
the time of failure, write accesses might even be
blocked if strong consistency must be guaranteed
without doing much damage to overall throughput
averages.

Scalability.  Successful distributed systems tend to
grow in size.  To provide scalability, our design fol-
lows two principles.  First, centralized services are
avoided.  Second, the performance of the most com-
mon file accesses are affected little when the system
grows in size and span.

Availability. In distributed systems, replication is
often used to increase data availability. To design a
system that operates in partition failures, the
competing goals of availability, consistency, and
performance must be balanced. One of our objectives
is a replication scheme that tolerates a large class of
failures, guarantees ordered writes or strict
consistency, and provides superior read performance.

In the rest part of this section, we present the system
design details targeting these goals.

3.1 Global Name Space and File System Mi-
gration & Replication

In this project, the NFSv4 protocol is extended to
provide a single shared global name space.  By con-
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vention, a special directory /nfs is the global root of
all NFSv4 file systems.  To an NFSv4 client, /nfs
resembles a directory that holds recently accessed file
system mount points.

Entries under /nfs are mounted on demand.  Ini-
tially, /nfs is empty.  The first time a user or appli-
cation accesses any NFSv4 file system, the refer-
enced name is forwarded to a daemon that queries
DNS to map the given name to one or more file
server locations, selects a file server, and mounts it at
the point of reference.

The format of reference names under /nfs directory
follows Domain Name System [4] conventions.  We
use a TXT Resource Record [5] for server location
information.2  A RR in DNS can map a reference
name to multiple file servers, in this case replicas
holding the same data.  This provides for transpar-
ency in our file system migration and replication im-
plementation.  When a file system is replicated to a
new server, the administrator updates the DNS server
to add a mapping from the file system reference name
to the new NFSv4 server location.  Similarly, when a
file system is migrated to another NFSv4 server, the
old mapping is updated to point to the new server.
Once the migration is completed, the old server re-
turns NFS4ERR_MOVED for subsequent client requests.
Upon receiving the NFS4ERR_MOVED error, the client
queries DNS to get the new file system locations and
connects to the specified new server.  In addition to
file system locations, other information such as
mount options can also be carried in DNS RRs.

Here is an example of a pathname in the global name
space: /nfs/umich.edu/lib/file1, where
umich.edu is the reference name of the NFSv4 file
system provided by the University of Michigan and
/lib/file1 is the path under that file system.

3.2 File System Name Space and Directory
Migration & Replication

The file system name space provided by an NFSv4
server is called a pseudo file system.  A pseudo file
system glues all the rooted hierarchies exported by an
NFS server into a single tree rooted at /.  Portions of
the server name space that are not exported are
bridged into one exported file system so that an
NFSv4 client can browse seamlessly from one export
to another.  Exported file system structures are con-
trolled by servers, thus a server dictates a common

                                                            
2 We intend to replace this with the emerging SRV standard

for locating servers [32].  There is already an NFS type
defined for SRV resource records.

view of the file system that it exports.  This feature is
essential for support of a global name space, and re-
flects the intention of the NFSv4 protocol designers
to provide that support.

We implement directory migration and replication by
exporting a directory with an attached reference
string that includes information on how to get direc-
tory replica locations, such as replica lookup methods
and lookup key.  Four types of reference string are
implemented in our prototype: LDAP, DNS, FILE
and SERVER REDIRECT. The format of each type is
described in Section 4.2.

When a client first accesses a replicated directory, it
is sent the reference string for that directory.  The
client uses the reference string to query the replica
locations of that directory. After selecting a nearby
replication server, the client continues its access.
When a directory is migrated to another server, the
original server returns NFS4ERR_MOVED error for
subsequent directory requests.  Receiving this error,
the client obtains the reference string of the migrated
directory by examining the FS_LOCATIONS attribute
and using its contents to connect to the specified
server.

Support for multiple lookup methods allows an orga-
nization to maintain replica location information as it
desires.  No centralized name service is required.

3.3 FS_LOCATIONS Extensions

FS_LOCATIONS, a recommended attribute in the
NFSv4 protocol, intended to support file system mi-
gration and read-only replication.  An attempted cli-
ent access to a migrated file system yields an
NFS4ERR_MOVED error; retrieving the FS_LOCATIONS

attribute gives new locations for the file system.  For
replication, a client’s first access to a file system
might yield the FS_LOCATIONS attribute, which pro-
vides alternative locations for the file system.

