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Abstract 
Large grid installations require global access to 

massive data stores.  Parallel file systems give high 
throughput within a LAN, but cross-site data transfers 
lack seamless integration, security, and performance.  
The GridNFS project, aims to provide scalable, 
transparent, and secure data management as well as a 
scalable and agile name space.  A key challenge in 
exporting a parallel file system with NFSv4 is to provide 
high performance without sacrificing consistency.  This 
paper introduces extensions to the NFSv4 protocol to 
support parallel access.  We implemented a prototype of 
our design and present experiments demonstrating its 
scalable architecture. 

 

1. Introduction 
Collaborations such as TeraGrid [1] allow global 

access to massive data sets in a nearly seamless 
environment distributed across several sites.  The degree 
of transparency between sites can determine the success 
of these collaborations.  Several factors affecting data 
access transparency are latency, bandwidth, security and 
software interoperability.   

To improve performance and transparency within each 
site, the use of symmetric or asymmetric parallel file 
systems1 is on the rise, allowing applications direct, 
concurrent and scalable access to a single file system.  
Parallel file systems allow storage systems to grow with 
storage needs and reduce management costs by 
aggregating all storage into a single framework. 

Figure 1 shows a general model for the flow of data in 
this environment consisting of four primary components.  
The first component is storage, which can be anything 
from a SAN to a single directly attached disk.  The 
second component is a set of metadata nodes that describe 
and control access to storage.  The third component is a 
set of file nodes that provide a front-end for storage 
access.  All data must flow from storage through these 

                                                           
1 In symmetric file systems, nodes perform identical tasks.  Asymmetric 
file systems assign distinct roles to nodes, e.g., metadata management, 
storage recovery, etc. 

nodes.  The fourth component is a set of application 
nodes that generate and analyze data.  In a symmetric 
parallel file system, file nodes, metadata nodes, and 
application nodes exist on the same machine.  In a 
conventional distributed file system, the file nodes 
(servers) and application nodes (clients) are distinct 
elements. 

 
Figure 1. General data access model 

This paper focuses on the third and fourth components 
of the model: file nodes and application nodes.  The need 
for remote access from multiple operating systems, 
metadata scalability, and security and performance over 
the WAN often necessitates separating file nodes and 
application nodes. 

The GridNFS project at the University of Michigan 
aims to facilitate the management and flow of large data 
sets in the grid.  It aims to provide scalable, transparent, 
and secure data management as well as scalable and agile 
name space management for establishing and controlling 
identity in virtual organizations [2] and for specifying 
virtual organization data resources.  To realize these two 
vital but missing capabilities, GridNFS extends the “best 
of breed” Internet technologies with established Grid 
architectures and protocols.  The foundation for data 
sharing in GridNFS is NFS version 4 [3], the IETF 
standard for distributed file systems that is designed for 
security, extensibility, consistency, and high performance.   

GridNFS allows researchers access to remote files and 
databases using the same programs and procedures that 
they use to access local files, as well as obviating the 
need to create and update local copies of a data set 



  

manually.  To meet quality of service requirements across 
metropolitan and wide-area networks, GridNFS may need 
to use all available bandwidth provided by the parallel file 
system’s file nodes.  In addition, GridNFS must be able to 
provide parallel access to a single file from large numbers 
of clients, a common requirement of high-energy physics 
applications.   

This paper discusses the challenge of achieving full 
utilization of a storage system’s available bandwidth with 
NFSv4 and introduces extensions that allow NFSv4 to 
scale beyond a single server by distributing data access 
across file nodes in the remote data store.  These 
extensions include a new server-to-server protocol and a 
file description and location mechanism.  For the rest of 
this paper, we will refer to NFSv4 with these extensions 
as Split-Server NFSv4. 

The remainder of this paper is organized as follows.  
Section 2 establishes the throughput scaling focus in this 
paper.  Section 3 discusses scaling limitations of the 
NFSv4 protocol.  Section 4 covers related work.  Section 
5 describes the NFSv4 protocol extensions in Split-Server 
NFSv4. Sections 6 and 7 discuss fault tolerance and 
security implications of these extensions.  Section 8 
provides performance results of our Linux-based 
prototype and discusses performance issues of NFS with 
parallel file systems.  Section 9 is devoted to future 
directions and Section 10 concludes this paper. 

