
CITI Technical Report 06-03

Hierarchical Replication Control

Jiaying Zhang
jiayingz@eecs.umich.edu

Peter Honeyman
honey@citi.umich.edu

ABSTRACT

We present a hierarchical locking algorithm that dynamically elects a primary server in a replicated file
system at various granularities. We introduce two lock types: shallow locks that control a single file or
directory, and deep locks that lock everything in the subtree rooted at a directory. Experimental results
show that for typical use cases, deep locks can make the overhead of replication control negligible, even
when replication servers are widely distributed.

May 5, 2006

Center for Information Technology Integration

University of Michigan

535 W. William St., Suite 3100

Ann Arbor, MI 48103-4978

2

Hierarchical Replication Control

Jiaying Zhang
jiayingz@eecs.umich.edu

Peter Honeyman
honey@citi.umich.edu

1. Introduction

Global scientific collaborations are characterized by

elect member organizations sharing resources — compute
and storage grids, instruments, and access — in dynamic
virtual organizations [1, 2]. Rapid advances in storage
and network technologies present new opportunities for
creating and sharing massive data sets in these global vir-
tual organizations. Concurrent advances in Internet mid-
dleware infrastructure — notably, near-universal
deployment of NFSv4 [3, 4] — offer virtual organizations
immense opportunities along a spectrum that includes
supercomputer clusters at one end and global distribution
at the other.

The performance and reliability advantages of data
replication are especially relevant to global scientific col-
laboration. Collaborative access often requires shared
access, so replicated data servers must specify and adhere
to policies for concurrent update, such as ordered writes
or a strict one-copy view. Collaborating scientists also
need to know that data created or modified in replicated
storage is durable.

Experience with a mutable replication extension to
NFSv4 has shown that the needs of scientific collabora-
tions are a good match for replicated storage, but the
computations themselves, sometimes based on codes tar-
geted for platforms of yore, can introduce extreme or pe-
culiar behavior that affects performance [8].

Our replication extension to NFSv4 coordinates con-
current writes by selecting a primary server [7]. Unlike
the conventional primary copy approach, we do not assign
primary servers in advance, and allow any client to
choose any relevant server when it opens a file. With no
writers, the system has the performance profile of systems
that support read-only replication (e.g., AFS): use a
nearby server, support transparent client rollover on
server failure, etc. Unlike read-only systems, we support
concurrent access with writers. Performance penalties are
slight, and are induced only when writers are active.

The system works as follows. When a server receives
an update request, it forwards the request to the primary
server for that object. If there is none, the server becomes

primary by notifying other replication servers to forward
any update requests for that object. The primary server
lazily distributes updates to other servers. When the last
writer is done, the primary server notifies the other repli-
cation servers that there is no longer a primary server for
the object.

The protocol for electing a primary server can be de-
layed waiting for acknowledgments from slow or distant
replication servers. To reduce the performance penalty,
we are looking at ways to amortize costs over more re-
quests. One way is to allow a primary server to assert
control over a directory and its constituent entries, and
beyond that to the entire subtree rooted at a directory.

Becoming the primary server for an object resembles
the acquisition of a lock for the object distributed among
all the replication servers. Electing a primary server with
the granularity of a single file allows high concurrency
and fine-grained load balancing, but a coarser granularity
is more suitable for applications whose updates exhibit
high temporal locality and are spread across a directory or
a file system. The problem is therefore to find an appro-
priate locking granularity that balances the performance
and concurrency tradeoff.

Lock granularity has been studied in database systems
and distributed systems. Many modern transactional sys-
tems use hierarchical locking [5] to improve concurrency
and performance of simultaneous transactions. In distrib-
uted file systems, Frangipani [11] uses distributed locking
to control concurrent accesses among multiple shared-
disk servers. For efficiency, it partitions locks into dis-
tinct lock groups and assign them to servers by group, not
individually. Y. Lin, etc., study the selection of lease
granularity when distributed file systems use leases to
provide strong cache consistency [6]. To amortize leasing
overhead across multiple objects in a volume, they pro-
pose volume leases that combine short-term leases on
group of files (volumes) with long-term leases on individ-
ual files. Farsite [12], a decentralized distributed file sys-
tem, uses content leases to govern which client machines
currently have control of a file’s content. A content lease
may cover a single file or an entire directory of files.