The FS_LOCATIONS attribute allows clients to find
migrated/replicated data locations dynamically at the
time of reference.  We also use the FS_LOCATIONS

attribute to communicate migration and replication
location information between servers and clients, in a
way that varies from the published protocol.  First, in
our design, the FS_LOCATIONS attribute is used to
provide reference strings of replica locations, instead
of real locations.  It is the client’s responsibility to
translate reference strings into replica locations.
Second, we use the FS_LOCATIONS attribute to pro-
vide directory migration and replication, instead of
the coarser-grained file system migration and repli-
cation.  Finally, we use the FS_LOCATIONS attribute to
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Figure 1: File modification.  1. A client issues an open request
to a server.  2. The server instructs other replication servers to
redirect requests, making it the primary server for the file.  3.
Replication servers comply.  4. Replication servers acknowledge
the request.  5. The primary server acknowledges the open re-
quest.  6. The client sends writes to the primary server.  7. The
primary server distributes the writes to other replicas.  8. Other
servers update the written file.  9. Other servers acknowledge
the update.  10. The primary server updates the written file.  11.
The primary server acknowledges the client’s writing request.
(Steps 6 through 11 may be repeated several times.)  12. The
client issues a close request.  13. The close request is acknowl-
edged.  14. The primary server instructs the redirected servers to
re-enable replication.  15. The redirected servers disable redi-
rection.  16. The (formerly) redirected servers acknowledge the
request to re-enable replication.

support concurrent accesses in mutable replications,
which we describe in detail in the next section.

3.4 Mutable Replication

The scheme described in the last two subsections can
efficiently support read-only replication.  However,
to support read/write replication, we need proper
mechanisms to distribute updates when a replica is
modified and to control concurrent accesses when
writes occur. We considered several mechanisms for
our design.

• Reader checks.  One strategy is for a reader to
check a number of replicas on every read request
to be sure that it sees the most up-to-date data.
This solution can guarantee strong consistency, but
adds substantial overhead to normal read requests.

• Periodic query: By having replicas send periodic
query messages, the system allows a narrow win-
dow of inconsistency but can guarantee data con-
sistency after a defined time bound.  With this
method, the system can automatically discover and
recover from failure.  However, periodic query
messages add considerable overhead and network
traffic to the system, which is especially wasteful
when no updates are undertaken and all servers are
working properly, the most common case by far.

• Server redirection.  The strategy we adopt pro-
vides strong consistency at little cost to exclusive
or shared readers.  When a client opens a file for
writing or modifies a directory, the selected server
temporarily becomes primary for that file or di-
rectory by contacting all other replication servers
and instructing them to redirect all accesses to it.
The strategy differs from the usual primary copy
scheme in that it allows late and dynamic binding
of the primary server. We support two consistency
models that differ only in case of failure.  We
guarantee strict consistency by blocking all up-
dates while a failed server is under repair. Alterna-
tively, by allowing updates only in a partition that
includes a majority of the replication servers, we
can guarantee ordered writes. We present details in
the following subsections.

3.4.1 File Updates

We enforce consistent access by redirecting all cli-
ents to a primary server when a file is opened for
writing.  When a client opens a file for writing, the
relevant server temporarily becomes the primary
server for that file.  All other replication servers are
instructed to redirect subsequent accesses to the pri-
mary server.  When the file is closed, the primary

server withdraws from its leading role by re-enabling
replication on the other replication servers.

While the file is open for writing, the primary server
is the only server for the file.  Client access requests
sent to other servers are redirected to the primary
server.

While replication is disabled, the primary server is
responsible for distributing updates to other replicas.
We considered two strategies for update distribution
during the project design.  The first is the simple and
obvious strategy of distributing updates when the
modified file is closed.  The second strategy distrib-
utes updated data to other replicas as it arrives.

Although naïve, the update-on-close strategy does
avoid multiple updates, should the file be written
several times.  This strategy is sound if a file is over-
written several times while it is open.  However, if a
client writes a massive amount of data to a file and
then closes it, the close operation takes a very long
time to return.  

On the other hand, distributing updated data to other
replicas every time the primary server receives a
write request eliminates the response time penalty for
a client’s close request.3  It also facilitates recovery

                                                            
3 It also removes the possibility that the close might fail for

extraordinary reasons, negating successful writes.  E.g.,
AFS users learned the hard way about applications that
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Figure 2: Directory modification.  1. A client issues a direc-
tory update request to a server.  2. The server instructs other
replication servers to block any access to this directory.  3. Rep-
lication servers comply.  4. Replication servers acknowledge the
request.  5. The primary server distributes the update request.  6.
Other servers update the directory.  7. Other servers acknowl-
edge the update.  8. The primary server processes the directory
update request.  9. The directory update request is acknowl-
edged.  10. The primary server instructs the other servers to re-
enable access.  11. The redirected servers restore access to the
directory. 12. Other servers acknowledge the request to re-
enable replication.

from primary server failures: the client can simply re-
issue the failed request after connecting to a new
server.  However, this strategy may produce unneces-
sary network traffic caused by overlapped writes.
Moreover, a client that writes too quickly can exhaust
its local buffers before they drain and eventually
block.