2. Scaling I/O in NFS 
NFS I/O consists of four major access models: 

1. A single client accessing a single file.  
2. A single client accessing multiple files.  
3. Multiple clients accessing a single file.  
4. Multiple clients accessing separate files. 

To exhaust all available bandwidth when exporting a 
parallel file system, NFS depends on the parallel file 
system to receive or produce data at network speed or 
faster.  Since storage networks generally have larger 
bandwidth capacity than the client network, a single client 
accessing a single file should receive very good 
performance.  Gains in this area will be realized through 
increased disk and network bandwidths, as well as the 
resolution of issues discussed in Section 8.4. 

This paper focuses on access models 3 and 4: 
increasing the aggregate throughput of multiple clients 
accessing a single file or separate files by balancing client 
load among file nodes.  We assume distributed locking is 
provided by the underlying parallel file system, and 
therefore consistent file access is its responsibility.  Split-
Server NFSv4 depends on the performance of the parallel 
file system in this area. 

3. NFSv4 state maintenance 
NFS versions 2 and 3 [4, 5] are stateless, which 

simplifies crash recovery semantics and many other 
aspects of the protocol.  A separate protocol, the Network 
Lock Manager, isolates the inherently stateful aspects of 
file locking. 

NFSv4 departs from the stateless model to support 
exclusive opens called share reservations, mandatory 
locking, and file delegations.  The NFSv4 server must 
store some information about clients, users, and files, as 
well as information about the outstanding share 
reservations, locks, and delegations.  

A share reservation controls access to a file.  A client 
issuing an OPEN operation to a server specifies both the 
type of access required (read, write, or both) and the types 
of access to deny others (deny none, deny read, deny 
write, or deny both).  The NFSv4 server maintains 
access/deny state to ensure that future OPEN requests do 
not conflict with current share reservations.  NFSv4 also 
supports mandatory and advisory byte-range locks. 

An NFSv4 server can pass control of a file to a client 
in response to an OPEN request.   A delegation grants the 
client exclusive responsibility for consistent access to the 
file.  The NFSv4 server remembers all outstanding 
delegations on a file for revocation on conflicting 
requests. 

The need to manage consistency of state information 
on multiple nodes fetters NFSv4’s ability to export an 
object via multiple servers.  This “single server” 
constraint becomes a bottleneck if load increases while 
other nodes in the parallel file system are underutilized.  
Partitioning the file space among multiple NFS servers 
can work around this limitation to an extent, but increases 
management cost and fails to address scalable access to a 
single file or directory—a critical requirement of many 
high performance applications [6].  Some work has been 
done to aggregate partitioned NFS servers into a single 
file system image [7, 8], but this is at the expense of 
interoperability with other file systems. 

4. Related work  
AFS [9] and NFSv3 constrain file modifications to a 

single server, a bottleneck for a single file or directory.  
AFS file system design of volumes, cells, sites, etc and its 
lack of native file access, impairs its integration with high 
performance file systems.  NFSv3 has long suffered from 
well-known security, consistency, and performance 
problems that preclude its use in a WAN environment. 

GridFTP [10] is used extensively in the grid to enable 
high throughput, operating system independent, and 
secure WAN access to high-performance file systems.  
Successful and popular, GridFTP nevertheless has some 
serious limitations: it copies data instead of providing 
shared access to a single copy, complicating its 



  

consistency model and decreasing storage capacity; lacks 
a global namespace; and cannot integrate with the local 
file system. 

GridNFS is not intended to replace GridFTP, but to 
work alongside it.  For example, in tiered projects such as 
ATLAS at CERN, GridFTP remains a natural choice for 
long-haul scheduled transfers among the upper tiers, 
while the file system semantics of GridNFS offers 
advantages in the lower tiers. GridNFS lets domain 
scientists work with files directly using conventional 
names, which promotes effective data management.  
GridNFS also offers seamless support for operating 
system extensions such as RDMA or file replication and 
migration. 

GPFS [11], Lustre [12], PolyServe Matrix Server [13] 
and GFS [14, 15] are examples of parallel file systems, 
architectures in which client nodes access data in parallel 
from storage nodes or disks.  They provide the high-speed 
storage systems that Split-Server NFSv4 utilizes to 
improve I/O throughput. 

