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Abstract

The emerging global scientific collaborations demand a scalable, efficient, reliable, and still convenient data accessand manage-
ment scheme. To fulfill these requirements, this paper describes a replicated file system that supports mutable (i.e., read/write)
replication with strong consistency guarantees, small performance penalty, high failure resilience, and good scaling proper-
ties. The paper further evaluates the system using a real scientific application. The evaluation results show that the presented
replication system can significantly improve the application’s performance by reducing the first-time access latency to read the
input data and by distributing the verification of data access to a nearby server. Furthermore, the penalty of file replication is
negligible as long as applications use synchronous writes at a moderate rate.
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1. Introduction
The scientific community has seen an increasing demand
for global collaborations, spanning disciplines from high
energy physics, to climatology, to genomic. Applications in
these fields make intensive use of computational resources
far beyond the scope of a single organization, and require
access to massive amounts of data. This imposes new chal-
lenges in data access, processing, and distribution.

Driven by the needs of scientific collaborations, the
emerging Grid infrastructure [8, 9] aims to connect globally
distributed resources to a shared virtual computing and stor-
age system, offering a model for solving large-scale com-
putation problems. The sharing in Grid computing is not
merely file exchange but rather the direct access to comput-
ers , software, data, and other resources, as is required by a
range of collaborative scientific problem-solving patterns.

Presently, the primary data access method used on Grid
is GridFTP [21]. Engineered with Grid applications in
mind, GridFTP has many advantages: automatic negotia-
tion of TCP options to fill the pipe, parallel data transfer,
integrated Grid security, and partial transfers that can bere-
sumed. In addition, as an application, GridFTP is easy to
install and support across a broad range of platforms.

While simple and easy to implement, as a remote file
transfer protocol, GridFTP does not support sophisticated
distributed sharing that many Grid applications would re-
quire, which impedes theconvenient use of globally dis-
tributed resources for scientific studies.

For example, in a common Grid use case, a scientist
wants to run a simulation on high performance comput-
ing systems and analyze results on a visualization system.
With the Grid technologies available today, the scientist
submits the job to a Grid scheduler, such as Condor-G [11].
The Grid scheduler determines where to run the job, pre-
stages the input data to the running machines, monitors the
progress of the running job and when the job is complete,
transfers the output data to the visualization system through
GridFTP. The output data is reconstructed in the visualiza-
tion site, and the final results are returned to the scientist
after reconstruction.

The scenario is attractive as the scientist now is able to
use more computing resources to speed up his simulation.
However, the whole process is still performed in a batch

mode. The scientist cannot view the intermediate results
before the entire scheduled job is complete. Since scientific
simulations are problem-prone, needing to wait for hours or
days to discover a mistake in the experiment is inefficient.

To facilitate Grid computing over wide area networks,
we develop a replicated file system that provides users high
performance data access with the standard file system se-
mantics. The system supports a global name space and lo-
cation independent naming, so applications on any client
can access a file with the same name and without needing
to know where the data physically locates. It supports muta-
ble replication, i.e., read/write replication, with consistency
guarantees, so users can perform data modification easily,
safely, and efficiently. The semantics that the system pro-
vides is compatible with POSIX API, allowing easy deploy-
ment of unmodified scientific applications. We have imple-
mented our design in NFSv4, the emerging distributed file
system standard [19]. In latter discussion, we refer to the
implemented replication system asrNFS for short.
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Figure 1: A Grid use case example.
The figure shows a common Grid scenario. In the example, by
employing a replicated file system, the remote computation nodes
can access data from a nearby server. Meanwhile, the scientist can
view intermediate results and adjust experiment in real time.

Under rNFS, the scientist in the example described above
can now monitor and control the progress of the simulation
in real time. As illustrated in Figure 1, with the support
of a global name space, the scientist can run programs on
remote machines with the same pathname and without any
reconfiguration. By using a replicated file system, the in-
termediate output of simulation is automatically distributed



to the visualization center and the scientist’s computer. The
scientist can view intermediate results and determine if pa-
rameters or algorithms need to be adjusted. If so, he can
update them from his local computer and restart the sim-
ulation on the remote site, as simple as if he was running
the experiment locally. Meanwhile, the remote computation
nodes can still access data from a nearby server.

The remainder of the paper is organized as follows. We
first give an overview of the system architecture in Section
2. Then we focus the major part of the paper on applica-
tion evaluation, with which we examine how the system per-
forms over wide-area networks and what performance ben-
efit it can provide to Grid applications. Section 3 presents
the experimental results we collected, as well as the detailed
data analysis. Following that, we review the related work in
Section 4, and conclude in Section 5.