We prefer the latter scheme: we are willing to squan-
der network to improve latency and we want to pro-
vide a simple failure recovery procedure for clients.
Yet, by making client writes to the primary server
synchronous with updates to the disabled replication
servers, it appears that our strategy adds considerable
latency instead of improving it.  The paradox is re-
solved by observing that NFSv4 clients themselves
delay their writes, detaching application performance
from the high-latency updates to the primary server.
Furthermore, the client’s delayed-write policy makes
it likely that the updates will be long-lived.

In addition to written data, each update message from
the primary server to other replicas also includes the
metadata related to the update, such as modification
time and file size.  Each replication server modifies
the metadata accordingly after updating the file.  This
guarantees that the metadata of the file is consistent
among replicas, which as we show in Section 3.4.3,
facilitates recovery from failures. Figure 1 illustrates

                                                                                          

(unwisely) rely on the success of their writes and neglect
to check the status of close, but lose data if the file server
runs out of space.

the file modification procedure with two replication
servers.

3.4.2 Directory and Attribute Updates

Directory modifications include the creation, dele-
tion, and modification of entries in a directory.  Un-
like file writes, little time elapses between the start
and finish of a directory update, which reduces the
likelihood of concurrent access to a directory while it
is being updated. Therefore, instead of redirecting
access requests to a replicated directory while an up-
date is in progress, replicas block access requests to a
replicated directory until the primary server distrib-
utes the update and re-enables replication. Directory
modification is illustrated in Figure 2.

Like directory modifications, attribute updates are
processed quickly, so we handle them in the same
way.

3.4.3 Special Cases

Conflict.  Two or more servers may try to disable
replication of a file or directory at the same time,
with the result that some replication servers are dis-
abled by one server, some by another server.  When
these servers are in the same partition, contention is
always apparent to the conflicting servers.  We re-
solve the conflict by having conflicting servers coop-
erate: the server that has disabled more replicas is
allowed to continue; the server that has disabled
fewer replicas hands its collection of disabled repli-
cas to the first server.  Servers that are not in the
same partition cannot conflict because we do not al-
low redirection in a minority partition.

Failure.  Our system guarantees strict consistency
when all replicas are in working order.  Failure com-
plicates matters.  Different kinds of failure may oc-
cur, including client failure, replication server crash
failure and network partitions.  Here we briefly de-
scribe the failure detection and recovery mechanisms
for each case. A detailed description and proof of
correctness forms a companion paper [21].4

Following the specification of NFSv4, a file opened
for writing is associated with a lease on the primary
server, subject to renewal by the client. After a client
failure, the server receives no further renewal re-
quests, so the lease expires. Once the primary decides
that the client has failed, it closes each file opened on
behalf of the failed client. If the client was the only

                                                            
4 Note to reviewers: the companion paper has been sub-

mitted for publication elsewhere.  If you wish to see it,
and if it is not yet available as a CITI Tech. Report, please
ask the Program Chair for a copy and we will provide it.
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writer, then the primary re-enables replication for the
file at this time.  The file contents reflect all writes
acknowledged by the primary server prior to the fail-
ure.

A server might be unable to ensure data consistency
at all other replicas when there is a crashed server or
network partition.  Although they are hard to distin-
guish from afar, there is an essential difference: a
crashed server no longer responds to any clients, but
a partitioned server can still serve client requests that
originate in its partition.  Consequently, replication
servers in a minority partition may unwittingly serve
stale data.

To address this problem, we support two options that
offer different consistency guarantees and availabil-
ities in case of failure: ordered writes and strict con-
sistency. In the first option, write operations are
guaranteed to be serialized in the system. However,
in a minority partition, a read request may be served
with stale data. In the second option, the system
guarantees that the data read by a client is fresh at the
cost of blocking write operations in the system.

To support ordered writes, the system maintains an
active group view among replicas and allows updates
only in the active group.  We require an active group
to contain a majority of the replicas.  During file or
directory modifications, the primary server removes
from its active group view any replicas that fail to
acknowledge the replication disabling requests or
update requests. The primary server updates its local
copy and acknowledges a client write request only
after it has received update acknowledgements from a
majority of active replicas. If the active view shrinks
to less than a majority, the primary server fails the
client’s request. The primary server sends its active
view to the replication servers when it re-enables
replication. A server not in the active view may have
stale data, so the servers that re-enabled replication
refuse any later request that comes from a server not
in the active group.  A failed replication server can
rejoin the active group only after it synchronizes with
the up-to-date copy.

We emphasize that the granularity of a view is a sin-
gle file: different files, even ones in the same direc-
tory, can have different views.  We assume failure is
rare, so we expect most views to contain the full set
of replication servers, which suggests an economical
representation for a full view.

If a primary server crashes or is separated in a mi-
nority partition, a client (in the majority partition)
detects this failure when an access request times out.
The client selects a working replication server and
informs it of the failure of the primary server.  After

verifying that replication is disabled and that the pri-
mary server has failed, the replacement works with
the other replication servers to recover from the pri-
mary server failure.  Briefly, the replacement asks
other active replicas for permission to become the
new primary server.  If this succeeds, the replacement
synchronizes all active replicas with the most up-to-
date copy found in the majority partition.  It then
distributes a new active group view and re-enables
replication on the active servers.