5. Design 
The design goals of our NFSv4 extensions are: 

• Read and write performance scales linearly as parallel 
file system nodes are added or removed. 

• Single file system image with no partitioning. 
• Negligible impact to NFSv4 security model and fault 

tolerance semantics. 
• Support for COTS NFSv4 servers and clients. 
• Independent of underlying parallel file system. 

5.1. NFSv4 extensions 
Our design exports the file system from all available 

parallel file system nodes.  Any increase or decrease in 
available throughput of the parallel file system, e.g., 
additional nodes, increased network bandwidth, etc., will 
be reflected in Split-Server NFSv4. 

To export a file from multiple NFSv4 servers 
exporting shared storage, the servers need a common 
view of the global state.  NFSv4 servers must share state 
information and must do so consistently, i.e., with single-
copy semantics.  Without a consistent view of the state, 
conflicting file and byte-range locks may cause data 
corruption and leave the door open to malicious clients 
wishing to read and write unauthorized data. 

We use state servers to replicate the portions of state 
needed to serve READ, WRITE, and COMMIT requests 
at I/O nodes, known as data servers.  Figure 2 displays 
the Split-Server NFSv4 architecture.  By transforming 
NFSv4 into an out-of-band protocol, shown in Figure 3, 
we unleash the I/O scalability of the underlying parallel 
file system. 

A system administrator can partition the file space 
among several state servers, ensuring that all state for a 
single file resides on a single state server.  Control 
processing can be distributed by allowing data servers to 
handle operations that do not affect NFSv4 server state, 
e.g., unmodified SETATTR and GETATTR. 

 
Figure 2. Split-Server NFSv4 architecture.  
Storage consists of a parallel file system such 
as GPFS.   NFSv4 servers are divided into 
data servers, which handle all READ, WRITE, 
and COMMIT requests, and state servers, 
which handle all other requests. 

 
Figure 3. Process flow.  Client’s access data 
servers for I/O and non-state related requests 
and access state servers for file independent 
and file state requests.  State servers replicate 
state on data servers. 

5.2. Configuration and setup 
The mechanics of a client connection to a server are 

the same as NFSv4 with the client mounting the state 
server managing the file space of interest.  

Data servers register with state servers at start-up or 
any time thereafter and are immediately available to Split-
Server NFSv4 clients, allowing easy incremental growth.   

5.3. Distribution of state information 
On receiving an OPEN request, a state server 

determines which data server will service the data 
request. Our implementation currently uses a round-robin 
algorithm across the data servers.  The state server then 
replicates the appropriate state for the request on the 
selected data server. 

The following items constitute a unique identifier for 
share reservation state: 



  

• Client Name • Client Verifier 
• Client IP Address • File Open Owner 
• Access Bits • Deny Bits 
• File handle • State Server ID 

On receiving a CLOSE request from a client, the state 
server reclaims the state from the data server.  Once 
reclamation is complete, the standard NFSv4 close 
procedure proceeds. 

Beyond share reservations, lock support does not 
require maintaining any additional state.  NFSv4 uses 
POSIX locks and relies on the locking subsystem of the 
underlying parallel file system.  Delegations also require 
no additional state on the data servers as state servers 
manage conflicting access requests for a delegated file. 

5.4. Redirection of clients 
Client redirection uses a new attribute called 

FILE_LOCATION, which extends the recommended 
FS_LOCATIONS attribute to enable Split-Server NFSv4 to 
provide access to a single file via multiple nodes.   

The FILE_LOCATION attribute specifies: 
• Data server location information 
• Root pathname 
• Read-only flag 

Clients use this information to direct READ, WRITE 
and COMMIT requests to the named server.  The root 
pathname allows each data server to have its own 
namespace.  The read-only flag declares whether the data 
server will accept WRITE commands.   This flag can 
limit the number of nodes that can issue updates, possibly 
reducing data consistency overhead. 

6. Fault tolerance 
Our failure model follows that of NFSv4 with the 

following modifications:  
1. A failed state server can recover its runtime state by 

retrieving each part of the state from the data servers. 
2. The failure of a data server is not critical to system 

operation. 