2. Design and Architecture
This section describes a replicated file system designed to
facilitate the data access and management of large-scale sci-
entific applications. Section 2.1 presents the design of a
naming scheme that supports a global name space and lo-
cation independent naming. Following that, Section 2.2 de-
scribes a replication protocol that provides mutable replica-
tion support with strong consistency guarantees.

2.1. Name Space Design
The NFSv4 protocol includes features to support read-
only file system replication using a special file attribute
FS LOCATIONS. By the NFSv4 specification, a client’s first
access to a replicated file system yields theFS LOCATIONS

attribute that lists alternative locations for the file system.
Complying with the published NFSv4 protocol, we also use
theFS LOCATIONS attribute to communicate replica loca-
tion information between servers and clients. However, the
namespace of rNFS includes two extended features.

First, we extend NFSv4 client side to support a global
name space that hides server location details from users. By
convention, a special directory/nfs is the global root of
all NFSv4 file systems. Entries under/nfs are mounted
on demand. The first time a user accesses any NFSv4 file
system, the referenced name is forwarded to a daemon that
queries DNS to map the given name to one or more file
server locations, selects a file server, and mounts it at the
point of reference. The format of reference names under
/nfs follows Domain Name System [16] conventions. We
use SRV Resource Record [17] to store server location in-
formation. The content of a SRV RR maps a reference name
to a list of file servers that hold the copies of data.

The second extended feature is the support for directory
replication. We implement directory replication by export-
ing a directory with an attached reference string that in-
cludes information on how to get directory replica locations.

When a client first accesses a replicated directory, the server
uses the attached reference string to resolve the replica lo-
cations of that directory, and sends this information to the
client through theFS LOCATIONS attribute.

2.2. Mutable Replication
To meet availability, performance, and scalability require-
ments, distributed services naturally turn to replication; file
service is no exception. While the concept of file sys-
tem replication is not new, existing solutions either forsake
read/write replication totally [4, 23, 26] or weaken consis-
tency guarantees [14, 24]. They fail to satisfy the require-
ments for global scientific collaborations.

Returning to the example described in Section 1, exper-
iment analysis is usually an iterative, collaborative process.
The stepwise refinement of analysis algorithms requires us-
ing multiple clusters to reduce development time. Although
the workloads during this process are often dominated by
read, they also demand the underling system to support
write operations. Furthermore, strong consistency guaran-
tees are often taken for granted, e.g., an executable may in-
corporate user code that is finished only seconds before the
submission of the command that requires to use the code.

In this section, we present a mutable file replication pro-
tocol that balances the tradeoff among consistency, per-
formance, and failure resilience by offering applications
stringent yet flexible consistency guarantees. The protocol
can guarantee either ordered writes or synchronized access,
without adding overhead on normal reads. It can tolerate
a large class of server crash or link failures, even when
these lead to network partitioning. Our design uses stan-
dard POSIX features, which makes it easy to deploy.

Below, we first describe a replication scheme that guar-
antees ordered writes. Based on that, we present the addi-
tional mechanisms to enforce synchronized access. In the
following discussion, we refer the first consistency model
as sequential consistency, and the second as synchronized
accessed. We note that we only highlights the important
features of rNFS here for evaluation purpose. For more de-
sign details, readers can refer to another paper [27].

2.2.1. Sequential Consistency

By default, our replication protocol guarantees ordered
writes in which replication servers do not necessarily see
updates simultaneously, but they are guaranteed to see them
in the same order. In this model, when a client opens a
file for writing, the chosen server temporarily becomes the
primary server for that file. All other replication servers
are instructed to forward client write requests for that file
to the primary server. When the file is closed, the primary
server withdraws from its leading role by notifying other
replication servers to stop forwarding writes. In the follow-



ing discussion, we refer to the first procedure as disabling
replication, and the latter as re-enabling replication.

The idea of using primary copy to support data replica-
tion or backup is not new [12, 15]. However, compared
with the traditional primary copy scheme, our design has
the following advantages. First, in rNFS, the overhead to
support mutable replication is induced only when there are
writes happening. If there are no writes, the system be-
haves as a read-only replication system, i.e., a client ac-
cesses data from a nearby server. Second, a primary server
is selected on the granularity of a single file, and thus al-
lows fine-grained load balancing. Third, in rNFS, a primary
server is dynamically chosen at the time that a file is write
opened. So in most cases (exclusive write cases), a client’s
write requests are served by a nearby primary server. Fur-
thermore, the solution well suits the Grid computing envi-
ronment where a replica can be dynamically created and it
is hard to decide an optimal primary server for a file before-
hand. And fourth, we develop a failure recovery mechanism
that conforms with the described primary copy model, as
next paragraph presents. We note for emphasis that in rNFS,
failure detection and recovery are driven by client accesses,
so no heartbeat messages or special group communication
services are needed.