With the mechanisms described above, our system
guarantees ordered writes and continuously serves
clients’ requests as long as a majority of replicas are
in working order.  If there are multiple partitions and
no partition includes a majority of the replication
servers, no write requests can be served until the par-
tition heals. We assume this happens rarely.

Using the view change properties and rules proposed
by El-Abbadi et al. [11], we are able to prove that our
protocol guarantees ordered writes in the face of node
crash or network partition [21].  Security of the pro-
tocol follows from the use of secure RPC channels,
mandatory in NFSv4, for server-to-server communi-
cation.

4. Implementation

In this section, we report on a prototype implementa-
tion of the design described in Section 3.  First, we
describe a modified Automount daemon, used to
automatically mount and unmount NFSv4 servers.
Then we discuss our implementation of replication
support for NFSv4.  All development was done in
Linux.

4.1 Automount

Automount and AutoFs are tools that allow users of
one machine to mount a remote file system automati-
cally at the instant that it is needed.  Automount, of-
ten referred as AMD, is a daemon that installs
AutoFs mount points and associates an automount
map with each AutoFs mount point.  AutoFs is a file
system implemented in the kernel that monitors at-
tempts to access a subdirectory within a designated
directory and requests AMD to perform mounts or
unmounts there.  On receiving a mount request from
the kernel, the daemon uses the automount map to
locate a file system, which it then mounts at the point
of reference within the AutoFs file system.  If the
mounted file system is not accessed for a while,
AutoFs instructs the daemon to unmount it.

Although Automount supports numerous mapping
methods, support for DNS mapping is not provided in
the current implementation, so we extended the
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Automount daemon to support a DNS mapping
method.  The global root directory of NFSv4, /nfs
by our convention, is made an AutoFs mount point
with DNS mapping as the associated automount map
method.  We also made changes to provide commu-
nication between the NFSv4 client and the Auto-
mount daemon.  When an NFSv4 client receives a
reference string from a connected server, it passes the
reference string to the modified Automount daemon.
After receiving the request, the daemon uses the
mapping method indicated in the reference string to
locate one or more replicas.  It then selects and
mounts a replication server.

4.2 Replica List Maintenance and Lookup

NFSv4 uses exportfs utilities on the server side to
export a directory.  In the kernel, an export structure
is maintained for each current accessed export.  We
extended the exportfs interface so that the refer-
ence string of a replicated directory can be passed
into the kernel.  The reference string is maintained in
the corresponding export structure.  When an NFS
client encounters an export with an attached reference
string, the server notifies the client and sends the ref-
erence string via the FS_LOCATIONS attribute.

We support four types of reference strings: LDAP,
DNS, FILE and SERVER REDIRECT.  The format of
each type is listed below.

• LDAP.  The format of an LDAP reference string is
ldap://ldapserver/lookup-key [-b
searchbase] [-p ldapport].  The LDAP
server stores replica location records that can be
queried with the lookup-key.  A replica location
record includes the server name holding that rep-
lica, the directory path where the replica located,
and the server mount options.  The lookup-key
needs only to be unique in the LDAP server, which
can be guaranteed when the mapping entry is cre-
ated.

• DNS: the format of a DNS reference string is
dns://lookup-name.  The lookup-name for-
mat follows domain name conventions.  The DNS
carries replica location information as described in
Section 3.1.

• FILE: the format of a FILE reference string is
file://pathname/lookup-key.  The
pathname gives the path to the file storing a
lookup-key to replica location mappings.  The file
should be stored in a place accessible to NFS cli-
ents, e.g., the parent directory of the replicated di-
rectory.

• SERVER REDIRECT: the SERVER
REDIRECT lookup method is used to support
directory migration and relocationas well as
concurrent write access to replicas.  The format of
a SERVER REDIRECT reference string is
server://hostname:/path [mount-
options], where hostname:/path gives the
location of the replicated directory.

4.3 Mutable Replication Implementation

In mutable replication, a server needs to know the
replica list before it issues a replication-disabling
directive.  Our implementation maintains this infor-
mation dynamically, using the RPC cache.  When a
server wants to send replication disabling messages,
it calls cache lookup with the reference string as the
lookup key.  If there is a cache hit, the cached value
is returned.  If a cache miss occurs, an upcall is made
to a user-level handler, which performs the lookup
and adds the queried data to the cache.

RPC calls are used to propagate updates and to
transmit replication disabling and enabling messages
among replicas.  These messages are sent in parallel
by the primary server, i.e., the primary server sends
an RPC request to each of the disabled replication
servers, and then waits for the reply from each repli-
cation server. In this way, the disabled replication
servers can process updates concurrently; otherwise,
serialized updates would clog the primary server.
This mechanism is similar to MultiRPC [27].