6.1. Client failure and recovery 
An NFSv4 server places a lease on all share 

reservations, locks, and delegations.  Clients must send 
RENEW operations, i.e., heartbeat messages, to the 
server to retain their leases.  If a server does not receive a 
RENEW operation from the client within the lease period, 
the server is allowed to reap all state associated with the 
given client.  In NFSv4, implicit RENEW operations 
occur on all operations that require the client to send its 
identifier, saving network bandwidth and server CPU 
cycles.   

Since our out-of-band extensions redirect READ, 
WRITE, and COMMIT operations to the data servers, the 

renewal implicit in these operations no longer occurs on 
the state server.  In Split-Server NFSv4, RENEW 
operations are sent to a client’s mounted state server 
either by the client or by the data server that is actively 
fulfilling client requests.  Enabling data servers to send 
RENEW messages on behalf of a client may improve 
scalability by limiting the maximum number of renewal 
messages received by a state server to the number of data 
server nodes, potentially much smaller than the number of 
Split-Server NFSv4 clients. 

6.2. State server failure and recovery 
A recovering state server stops servicing requests 

while querying the data servers and using its State Server 
ID to identify and rebuild its state. 

6.3. Data server failure and recovery 
A failed data server is discovered by the state server as 

it tries to replicate state or by clients as they issue 
requests.  Clients obtain a new data server by re-
requesting the FILE_LOCATION attribute from the 
appropriate state server.  A partitioned data server 
immediately stops fulfilling client requests, preventing a 
state server from granting conflicting file access requests. 

7. Security 
The addition of data servers to the NFSv4 protocol 

does not require extra security mechanisms.  The client 
uses the security protocol negotiated with a state server 
for all nodes.  Servers communicate over RPCSEC_GSS, 
the secure RPC mandated for NFSv4.   

8. Evaluation 
In this section, we present the results of our scalability 

experiments with unmodified NFSv4 vs. Split-Server 
NFSv4 as they export a GPFS file system.  The test 
environment is shown in Figure 4.  All nodes are 
connected via an IntraCore 35160 gigabit switch with 
1500 byte Ethernet frames. 

Server System:  The five server nodes are equipped 
with 850 MHz Pentium 4 processors with a 256 KB 
cache, 2 GB of RAM, a Seagate 80GB, 7200 RPM hard 
drive with an Ultra ATA/100 interface and a 2 MB cache, 
an IBM/Hitachi 32GB, 7200 RPM hard drive with an 
Ultra ATA/100 interface and a 2 MB cache, and two 
3Com 3C996B-T gigabit cards.  They run a modified 
Linux 2.4.18 kernel with Red Hat 9.   

Client System:  Client nodes one through three are 
equipped with dual 1.7 GHz Pentium 4 processors with a 
256 KB cache, 2 GB of RAM, a Seagate 80 GB, 7200 
RPM hard drive with an Ultra ATA/100 interface and a 2 
MB cache, and a 3Com 3C996B-T gigabit card.  Client 



  

node four is equipped with 1.4 GHz Intel Xeon 
processors with a 256 KB cache, 1 GB RAM, an Adaptec 
40 GB, 10K RPM SCSI hard drive using Ultra 160 host 
adapter,  and a AceNIC gigabit Ethernet card.  All clients 
run the Linux 2.6.1 kernel with a Red Hat 9 distribution.   

Netapp FAS960 Filer:  The storage device has two 
processors, 6 GB of RAM, and a quad gigabit card.  It is 
connected to eight disks running RAID4. 

The five servers are running the parallel file system 
GPFS v1.3 with a 40 GB file system and a 16 KB block 
size on the Netapp Filer.  GPFS maintains a 32 MB file 
and metadata cache known as the pagepool.  All NFS 
experiments use forty server threads except the Split-
Server NFSv4 write experiments, which uses a single 
server thread since we are seeking the best possible 
performance (discussed in Section 8.4). 

 
 

Figure 4. Experimental setup.  The system 
has four Split-Server NFSv4 clients and five 
GPFS servers exporting a common file 
system.  The GPFS servers are exported by 
Split-Server NFSv4, consisting of a single state 
server and at most four data servers. 