To guarantee consistency upon failures, every replication
server keeps track of the liveness of other servers. The set of
live servers is called the active view. To avoid unnecessary
network traffic, we do not use periodic heartbeat to maintain
active view. Rather, in our system, active view is refreshed
during updates. Basically, during file modification, the pri-
mary server removes from its active view any server that
fails to respond to its request. The primary server can ac-
knowledge a client write request only if it receives acknowl-
edgments from a majority of replication servers. When the
file is closed, the primary server sends its active view to
other active servers. A server not in the active view may
have stale data, so the active servers refuse any later request
that comes from a server not in its active view. A failed
replication server can rejoin the active group only after it
synchronizes with the up-to-date copy.

By requiring a distributed update to reach a majority of
replication servers before replying to a client write request,
rNFS can automatically recover from a failure (including
primary server failure and partition failure) and continu-
ously serve client requests as long as a majority of the repli-
cation servers are in working order. In our system, update
distribution is performed in parallel. So the system perfor-
mance is not affected by occasional message delays or the
failure of a minority of the replication servers. Furthermore,
the response time for a client write request is determined by
the median RTT between the primary server and the repli-
cation servers. In the latter discussion, we refer this RTT as
majority RTTfor short.

2.2.2. Synchronized Access

To support synchronized access without imposing overhead
on applications that require ordered writes only, we pro-
vide synchronization guarantee as an option that can be
demanded by applications through POSIX synchronization
flags in the open system call interface [3].

By the POSIX specification, if an application opens a
file with O SYNC flag set, a subsequent write operation is
complete only when the written data and all file attributes
relative to the operation, e.g., modification time, is written
to the permanent storage; if an application opens a file with
both O SYNC andO RSYNC flags set, a read operation is
complete only when any pending writes affecting the data to
be read is successfully transferred to the requesting process.

Our system takes these flags as the hint that the applica-
tion is demanding synchronized access. When the primary
server receives a synchronous write request (i.e., ifO SYNC
flag of the file is set or if the file owner requests a fsync)
from a client, it must ensure that every replication server
has acknowledged its role before returning a reply to the
client. By default, a replication server forwards write re-
quests only while its replication is disabled. However, if
during this period, a client opens the file with synchronous
read requirements (i.e., ifO SYNC andO RSYNC flags of
the file are set), the replication server forwards the client’s
read requests to the primary server as well.

With the described mechanism, slight overhead is in-
duced to guarantee synchronized access when applications
demand it; longer delay is charged on forwarded operations
if concurrent writes occur; If a file is not under modification,
any read requests for the file, even those with synchroniza-
tion requirement, are processed by a nearby server.

2.2.3. Summary and Discussion

There are two primary reasons to maintain consistency
among replication servers: first, to guarantee data durability
(i.e., no data lost) after recovery of failure; and second, to
guarantee correctness during concurrent writes. The second
reason involves two cases. The first is to guarantee write or-
dering with multiple writers, and the second is to guarantee
synchronization for simultaneous read and write.

To guarantee data durability, we require a distributed up-
date to reach a majority of replication servers before reply-
ing to a client write request, so the system can always find
a valid copy (i.e., a copy that reflects all the acknowledged
writes) in the majority partition if a failure occurs. In addi-
tion to that, we develop two consistency models: sequential
consistency and synchronized access consistency. The first
consistency model guarantees ordered writes with the pri-
mary server as a central point to decide the order of writes.
The second consistency model further guarantees that a syn-
chronous read reflects the most recent write by ensuring



that every replication server has noticed that the file is un-
der modification upon synchronous writes, and that a syn-
chronous read request is processed by the primary server.

We can observe that in the synchronized access model,
a primary server can not be elected even if a single repli-
cation server fails. So compared with the sequential con-
sistency model, synchronized access provides stronger con-
sistency guarantee but less failure resilience. Although our
system provides different failure resilience in the support of
different consistency requirements, these design choicesare
based on the same principle, namely, to offer applications a
reliable data service.