5. Evaluation

Having describing the system architecture and im-
plementation, we now present performance data col-
lected with the prototype implementation.

To measure the cost of the global name space support
and replication in our system, we ran several micro-
benchmarks that measure the overhead on individual
system calls.  The collected results are presented in
Section 5.1 and 5.2. The system performance results
for common read requests are not presented, as they
are the same as the one-server-copy case.  In Section
5.3, we present performance data that uses a modified
Andrew benchmark to model a mix of file operations.

We implemented the NFSv4 client prototype on a
400MHz AMD-K6 with 128MB of memory.  In our
experiments with multiple replicated servers, the
primary server is on the same LAN as the client.  The
client and the primary server are connected with
switched 100 Mbps Ethernet.  The round-trip latency
(RTT) between the client and the primary server is
around 400 µs.  The client runs Linux 2.5.68 and the
primary server runs Linux 2.5.70.  The evaluation
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Figure 4: Three micro-benchmarks with varying number of
replicas.  This diagram shows the running time for open, write one
byte + close, and mkdir system calls as the number of replicas in-
creases in a LAN.

Phase Time (ms)

Upcall 1.28

Replica List Query (DNS) 1.49

Mount 37.5

Total 40.2
Table 1: First access.  This table shows the delay when a client first
accesses a file system within the provided global name space. The
client is a 400MHz AMD-K6 with 128MB memory.  The server is
and Intel 1.8GHz P4 with 128MB memory.  The client and the
server are on a switched100 Mps Ethernet.

Query Method Time (ms)

DNS TXT RR 1.49

LDAP 12.3

FILE 13.1

SERVER REDIRECT 0.007
Table 2: Lookup time for different querying methods.  This table
shows the lookup time of different querying methods, measured at
the client. The DNS server and LDAP server used for querying are
within the same local network as the client.  The size of the file
storing replica location information is 248 bytes.

data were measured at the client side with get-
timeofday, which has microsecond resolution in
Linux 2.5.68.  All numbers presented in this section
are mean values from three trials of each experiment.
In all experiments, the standard deviations are within
five percent of the mean values, so we omit reporting
them.

5.1 Cost to Support Global Name Space

We measured the delay experienced by a client when
first accessing an NFSv4 file system in the provided
global name space.  Table 1 presents the measured
time in each phase during the first access.  As ex-
pected, the mount phase takes the most time, as client
and server need to mutually authenticate during
mount.  The total delay seen by the client is approxi-
mately 40 ms.  This can be used to estimate the re-
sponse time when the client first accesses a migrated
or replicated directory, which will vary slightly when
using different query methods.  The client and the
server used in this experiment are in the same local
network; the response time increases in a WAN, but a
client experiences this delay only on its first refer-
ence.

Table 2 presents the different query times used to
lookup replica locations at the client.  The DNS
server and LDAP server used in the experiment are
on the same LAN as the client.  SERVER
REDIRECT requires the least time, as the client does
not need to process any query in this case.  Among
the other three methods, DNS TXT RR is the fastest
with around 1.5 ms query time.  LDAP and FILE – a
little slower at 12 ms and 13ms query time, respec-

tively – are still acceptable, as a client needs to query
replica locations only on its first reference.

5.2 Replication Performance

To assess the cost of replication, we measured the
client-perceived run times for open, write and
mkdir system calls.  Replication does not add any
overhead for read-only opens in our system, so we
always open for writing.  Because the NFS client
does not immediately send data written to the NFS
server during write system calls, we measured the
combined time of writing one byte and close.5  In all
experiments presented in this section, we use TCP as
the transport protocol.  The rsize and wsize are set as
4096 bytes.

We first measured the elapsed time for three micro-
benchmarks respectively as the number of replicas
increases in a local area network. The collected data
are displayed in Figure 4. In this experiment, the RTT
between the primary server and each replication
server is around 260 µs. Except for the primary
server, all servers used in this experiment have dual
Intel 1.7 GHz CPUs and 2 GB memory.  As shown in
the table, replication induces a small overhead in the
three system calls.

To test system performance in a wide area environ-
ment, we used the PlanetLab [30] infrastructure to
simulate other NFS servers holding the replicated
data.  PlanetLab is an open, globally distributed plat-
form consisting of 160 machines hosted by 65 sites
spanning 16 countries.  All of the machines are con-
nected to the Internet, which creates a unique envi-

                                                            
5 The NFSv4 client does not send close request immedi-

ately after receiving a close system call, so the measured
response time for write+close operation does not include
the processing time for close RPC requests, but the cost
of close is not affected in our design.
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Location Server RTT (ms)

CITI (primary), Ann
Arbor

1.8 GHz 128 MB

Washington U, St.
Louis

1.8 GHz 1 GB 21.8

Duke, Durham 128 MHz 1 GB 47.6

UCSD, San Diego 128 MHz 1 GB 67.4

HP Labs, Bristol 2.4 GHz 1 GB 119

U of Tokyo, Japan 140 MHz 512MB 169

CUHK, Hong Kong l GHz 512 MB 230
Table 3: Servers used in Figure 4 experiments.  This table de-
scribes the PlanetLab Pentium servers used for the experiments in
Figure 4.  The RTT refers to the round-trip time between the replica
and the primary server.