In the next section, we look at some design choices to
choose appropriate granularities during primary server

2

election and the impact they have on performance in a
replicated file system that intends global scale.

2. Lock granularity

We introduce two lock types: shallow and deep. A

server holding a shallow lock on a file or a directory is the
primary server for that file or directory. A server holding
a deep lock on a directory D is the primary server for D
and all of the files and directories in D, and holds a deep
lock on all the directories in D. In other words, a deep
lock on D makes the server primary for everything in the
subtree rooted at D.

The two diagrams in Figure 1 describe a heuristic for
supporting deep locks.

Figure 1. The locking protocol used in the elec-
tion of a primary server.

Figure 2. The structure and maintenance of en-
tries in the ancestry table.

When a replication server receives a deep lock request,
it checks if the referred directory has any descendant cur-
rently locked by a different server. To avoid scanning the
directory tree when receiving the request, we do some
bookkeeping when locking objects.

Each replication server maintains an ancestry table for
locked files or directories. An entry in the ancestry table
corresponds to a directory that has one or more locked
decedents. Figure 2 provides the data structure of entries
in the ancestry table and an example that illustrates how
the ancestry table is maintained.

The data structure of an ancestry entry contains an ar-
ray of counters, each of which corresponds to a replica-
tion server. E.g., if there are three replication servers in
the system, an entry in the ancestry table contains three
counters accordingly. Whenever a lock is granted or re-
voked, each server updates its ancestry table by scanning
each directory along the path from the locked object to the
root, adjusting counters for the server that owns the lock.
A replication server also updates its ancestry table appro-
priately if a locked file or directory is moved, linked, or
unlinked during directory modifications.

With the ancestry table, the replication server can tell
if a directory subtree holds a locked object in one lookup:
It first finds the mapping entry of the directory from its
ancestry table, and then looks over the entry’s counter
array. If any counter of a replication server, except the
one that issues the lock request, has a non-zero value, the
replication server knows that a different server currently
locks some descendant of the directory. In that case, it
rejects the deep lock request.

Deep locks reduce the number of locks in the system at
the cost of traversing the path to the root when processing
a lock request. To evaluate the performance benefit pro-
vided by this strategy, we compare the time to run SSH
build benchmark in two series of experiments. In the first
series of experiments, the system uses shallow locks only
during primary server election. In the second series of
experiments, the system uses both shallow locks and deep
locks.

The SSH-Build benchmark [9] is constructed as a re-
placement for the Andrew file system benchmark [10]. It
consists of three phases. The unpack phase decompresses
the tar archive of SSH v3.2.9.1. This phase is relatively
short and is characterized by metadata operations on files
of varying sizes. The configure phase builds various
small programs that check the configuration of the system
and automatically generates header files and Makefiles.
The build phase compiles the source tree and links the
generated object files into the executables. The last phase
is the most CPU intensive, but it also generates a large
number of temporary files and a few executables.

Figure 3 presents the measured performance when us-
ing deep locks versus without using deep locks. The re-
sults show dramatic improvement: deep locks make the

3

overhead of replication control negligible, even when
replication servers are widely distributed.

Performance with deep locks vs. shallow locks only

0

300

600

900

1200

1500

0.2 20 40 60 80 100 120 single
local

serverRTT between two replication servers (ms)

SS
H

 b
ui

ld
 ti

m
e

(s
)

unpack configure build

Figure 3. Comparing deep and shallow locks.
The first column shows clock time when the primary
server uses deep locks. The second column shows
the time when the primary server uses only shallow
locks. For the deep lock runs, a primary server re-
linquishes its role if it receives no further client up-
dates in two seconds.