We notice that for scientific applications, losing compu-
tation results can cause expensive cost, and sometimes even
correctness problems. E.g., scientific applications usually
keep track of their computation progress through log files.
Suppose that a failure occurs after an application just com-
pletes some computation and records that in a log file. In
a system that provides no data durability guarantee, even
though the log file indicates that the computation has com-
pleted, the results may be lost after recovery of failure.
Hence, the user cannot tell where the computation should
be restarted.

Based on these considerations, we develop a replication
protocol that always guarantees durability of written data
acknowledged by the server. Under this prerequisite, the
system makes the best effort to mask a failure from appli-
cations. However, in case of a non-recoverable failure, we
elect to report the failure to the application immediately,in-
stead of masking it, which risks losing the results of a com-
putation or executing incorrect programs.

Another issue introduced in the synchronized access
model is that existing programs may not use open synchro-
nization flags to specify their consistency requirements as
we expect. Thus modifications are required on the pro-
gram’s open calls to ensure synchronized access. As a
makeshift, we can provide synchronization support as a
mount option so that the current applications can be de-
ployed without any modification. However, we still rec-
ommend the proposed approach for it allows applications to
control file sharing behavior more flexibly. Consider the ex-
ample of an edit-and-run procedure. The program is edited
on one client, and then a number of clients are instructed to
execute it. Because the execution instruction can be issued
immediately after the program editing, the access on the file
must be coordinated. In rNFS, correct synchronization be-
havior can be guaranteed if the editor application issues a
fsync system call after completing the editing, and the ex-
ecution application opens the file with bothO SYNC and
O RSYNC flags set. On the other hand, another application,
e.g., a snapshot tool, can choose to open the file without set-
ting any synchronization flags as sequential consistency is
sufficient to guarantee its correctness.

3. Evaluation
After highlighting the important features of our system, in
this section, we explore the performance of rNFS with a
real scientific application over the simulated wide-area net-
works. The application we use is from the Atlas simu-
lation software, a cluster-based, data-intensive, distributed
program poised for deployment in Grid. For evaluation pur-
pose, we focus on the usage scenarios similar to the one
depicted in Figure 1. However, we expect that many of our
finds apply to other scenarios as well.

We measured all the experiments presented in this pa-
per with a prototype implemented in Linux 2.6.12 kernel.
Servers and clients all run on dual 2.8GHz Intel Pentium4
processors with 1024 KB L2 cache, 1 GB memory, and dual
Intel 82547GI Gigabit Ethernet cards onboard. The num-
ber of bytes NFS uses for reading (rsize) and writing files
(wsize) are set as 32768 bytes. In all experiments, we use
NistNet simulator [7] to simulate the network delays. All
numbers presented are mean values from three trials of each
experiment; standard deviations (not shown) are within five
percent of the mean values.

Below, after a brief description of the Atlas software,
we describe the experiments with these applications and
present the evaluation results.

3.1. Atlas Applications
Atlas is a particle physics project that searches for new dis-
coveries in the high-energy proton collisions [1]. The pro-
tons will be accelerated in the Large Hadron Collider accel-
erator, currently under construction at the European Lab-
oratory for Particle Physics (CERN) near Geneva [2]. The
accelerator is expected to start operating in 2007. After that,
on the order of a petabyte of raw data will be produced each
year and distributed to a multi-tiered collection of decen-
tralized sites for analysis. Atlas is the largest collaborative
effort ever attempted in the physical sciences. 1800 physi-
cists from more than 150 universities and laboratories in 34
countries participate in this experiment. With the massive
amount of data to be processed and the widely distributed
collaborators, Atlas stands to benefit from a scalable and
reliable data access and management scheme, which is also
what our design targets.

Currently, Atlas is performing large-scale simulation of
physics events that will occur within an Atlas detector.
These simulation efforts support detector design and the de-
velopment of real-time event filtering algorithms that are
critical for controlling the flood of data when LHC acceler-
ator is running.

The Atlas simulation event data model consists of four
stages. The first stage,Event Generation, uses a seed
to produce pseudo-random events drawn from a statistical
distribution deduced from other experiments. The second



stage,Simulation, reads the generated events and sim-
ulates the passage of particles through the detectors. The
third stage,Digitization, converts simulated hit events
into digital outputs (called digits). The digits are fed to
the fourth stage,Reconstruction, which performs pat-
tern recognition and track reconstruction algorithms, con-
verting raw digital data into meaningful physics quantities.
The four stages have different computational requirements
and generate different amounts of output data. For example,
when processing 1000 events on a dual 2.4 GHz Pentium4
processors with 1 GB memory,Event Generation
takes two minutes to finish and generates 20 MB of out-
put;Simulation stage takes 33 hours and generates 800
MB; Digitization takes 8 hours and generates 1.6 GB;
andReconstruction takes 8 hours to finish, generating
8 to 20 MB output data.