 Figure 5: Three micro-benchmarks with varying RTT.  This
diagram shows the running time for open, write one byte + close,
and mkdir system calls as the round-trip time between the primary
server and the replica increases.  In each measurement, the data are
replicated on two servers: the primary server and a replica.

Location Server RTT (ms)

P (primary) 1.8 GHz, 128 MB

Umich 2 servers, 128 MHz, 1 GB 1.18

Wustl 1.8 GHz 1 GB 21.8

HP 3 servers, 2.4 GHz, 1 GB 119
Table 4: Servers used in Figure 6 experiments.  This table de-
scribes the PlanetLab Pentium servers used for the experiments in
Figure 5.  The RTT refers to the round-trip time between the replica
and the primary server.

Figure 6: Three micro-benchmarks with varying replica sets.
This diagram shows the running time for open, write one byte +
close and mkdir system calls, with the fixed largest RTT between the
primary server and the majority of other replicas, but different rep-
lica sets.

ronment for conducting Internet-scale experiments.
Compared with network simulation tools, the most
obvious advantage of PlanetLab is that network
services deployed on PlanetLab platform experience
all of the behaviors of the real Internet.  A second
advantage is that PlanetLab provides a diverse per-
spective on the Internet in terms of connection prop-
erties, network presence, and geographical location.

In our implementation, each NFSv4 server runs a
kernel level daemon to receive RPC requests from
other replicas.  These RPC requests include replica-
tion disabling/enabling messages and update distri-
bution messages, etc.  However, it is not currently
possible to test modified kernels on PlanetLab plat-
forms.  To overcome this, we conducted the experi-
ments by running a user level RPC server to simulate
the kernel daemon.  The RPC request processing time
on each replication server is simulated by delaying
the reply by a specified amount time.  We measured
the processing time for each type of RPC message in
a local machine with the real kernel daemon over
many iterations and used the average as the specified

delay time in the simulation.6  Although the request
processing times vary on different machines, this
difference has negligible effect on our evaluation, as
the total response time for a RPC request over the
Internet is dominated by the round-trip latency (RTT)
between the RPC server and client.

Figure 5 displays the elapsed time overhead for three
micro-benchmarks across a range of RTTs.  The zero
RTT case represents NFSv4 performance without
replication.  The related information about the servers
used in this experiment is listed in Table 3.  The cho-
sen replication servers range from a host in St. Louis
to one in Hong Kong.  Except for the primary server,
all other servers used in the experiment are on
PlanetLab.  In each measurement, the data are repli-
cated on only two servers: the primary server and
another replication server.  The RTT listed in Table 3
refers to the round-trip time between the replication
server and the primary server.  This time varies as
network conditions change.  The time presented in
Table 3 is the stable time measured empirically by

                                                            
6 We found almost no performance difference between the

kernel implementation and user level simulator in our ex-
periments.  For this reason, and to simplify system con-
figuration, the performance data for LAN replication are
also collected this way.
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Open Type Time (ms)

Normal Open 5.41

Redirected Open 62.7
Table 5: Redirected open time.  This table shows the response time
of normal open and redirected open seen by the client. The servers
and clients are on the same LAN.

sending ping messages from the primary server to the
corresponding replication server.

As shown in Figure 5, all three micro-benchmarks
demonstrate linear increases as the RTT between the
primary server and the replication server grows.  The
growth rate for open and write operations are around
1. The response time for mkdir operation increases at
twice the rate: before acknowledging a directory up-
date request from the client, two RPCs (replication
disabling and update) are sent from the primary
server to the other replication server.  The results are
consistent with our expectation that over the Internet,
the response time for a file or directory update re-
quest is dominated by the RTT between the primary
server and other replication servers.

Because we use parallel RPC messages to distribute
replication disabling/enabling messages and updates,
we expect the total response time for a client’s update
request to be dominated by the largest RTT between
the primary server and a majority of nearby replicas.7

To test this conjecture, we measured the performance
of the three micro-benchmarks with the fixed largest
RTT between the primary server and the majority of
other replicas, but different replica sets.  The evalua-
tion data are presented in Figure 6.  The related in-
formation about the servers used in this experiment is
listed in Table 4.  Figure 6 shows that increasing the
number of replicas has little effect on overall per-
formance if the largest RTT among the primary
server and the majority of replicas is kept fixed.