8.1. Scalability experiments 
To evaluate the scalability of our design, we compare 

the aggregate I/O throughput as we increase the number 
of clients accessing GPFS, NFSv4, and Split-Server 
NFSv4.  Since both standard NFSv4 and Split-Server 
NFSv4 export a GPFS file system, the GPFS 
configuration provides the theoretical ceiling on NFSv4 
and Split-Server NFSv4 I/O throughput.  The extra hop 
between the GPFS server and the NFS client prevents the 
performance of NFSv4 and Split-Server NFSv4 from 
equaling GPFS performance.  The goal is for Split-Server 
NFSv4 to scale linearly with GPFS.  The GPFS 
configuration consists of a four node GPFS file system 
directly connected to the filer.  The NFSv4 configuration 
consists of a single NFSv4 server running on a GPFS 
node and four clients.  The Split-Server NFSv4 
configuration consists of a state server, four data servers 
(each running on a GPFS file system node), and four 
clients.  At most one client accesses each data server 
during an experiment. 

To measure the aggregate throughput, we used the 
IOZone [16] benchmark tool.  The first set of experiments 
involves each client reading/writing a separate 500 MB 
file.  The second set of experiments involves each client 

reading/writing disjoint 500 MB portions of a single pre-
existing file.  The aggregate throughput is calculated 
when the last client completes its task.  The presented 
value is the average over ten executions of the 
benchmark.  The write timing includes a flush of the 
client’s cache to the server.  Clients and servers purge 
their caches before each read experiment.  All read 
experiments use a warm filer cache to eliminate disk 
access irregularities. 

The experimental goal is to demonstrate that Split-
Server NFSv4 scales linearly with additional resources.  
We engineered a server bottleneck in the system by using 
a small GPFS pagepool and block size, and by cutting the 
number of server clock cycles in half.  By ensuring that 
each server is fully utilized, we are confident that our 
results are applicable to any system that needs to scale 
with additional servers. 

8.2. Read performance 
First, we measure the read performance as the number 

of clients increases from one to four.  Figure 5a presents 
the results with separate files and Figure 5b presents the 
results with a single file.  GPFS sets the ceiling on 
performance with an aggregate read throughput of 23 
MB/s with a single server and with four servers reaching 
94.1 MB/s and 91.9 MB/s in multiple and single file 
experiments respectively.  The slight decrease in 
performance for the single file experiment is because all 
servers must access a single metadata server.  With Split-
Server NFSv4, as we increase the number of clients and 
data servers the aggregate I/O throughput increases 
linearly, reaching 65.7 MB/s with multiple files and 59.4 
MB/s for the single file experiment.  NFSv4 aggregate 
throughput remains flat at approximately 16 MB/s in both 
experiments, very explicitly demonstrating the single 
server bottleneck. 

8.3. Write performance 
The second experiment measures the aggregate write 

throughput as we increase the number of clients from one 
to four.  We first measure the performance of all clients 
writing to separate files, as shown in Figure 6a.  

GPFS sets the limit with an aggregate write throughput 
of 16.7 MB/s with a single server and a maximum of 61.4 
MB/s with four servers.  The fourth server overloads the 
filer’s CPU.  NFSv4 and Split-Server NFSv4 initially 
have an aggregate throughput of approximately 8 MB/s.  
The aggregate throughput of Split-Server NFSv4 
increases linearly, reaching a maximum of 32 MB/s.  As 
in the read experiments, the aggregate throughput of 
NFSv4 remains flat as the number of clients is increased. 



  

 
 Figure 5a. Separate files  Figure 5b. Single file 

Aggregate read throughput - GPFS consists of up to four file system nodes.  NFSv4 is up to four clients 
accessing a single GPFS server.  Split-Server NFSv4 consists of up to four clients accessing up to four 
data servers and a state server.  Split-Server NFSv4 scales linearly as we increase the number of GPFS 
nodes but NFSv4 performance remains flat. 

  
 Figure 6a. Separate files  Figure 6b. Single file 

Aggregate write throughput - GPFS consists of up to four file system nodes.  NFSv4 is up to four 
clients accessing a single GPFS server.  Split-Server NFSv4 consists of up to four clients accessing up to 
four data servers and a state server.  With separate files, Split-Server NFSv4 scales linearly as we 
increase the number of GPFS nodes but NFSv4 performance remains flat.  With a single file, Split-Server 
NFSv4 experiences reduced performance due to mtime synchronization. 