In this paper, we skip over discussion of the first two
stages: the time spent onEvent Generation is consid-
erably less than the other three, whileSimulation is ut-
terly CPU bound, thus Atlas performance is not likely to be
sensitive to our work on the I/O side. Our analysis focuses
on Digitization andReconstruction, where we
want to investigate the performance of rNFS from the fol-
lowing two aspects.

First, to demonstrate the benefit of server replication for
global-scale scientific applications and to quantify the cost
of remote replication for write operations, we compare the
performance of rNFS against single server configuration
with the above Atlas applications. From the evaluation re-
sults presented in Section 3.2, we can draw two conclusions.
First, we observe that server replication can significantly
improve these applications’ performance by reducing their
first-time access latency to read the input data and by dis-
tributing the verification of data access to a nearby server.
Second, the penalty of file replication is slight for applica-
tions that write their output results at a moderate rate.

Second, to evaluate our design for synchronized access
support, we compare the performance of rNFS against sin-
gle server access with a simple emulated edit-and-run ex-
ample. The experiment results presented in Section 3.3 sug-
gest that in most cases, the performance penalty to guaran-
tee synchronized access in rNFS is negligible.

3.2. Performance Comparison
To evaluate the presented replication scheme, we com-
pare the performance of AtlasDigitization and
Reconstruction with three different distribution mod-
els. In each distribution model, we ran the Atlas applica-
tions on a pair of NFSv4 clients. We set the RTT between
the two clients to 120 msec, the measuredping time from
our experimental test bed to CERN. Figure 2 illustrates the
experimental setups. As shown, in the Local-Remote distri-
bution, the clients access data from a single NFS server lo-
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Figure 2: Atlas evaluation experiment setup.

The figure illustrates the experimental setup for the Atlas evalu-
ations. We compare the performance of three distribution mod-
els and use two clients in each of them. In Local-Remote model,
the clients access data from a single server located on one client’s
LAN. In Midway model, we place a single server half way be-
tween the two clients. In Replication model, we place a replication
server on each of the client’s LAN.

cated on one client’s LAN. In the Midway distribution, we
place a single NFS server half way between the two clients.
In the Replication distribution model, we place a replication
server on each of the client’s LAN.

In the experiments presented in this subsection, the num-
ber of events to test is set to 100, with each client processing
50 events. Our experiments use theDigitization and
Reconstruction software from the Atlas 10.0.4 instal-
lation package. ForReconstruction, we applied all the
algorithms included in the default installation.

For Local-Remote and Midway distribution models, we
present the performance measured with both cold and warm
client caches. With Replication, cache temperature does
not influence the run time of either application: un-cached
items are retrieved from the nearby replication server, and
the cost of those retrievals is minuscule in the context of the
overall run times of the applications.

Figures 3 and 4 show the run times for the Atlas
Reconstruction and Digitization applications.
As the results show, Replication outperforms Local-Remote
and Midway for both applications. To see just where the
performance improvements come from, we further divide
the applications into three phases and measured the time
spent on each of them.

In theSetup phase, the applications prepare their run-
time environments. In theInitialization phase,
the applications read header files and libraries and link
them into executables (We measured the initialization time
by setting the number of simulation events to 0). The
Execution phase processes events; we calculate the
Execution time by subtracting the time spent on the first
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Figure 3: Atlas Reconstruction.
The figure shows the running time for Atlas Reconstruction. In
each category, the first column shows the run time measured on
the left side client in Figure 2, and the second column shows the
measured performance on the other client.

two phases from the total running time.

Examining the detailed experimental results presented
in Figures 3 and 4, we see that for both applica-
tions, most performance benefit of replication comes from
Initialization and Setup. We were surprised to
find that even with a warm cache, the performance of these
two phases still suffers dramatically as the RTT between the
server and the client increases. Taking a close look at that
network traffic with a warm cache client, we were surprised
to see that a huge number of file open requests are sent dur-
ing these two phases, as NFSv4 has a delegation scheme
that allows a client to perform subsequent open requests lo-
cally after the first call in the absence of shared writers. Fur-
ther examination reveals that most of these open requests
were met by “No entry exists” error, obviating any
potential delegation advantage.

We believe that the applications are issuing these open
requests as a way of examining the configuration of the local
environment. The cost of doing this on a local or nearby file
system is too small to make a substantial difference in the
running time, but begins to have an impact as the server is
made more and more remote. Here replication helps by al-
lowing the open requests to fail on a nearby server, with the
performance comparable to accessing a single local server.