Timeout threshhold to release deep lock

0

50

100

150

200

250

300

350

0.2
20 40 60 80 100
120

0.2
20 40 60 80 100
120

0.2
20 40 60 80 100
120

RTT between two replication servers (ms)

SS
H

 b
ui

ld
 ti

m
e

(s
)

unpack configure build

0.1s timer 1s timer

2s timer

single local
server

Figure 4. Comparing timeout values to release
a deep lock. The diagram shows the time to build
SSH in the presented replicated file system when we
set the timeout to release a deep lock to 0.1 second,
1 second, and 2 seconds.

The introduction of deep locks introduces a perform-
ance and concurrency tradeoff. On the one hand, because
a primary server can process any client update under a
deep locked directory immediately, it significantly im-
proves performance when an application issues a burst of
updates. On the other hand, it increases the possibility of
conflicting updates, i.e., concurrent updates received on
different replication servers, due to false sharing.

We use two strategies to reduce false sharing. First,
we postulate that the longer a server remains primary, the
more likely it is that it will receive conflicting updates, so
we start a timer on a server when it grants a deep lock.

The primary server resets its timer if it receives a subse-
quent client update request under the locked directory
before timeout. When the timer expires, the primary
server relinquishes its role. Initial experiments that meas-
ure the time to build SSH, shown in Figure 4, suggest that
a timer value approximately a couple seconds captures
most of the busty updates.

Second, when the primary server receives a client write
request for a file under a deep locked directory, it distrib-
utes a new lock request for that file to other replication
servers. The primary server can process the write request
immediately without waiting for replies from other repli-
cation servers since it is already the primary server of the
file’s ancestor. However, with the file locked, subsequent
writes on that file no longer reset the timer of the locked
directory. Thus, a burst of file writes has little impact on
the duration that a primary server holds a deep lock. It
also allows us to use a longer timeout threshold for an
open file, further reducing the number of replication con-
trol messages distributed in the system.

3. Conclusion

Consistent mutable replication in large-scale distrib-

uted file systems is widely regarded as being too expen-
sive for practical systems, yet with a little engineering, we
show that it can have negligible impact on application
performance. One of the ways to reduce the cost of repli-
cation is to use a form of hierarchical locking to coordi-
nate concurrent updates among replication servers. Our
experiments show that hierarchical locking is very effec-
tive in shaving overhead, especially when timeouts are
introduced.

References

[1] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S.

Tuecke. “The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific
Datasets,” J Network and Computer Applications (2001).

[2] I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann (1998).

[3] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M.
Eisler, D. Noveck, D. Robinson, and R. Thurlow, “The
NFS Version 4 Protocol,” 2nd Intl. Conf. on System Ad-
ministration and Network Engineering, Maastricht (2000).

[4] Sun Microsystems, Inc., “NFS Version 4 Protocol,” RFC
3010 (2000).

[5] J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger,
“Granularity of Locks and Degrees of Consistency in a
Shared Data Base,” IFIP Working Conf. on Modeling in
Data Base Management Systems (1976).

[6] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. “Volume Leases
for Consistency in Large-Scale Systems,” IEEE Trans. on
Knowledge and Data Engineering (1999).

4

[7] J. Zhang and P. Honeyman, “Naming, Migration, and
Replication for NFSv4,” 5th Intl. Conf on System Admini-
stration and Network Engineering, Delft (2006).

[8] J. Zhang and P. Honeyman, “Reliable Replication at Low
Cost,” Technical Report 06-01, Center for Information
Technology Integration (2006).

[9] T. Ylonen, “SSH - Secure Login Connection Over the
Internet,” 6th USENIX Security Symp., San Jose (1996).

[10] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyana-
rayanan, R. Sidebotham, and M. West, “Scale and Per-

formance in a Distributed File System,” ACM ToCS
(1988).

[11] C. A. Thekkath, T. Mann, and E. K. Lee, “Frangipani: A
Scalable Distributed File System,” SOSP (1997).

[12] A. Adya, W.J. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J.R. Douceur, J. Howell, J.R. Lorch, M. Theimer,
R.P. Wattenhofer, “FARSITE: Federated, Available, and
Reliable Storage for an Incompletely Trusted Environ-
ment”, OSDI (2002).