So far, we have not considered concurrent writes.
Table 5 compares the response time for normal open
and for redirected open.  The redirected open refers
to a client trying to access a file already open for
writing at another server (primary server).  In this
case, the client is notified to connect to the primary
server for file accessing.  The two servers and two
clients used in this experiment are all on the same
local network.  Table 5 shows that redirected open is
more than ten times slower than normal open.  Meas-
urements and simulations [15, 24, 25] suggest that

                                                            
7 This is for ordered writes.  For strict consistency, the total

response time for a client’s update request is dominated
by the largest RTT between the primary server and all the
other replication servers.

files are rarely write-shared in real workloads, so that
redirected open will not occur often.

5.3 Andrew Benchmark

Tables 6-8 show the execution times for a modified
Andrew benchmark run on a replicated NFSv4 di-
rectory in local and wide area networks.  The Andrew
file system benchmark [23] measures five stages in
the generation of a software tree.  Stage (I) creates
the directory tree, (II) copies source code into the
tree, (III) scans all the files in the tree, (IV) reads all
of the files, and finally (V) compiles the source code
into a number of libraries.  The modified Andrew
benchmark used in this section differs from the origi-
nal Andrew benchmark in two aspects. First, in the
last stage, it compiles automount source code instead
of the code included in Andrew benchmark package.
Second, instead of logging output into the replicated
directory as specified by original Andrew Bench-
mark, we put the output into a local log file.

Table 6 presents the modified Andrew Benchmark
performance in a local area network as the number of
replicas increases. The replicas used in this experi-
ment are the same as those in Figure 4. As shown in
the table, the penalty for replication in a LAN envi-
ronment is small.

The servers used in Table 7 experiment are described
in Table 3.  Not surprisingly, in a WAN, the relative
overhead introduced by replication is greatest in
stages (I) and (II).  When the RTT between the pri-
mary server and the replication server is 230 ms, the
running times in these two stages increase by a factor
of 24.  Stage (V) is also affected by replication sup-
port since during the compilation a number of library
and executable files are created.  Stages (III) and (IV)
measure file and directory read performance. As
shown in the table, replication adds no overhead in
these two stages.8

Table 8 presents the running time for the modified
Andrew benchmark with the fixed largest RTT be-
tween the primary server and the majority of other
replicas, but different replica sets. The servers used in
this experiment are described in Table 4. Like Figure
6, this experiment demonstrates that with the fixed
RTT between the primary server and the majority
replicas, increasing the number of replicas has negli-
gible effect on system performance.  For example,
when the number of replicas grows from 2 to 7, the
total running time for the modified Andrew bench-

                                                            
8 The experiment that is missing here is running the modi-

fied Andrew benchmark across a WAN without replica-
tion.  It Will Be Done.
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Replicas I: Mkdir (s) II: Copy (s) III: Scandir
(s)

IV: Readall (s) V: Make (s) Total (s)

P 0.406 3.74 2.50 2.42 45.8 54.9

P + L 0.487 4.62 2.55 2.44 49.4 59.5

P + 2L 0.483 4.44 2.49 2.44 49.1 58.9

P + 3L 0.518 4.55 2.47 2.46 49.1 59.1

P + 4L 0.495 4.53 2.46 2.48 49.7 59.6
Table 6: Modified Andrew Benchmark in LAN replication.  This table shows the run times for the modified Andrew Benchmark for LAN
replication.  All times are in seconds.  xL represents the number of local replicas used is x.  In this experiment, the RTT between the primary
server and each replica is around 260 µs.  Except for the primary server, all servers used in this experiment have dual Intel 1.7 GHz CPUs and 2
GB memory.

RTT (ms) Mkdir (s) Copy (s) Scandir (s) Readall (s) Make (s) Total (s)

0 0.406 3.74 2.50 2.42 45.8 54.9

21.8 1.33 12.6 2.51 2.44 83.8 103

47.6 2.39 20.8 2.50 2.46 117 145

66.8 3.14 26.9 2.50 2.48 144 180

119 5.34 48.3 2.49 2.40 231 290

169 7.25 65.6 2.61 2.41 305 383

230 9.69 86.4 2.50 2.43 405 506
Table 7: Modified Andrew Benchmark in WAN replication.  This table shows the run times for the modified Andrew Benchmark for WAN
replication.  In each measurement, the data are replicated on two servers: the primary server and a replication server.  The servers used in this
experiment are described in Table 3.

Replicas Mkdir (s) Copy (s) Scandir (s) Readall (s) Make (s) Total (s)

P + Wustl 1.33 12.6 2.51 2.44 83.8 103

P + Umich + Wustl + HP 1.41 12.6 2.56 2.49 86.0 105

P + 2Umich + Wustl + 3HP 1.38 13.3 2.56 2.46 86.5 106
Table 8: Modified Andrew Benchmark with varying replica sets.  This table shows the run times for the modified Andrew Benchmark with
the fixed largest RTT between the primary server and the majority of other replicas, but different replica sets.  The servers used in this experi-
ment are described in Table 4.

mark grows by only 3%.  The result suggests that if
most writes of a replicated file set come from one
site, the performance overhead for remote replication
can be masked by putting a majority of the replica-
tion servers near that area.