In theExecution phase, AtlasDigitization pro-
duces about 7.2 MB of output data per process. The data
is read byReconstruction during theExecution
phase, whose output size shrinks to 1.4 MB in our measure-
ments. Figures 3 shows that for AtlasReconstruction,
the performance of theExecution phase is similar in all
three distribution models. However, this is not the case in
theDigitization stage, as observed in Figure 4. There,
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Figure 4: Atlas Digitization.
The figure shows the running time for Atlas Digitization. In each
category, the first column shows the run time measured on the left
side client in Figure 2, and the second column shows the measured
performance on the other client.

Executionwith a remote server is about 50% more costly
thanExecution with a local server, andExecution
with replication is comparable to the latter.

Although AtlasDigitization generates a significant
amount of output, we were still surprised that the perfor-
mance penalty for remote replication is so high. So we
examined the trace data collected during the experiment
and find that the high performance cost observed during
Execution is mainly caused by a significant number of
fsync system calls. I.e., more than 900 fsync calls are used
with 50 event digitization, compared with 60 fsync calls ob-
served with 50 event reconstruction.

To estimate the performance of AtlasDigitization
without the impact of the aggressive use of synchronous
writes, we eliminate these fsync calls and re-run the exper-
iment. Figure 5 shows the re-measured results. As the eval-
uation data demonstrates, the performance difference be-
tween local server access and replication becomes smaller,
i.e.,Executionwith replication is about 20% slower than
Executionwith local access. The remained performance
overhead is caused by the large bursty writes that exhausts
the client’s cache.

We have reported this observation to the Atlas develop-
ers. It seems that the overwhelming use of fsync is an im-
plementation issue rather than necessaries. However, such
kinds of problem may not be rare in practice since most
programs in use today are developed in local environments.

Because the four Atlas stages are typically run together
as a pipeline, the above problem can be avoided by keep-
ing intermediate outputs in local temporary files and write
only final results over distributed file systems. Researchers
have shown that a diamond-shaped storage profile is a char-
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Figure 5: Atlas Digitization without fsync.
The figure shows the running time for Atlas Digitization with
fsync calls removed.

acteristic behavior among scientific applications [25]. I.e.,
small inputs are expanded by early stages into large inter-
mediate results, which are often reduced by later stages to
small results. This observation implies that it is more ef-
ficient to store intermediate results in local storage rather
than distributing them remotely. However, when making
such decisions, users should also consider the tradeoff be-
tween performance and the cost to re-compute intermediate
results if a failure occurs.

We notice that a fundamental problem reflected here is
that applications usually use fsync to require different con-
sistency guarantees without distinction. The cost of doing
this in a local file system is small, but starts to impact per-
formance as the system becomes widely distributed. As an
alternative solution, we suggest that applications use asyn-
chronous fsync to require data durability guarantee, and use
fsync and open synchronization flags to coordinate concur-
rent accesses. We note that distinguishing these different
consistency requirements not only allows applications to
utilize a consistent mutable replication system at little over-
head, but also helps to reduce performance cost in single
remote server access.

3.3. Performance of Synchronized Access
This section evaluates the performance of rNFS when syn-
chronized access guarantee is required. In particular, we
take a simple edit-and-run example in which a user edits
a file on one client and starts running it on another client.
For evaluation purpose, we emulate this example by over-
writing a file on one client and then immediately reading
it from another client. To guarantee read-after-write syn-
chronization, the first client (writer) issues a fsync call after
overwriting the file, and the second client (reader) uses syn-
chronous reads.
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Figure 6: Synchronized access evaluation experiment setup.
The figure illustrates the experiment setup for synchronized ac-
cess evaluation. We measured the time to overwrite a file or syn-
chronously read a modified file in five distribution models. In
OneServer-120ms and OneServer-60ms, the client accesses asin-
gle server with the RTTs of 120ms and 60ms, respectively. In
2Rep-120ms and 2Rep-60ms, two replication servers are used
with the intermediate RTTs of 120ms and 60ms, respectively.In
both distributions, the client connects to a replication server in its
LAN. In 3Rep, three replication servers are used with the RTTs
among them set to 60ms, 60ms, and 120ms; the writer (client1)
and the reader (client2) locate remote from each other, and each
connects to a server in its LAN.

Below, we first describe the experiment setup. After that,
we report the execution time measured on the writer and the
reader, respectively.