Figure 6b shows the experimental results of each client 
writing to different regions of a single file.  The write 
performance of GPFS and NFSv4 is similar to the 
separate file experiments.  The major difference occurs 
with Split-Server NFSv4, achieving an initial aggregate 
throughput of 6.1 MB/s and increasing to 18.7 MB/s.  The 
initial poor performance and lack of scalability is the 
result of modification time (mtime) synchronization 
between GPFS servers.  This is disabled when accessing 
GPFS directly, but is mandatory with NFS to ensure 
client cache consistency.  GPFS selects the first node that 
accesses a file as its metadata server, thereby causing the 
GPFS server that the state server exports to be among 

servers that synchronize the mtime attribute, further 
reducing performance. 

8.4. Discussion 
GPFS synchronizes the mtime attribute to comply 

with the NFS protocol.  As demonstrated in the previous 
section, this comes at a price of severely hindering its 
scalability for access to a single file.  Client cache 
synchronization requires this overhead, but environments 
exist where it is unnecessary.  Some programs cache data 
themselves and use the OPEN option O_DIRECT to 
disable client caching for a file.  Other programs require 
only non-conflicting write consistency, handling data 
consistency without relying on locks or cache consistency 



  

mechanisms.  PVFS2 [17] is designed for such programs.  
To succeed in these environments, the NFS protocol must 
relax its client cache consistency semantics. 

Traditionally, NFS block sizes have been very small.  
Block sizes were 4 KB in NFSv2, grew to 8 KB in 
NFSv3, and most recent implementations now support 32 
KB or 64 KB.  Synchronous writes along with hardware 
and kernel limitations are some of the original reasons for 
small block sizes.  Another is UDP, which divides each 
block into multiple requests over the wire so that the loss 
of a single request means the loss of the entire block.  
With the introduction of TCP to the Linux 
implementation of NFS in 2002, jumbo frames, and larger 
buffer space allow for larger block sizes, but the current 
Linux kernel has a 32 KB limit.  This creates a disparity 
with many parallel file systems, which use a stripe size of 
greater than 64 KB.  To avoid this data request, 
inefficiency on the file node, NFS implementations need 
to catch up to parallel file systems like GPFS that support 
block sizes of greater than 1 MB to transfer data between 
storage, file and application nodes. 

Multiple NFS server threads can also reduce I/O 
throughput.  Even with a single NFS client, the parallel 
file system assumes all requests are from different 
sources and performs locking between threads.  In 
addition, server threads can process read and write 
requests out of order, hampering the parallel file system’s 
ability to improve its interaction with the physical disk. 

In NFSv3, the lack of OPEN and CLOSE commands 
leads to an implicit open and close of a file in the 
underlying file system on every request.  This does not 
degrade performance with local file systems such as Ext3, 
but the extra communication required to contact a 
metadata server in parallel file systems severely restricts 
NFSv3 throughput. 

9. Future work 
We are currently clarifying the FILE_LOCATION 

attribute with the Network Working Group and working 
toward its adoption in a minor version extension of the 
NFS protocol. 

Coordinated use of the parallel file system’s cache 
may be important under certain I/O access patterns. 
Server load balancing algorithms other than round robin 
may be better suited to these environments. 

Even though the state servers do not handle I/O 
requests, they may prove to be a bottleneck for a single 
file.  The Google file system [18] uses read-only 
replication of metadata, but this is be insufficient for our 
design as each state server requires write access.  
Automatic partitioning of the file space among state 
servers and automatic failover between state servers are 
also areas for future research. 

10. Conclusion 
This paper discusses the performance issues involved 

in exporting a parallel file system via NFS and introduces 
extensions to the NFSv4 protocol to improve the 
aggregate bandwidth and transparency between remote 
sites in a data grid.  Using on-demand replication and a 
new FILE_LOCATION attribute, Split-Server NFSv4 
provides parallel and scalable access to a parallel file 
system.  We implemented a prototype of our design and 
demonstrated that Split-Server NFSv4 scales linearly with 
the number of parallel file system nodes. 
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