6. Related Work

In this section, we survey the research literature re-
lated to our work.

NFSv3 [1], the current NFS version, available in all
modern operating systems, is the leading choice for
distributed file access.  In NFSv3, a client expands its
name space by mounting remote file systems. A sin-
gle name space is not supported.  NFSv3 does not
provide one-copy semantics, but guarantees only time
bound data inconsistency.  One distinguishing feature
of NFSv3 is its stateless servers, which simplifies
server implementation and failure recovery but in-
duces a lot of extra communication between server
and client.  In NFSv3, availability is not a design
goal.  NFSv3 can support read-only replication.

NFSv4 [3], now under development retains the es-
sential characteristics of the previous versions: design
for easy recovery; agnosticism of transport protocol,
operating system, and local file systems; simplicity;
good performance.  In addition, NFSv4 is designed to
improve access and performance on the Internet.
Quite a few features are introduced in NFSv4: man-
datory strong security, compound procedures, the
ability for a server to delegate certain responsibilities
to a client, as well as the mechanisms that are dis-
cussed in this paper: support for a global name space,
replication, and migration.

The Andrew File System (AFS) [7, 8, 23] originated
at Carnegie Mellon University.  In AFS, autonomous
administration domains are called cells, each with its
own servers, clients, system administrators, and us-
ers.  AFS supports consistent file naming on a global
scale through a convention followed by cooperating
AFS administrators: each cell’s root entry is repre-
sented as a mount point in the top level AFS root
directory called /afs.  The location mapping infor-
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mation for these mount points is kept in a file on the
local disk of every AFS client in the world.  This
leads to some scaling problems.  As the number of
entries in /afs increase, search time through the
directory also increases.  Furthermore, as cells are
created and as their servers move, discovery of new
AFS cells and their integration into each existing
cell’s name space becomes cumbersome.

In AFS3, clients cache entire files and directories to
improve performance.9  Servers keep track of which
files are in which caches and invoke callback routines
to notify clients when cached data has changed.  The
AFS consistency model guarantees that a client
opening a file sees the data stored by the most recent
close.  This guarantee is hard to honor in a partitioned
network.  AFS also supports read-only replication.

Coda [19, 20], a cousin of AFS, achieves its primary
design goal of constant data availability through
server replication and disconnected operation.  When
a client opens a file for the first time, it contacts all
replicas to make sure it will access the latest copy
and that all replicas are synchronized. Upon close,
updates are propagated to all available replicas.  In
the presence of failure, Coda sacrifices consistency
for availability.  When a Coda client is not connected
to any servers, users can still operate on files in their
cache. The modified files are automatically trans-
ferred to a preferred server upon reconnection. This
strategy can lead to conflicting updates. In some
cases, user involvement is needed to get the desired
version of data.

Echo [14] and Harp [10] are file systems that use a
primary copy scheme to support mutable replication.
In these systems, there is only one primary server for
a collection of disks, a potential bottleneck if those
disks contain many hot spots.  We avoid this problem
by allowing dynamic binding of the primary server,
which is chosen at the granularity of a single file or
directory. Furthermore, by taking advantage of the
features provided by the primary-copy method, fail-
ure detection and recovery in our system are totally
driven by client accesses.  This eliminates the need
for periodic heartbeat messages or special group
communication services.

A lot of work in peer-to-peer (P2P) file systems has
been undertaken in recent years, including
OceanStore [12], Ivy [13], Pangaea [31] and Farsite
[22]. These systems address the design of systems in

                                                            
9 In reality, AFS3 caches chunks of files, not whole files,

which moots any consideration of consistent shared
writes.  Like most AFS aficionados, we are in denial
about this.

untrusted, highly dynamic environments. Conse-
quently, reliability and continuous data availability
are usually critical goals in these systems; whereas
performance or data consistency are often traded off.
Compared to these systems, our system addresses
data replication among file system servers, which are
more reliable but have higher requirements on aver-
age I/O performance.  This leads to different design
strategies in our approach.

7. Conclusion

This paper presents the design, implementation, and
analysis of support for migration, consistent
read/write replication, and a global name space for
NFSv4.  By convention, any file or directory name
beginning with /nfs is part of a global shared name
space.  File system migration and replication are sup-
ported through DNS resolution.  Directory migration
and replication use the FS_LOCATIONS attribute to
redirect I/O requests.  For read/write replication, a
novel primary-copy method with server redirection
provides concurrency and consistency during replica
updates.

This work makes the following contributions.  First,
the system provides strong consistency guarantees –
strict consistency or ordered writes – without penal-
izing performance for common read operations.  Be-
cause reads outnumber writes in most applications,
good I/O performance is achieved on average.  Sec-
ond, in our system, failure detection and recovery are
driven by client accesses, so no heartbeat messages or
special group communication services are needed.
Third, we developed the system on NFSv4, the Inter-
net standard for distributed filing poised for world-
wide deployment.
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