We measured the time to overwrite a file and/or to syn-
chronously read a modified file in five different distribu-
tion models, as illustrated in Figure 6. In OneServer-120ms
and OneServer-60ms distributions, the client accesses a sin-
gle remote server with the RTTs of 120ms and 60ms, re-
spectively. In 2Rep-120ms and 2Rep-60ms distributions,
two replication servers are used with the intermediate RTTs
of 120ms and 60ms, respectively. In 3Rep distribution,
we construct an unbalanced configuration by placing three
replication servers with the RTTs among them set to 60ms,
60ms, and 120ms.

Figure 7 shows the total time measured on the writer to
overwrite and then fsync a file. In general, replication out-
performs single remote server access with the same distri-
bution RTT. The performance benefit comes from the re-
duced number of remote messages sent to open the file and
to check the file’s access mode and attributes.

In rNFS, the primary server needs to guarantee that all
replication servers have acknowledged its role when it re-
ceives a synchronous write request. After receiving replies
from all other replication servers, the primary server can
reply to a client write request as soon as it gets acknowl-
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Figure 7: Synchronized writes.
The figure shows the measured time to overwrite & fsync a file as
the file size increases. The experiment setup is shown in Figure 6.

edgments from half of the other replication servers. So we
expect that the synchronous write performance in rNFS is
dictated by the majority RTT rather than the longest RTT
among the replication servers. The measured experiment
results validate our prediction. As observed, the execution
time measured in 3Rep distribution is close to that measured
in 2Rep-60ms distribution. A slightly longer delay is ob-
served when the file size is small, corresponding to the wait-
ing time when the primary server processes the first syn-
chronous write request. The delay disappears as the file size
becomes large, because in those cases, when the first syn-
chronous write request triggered by fsync reaches the pri-
mary server, it has already received the acknowledgments
from all other replication servers.

After evaluating the write performance during synchro-
nized access, we now move to the reader side.

Figure 8 shows the time to synchronously read a file that
is just modified by the writer. To evaluate the performance
when read forwarding occurs, we pay special attentions to
the 3Rep distribution. In rNFS, the primary server responds
to the close request immediately but delays replication re-
enabling untill all file updates have been acknowledged by
every active replication server. With an unbalanced replica-
tion server distribution, a slow or remote server can fall be-
hind from file modification with a burst of writes. So when
the reader starts accessing the file, the replication on the
server it connects to may still be disabled. As mentioned,
the replication server forwards the client synchronous read
request to the primary server in this case.

In the experiments, we first start reading the file on the
reader by immediately sending a ssh command from the
writer after file modification finishes. The network de-
lay between the writer and the reader is set to 120ms, as
the experiment setup depicts. However, with this starting
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Figure 8: Synchronized reads.
The figure shows the measured time to synchronously read a file
that is just modified on another client. In the experiment, 3Rep-
ssh-start and 3Rep-nodelay-start both use the 3Rep configuration
as depicted in Figure 6. In 3Rep-ssh-start, we start readingthe file
by sending an ssh command from the writer after writes complete.
In 3Rep-nodelay-start, we starts reading the file immediately after
file modification, without the cross-wire latency between the two
clients. As comparison, we also present the time measured with
both the writer and the reader connecting to a single local server
and a single remote server, as represented by OneServer-local and
OneServer-120ms respectively. In OneServer-120ms, the RTT be-
tween the server and the client is set to 120ms.

method, no forwarded reads are observed because the la-
tency of sending an ssh command dominates the delay of
re-enabling replication. As observed, the read performance
in such cases is similar to that when both the writer and the
reader are connected to a single local server.

For evaluation purpose, we artificially start reading the
file right after file modification. In this situation, we ob-
serve that the first read request from the reader is forwarded
to the primary server. After that, the replication of the fileis
re-enabled in the system. So the subsequent read requests
are processed by the nearby server that the client connects
to. As Figure 8 shows, the performance with 3Rep-nodelay-
start stays nearly the same as the file size increases, com-
pared with the climbing delay observed when reading the
file from a single remote server. The overhead caused by
the forwarded read request corresponds to the performance
difference observed between 3Rep-nodelay-start and read-
ing a single local server, which is about the same as the RTT
between the replication server and the primary server.

In summary, the evaluation results presented in this sec-
tion show that usually users observe no additional cost
during synchronized access in rNFS; a slight performance
penalty is charged in the case that read forwarding does oc-
cur, but even then, the performance of rNFS still signifi-
cantly outperforms remote server access.



4. Related Work
In distributed file systems, various consistency guarantees
have been introduced. The most stringent guarantee,strict
consistency, assures that all clients see precisely the same
data at all times. Although semantically ideal, strict consis-
tency can be detrimental to performance and availability in
networks with high latency, many clients, and the potential
for partition. On the other end of the spectrum, consistency
guarantees are abandoned altogether, e.g., in P2P systems
that strive to maximize availability [20, 18, 22], or are re-
placed by heuristics for addressing conflicts when they hap-
pen [24, 14], i.e.,optimistic replication. To balance the
benefit of replication with the cost of guaranteeing consis-
tent access, some distributed file systems provideread-only
access to replicated files, side-stepping update consistency
problems altogether [23, 4, 26].

We observe that although optimistic replication has been
widely studied, few applications in reality are prepared to
deal with the conflicts that might happen. Even if applica-
tions can provide such support, conflict resolution must be
performed carefully; otherwise, the cost to reproduce data,
if possible, can be considerable. The lack of consistency
guarantees makes it infeasible for scientific collaborations
which require reliable and coordinated data access.

For its superior read performance, read-only replication
has been favored in the current Grid experimental platform
[8]. With read-only replication, once a file is declared as
shared by its creator, it cannot be modified. An immutable
file has two important properties. I.e., its name may not
be reused and its contents may not be altered. While sim-
ple, read-only replication has several deficiencies. First, it
fails to support complex sharing behavior, e.g., concurrent
writes. Second, to guarantee uniqueness of file names, file
creation and retrieval require a special API, which hinders
using the software developed in the traditional computing
environment for global collaborations.

Various middlewares have been developed with the goal
to facilitate data access on the Grid.Storage Resource
Broker (SRB) [5] utilizes metadata catalog service to al-
low location-transparent access for heterogeneous data sets.
NeST [6], a user-level local storage software, provides best-
effort storage space guarantees, mechanisms for resource
and data discovery, user authentication, quality of service
and multiple transport protocol support, with the goal to
bring appliance technology to the Grid. TheChimera sys-
tem [10] provides a virtual data catalog that can be used by
applications to describe a set of programs, and then track
all the data files produced by executing them. The work is
motivated by observing that a lot of scientific data is derived
from other data by the application of computational proce-
dure, which implies the need for a flexible data sharing and
access system.

A common missing feature among these middlewares is

the lack of supporting fine-grained data sharing semantics.
Furthermore, most of these systems provide extended fea-
tures by defining their own API. In order to use them, an
application has to be re-linked with their libraries.

The emerging large-scale scientific collaborations have
stimulated the growing research in scientific workload stud-
ies. Here we only summarize two recent works that are di-
rectly related to our study.

Thain et al. study the workload characteristics of six sci-
entific applications [25] whose workloads are composed of
several pipelines. The studied workloads demonstrate three
common behaviors: First, small initial inputs are usually ex-
panded by early stages into large intermediate results, which
are often reduced by later stages to small results. Second,
although users tend to identify large data collections needed
by an application, in a given execution, applications usually
selects a small working set. And third, significant data shar-
ing are observed for users often submit large numbers of
very similar jobs that access similar working sets.

Holtman et al. investigate the data processing require-
ments that CMS experiments demands and the expected
workload characteristics after the LHC collider starts run-
ning [13]. Regarding to file access, they point out that the
CMS workloads will be dominated by reading, and the step-
wise refinement of algorithms will lead to a workload where
series of jobs are run over the same input data, with each job
containing the refined code or parameter. Sometimes, CMS
applications need to randomly access data from data sets
that are too large to stage to every machine in a site. Such
use cases require accessing files on a large file system lo-
cal to the site. Furthermore, CMS expects to access files
through regular POSIX I/O calls without re-linking with
special libraries.

5. Conclusion
Supporting consistent mutable replication in large-scaledis-
tributed file systems is traditionally considered too expen-
sive to utilize. The work presented in this paper demon-
strates that it is feasible and practical to provide such sup-
port with negligible impact on common case performance.
In the paper, we describe a replicated file system designed
to meet the needs of global collaborations. The system sup-
ports a global name space and location independent nam-
ing, which facilitates data sharing, distribution, and man-
agement. It uses a replication protocol that supports muta-
ble replication with stringent yet flexible consistency guar-
antees. The evaluation results using a real scientific applica-
tion show that the presented replication system can signif-
icantly improve application performance by allowing them
to access data from a nearby server. Furthermore, the per-
formance overhead to support mutable replication and to
guarantee consistency is small as long as applications use
synchronous write at a moderate rate.
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