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ABSTRACT  
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1. Introduction 
Grid-based scientific collaborations are character-

ized by geographically distributed institutions sharing 
computing, storage, and instruments in dynamic virtual 
organizations [1, 2].  By aggregating globally distrib-
uted resources, Grid middleware provides an infra-
structure for computations far beyond the scope of a 
single organization. 

Grid computations feature high performance com-
puting clusters connected with long fat pipes, a signifi-
cantly departure from the traditional high-end setting 
of a collection of nodes sited at one location connected 
by a fast local area network.  This difference intro-
duces new challenges in storage management, job 
scheduling, security provision, etc., stimulating grow-
ing research in these areas.  In particular, the need for 
flexible and coordinated resource sharing among geo-
graphically distributed organizations demands effi-
cient, reliable, and convenient data access and move-
ment schemes to ease users’ efforts for using Grid data. 

The state of the art in Grid data access is character-
ized by parallel FTP driven manually or by scripts 
[22].  FTP has the advantage of following a strict and 
simple standard and widespread vendor support.  How-
ever, FTP has some fundamental inadequacies.  Distri-
bution is clumsy and inefficient: applications must 
explicitly transfer a remote file in its entirety to view or 
access even a small piece of it, then transfer it back if 
the file is modified.  Consistent sharing for distributed 
applications is not supported.  The distribution model 
also leads to long first-byte latency.  To overcome 
these problems, this paper introduces an alternative for 
distributed filing on the Grid that allows users and ap-
plications to access widely distributed data as simply 
and efficiently as they access them locally. 

Recent advances in Internet middleware infrastruc-
ture — notably, broad support for NFSv4 [3, 4] — 
offer remarkable opportunities for virtual organizations 
to share data through a unified global file system.  De-
signed with Internet data management in mind, NFSv4 
has the potential to meet the requirements of widely 
distributed collaborations.  As a distributed file system 
protocol, NFSv4 allows users to access data with tradi-
tional file system semantics: NFSv4 supports the so-
called “close-to-open” consistency guarantee, i.e., an 
application opening a file is guaranteed to see the data 

written by the last application that writes and closes the 
file.  This model, which proves adequate for most ap-
plications and users [5], can also serve as an enabling 
feature for re-using existing software in Grid comput-
ing. 

In spite of these advantages, extending NFSv4 ac-
cess to a global scale introduces performance chal-
lenges.  Our evaluation indicates that conventional 
NFS distribution — multiple clients connected to stor-
age elements through a common server — cannot meet 
Grid performance requirements when computational 
elements are widely distributed [6].  To overcome this, 
we developed a replication protocol for NFSv4 that 
allows placement of replication servers near the com-
pute nodes [7].  The protocol supports exactly the same 
semantics that NFSv4 provides and requires no client-
side extensions, which simplifies deployment in wide 
area networks.  

Our replication extension to NFSv4 coordinates 
concurrent writes by dynamically electing a primary 
server upon client updates.  With no writers, our sys-
tem has the performance profile of systems that sup-
port read-only replication.  But unlike read-only sys-
tems, we also support concurrent write access without 
compromising NFSv4 consistency guarantees.  Fur-
thermore, the system can automatically recover from 
minority server failures, offering higher availability 
than single server systems. 

Although that replication protocol breaks new 
ground in performance and availability for read-
dominant applications, further analysis exposes a con-
siderable performance penalty for large synchronous 
writes, bursty directory updates, and widely separated 
replication servers, characteristic data access patterns 
of Grid computing.  The observed performance penalty 
is mainly due to the cost of guaranteeing durability and 
the cost of synchronization.  Specifically, the durability 
requirement delays the response to a client update re-
quest until a majority of the replication servers have 
acknowledged the update.  This provides a simple re-
covery mechanism for server failure but synchronous 
writes or directory updates suffer when replication 
servers are far away.  The synchronization require-
ment, which amounts to an election for consensus 
gathering, also delays applications — especially when 
they emit a burst of metadata updates — while waiting 
for distant replication servers to vote.   
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We assume (and observe) that failures are rare in 
practice.  Furthermore, the computation results by sci-
entific applications can usually be reproduced by sim-
ply re-executing programs or restarting from a recent 
checkpoint.  This suggests that we may relax the dura-
bility requirement to improve performance for syn-
chronous updates.  Instead of automatically guarantee-
ing durability to a client, we may elect to report the 
failure to the application immediately by making the 
data under modification inaccessible.  The application 
can then decide whether to wait for server recovery or 
to regenerate the computation results.  To reduce the 
cost of synchronization, we propose a hierarchical rep-
lication control protocol that allows a primary server to 
assert control at granularities coarser than a single file 
or directory, allowing control over an entire subtree 
rooted at a directory.  This amortizes the cost of syn-
chronization over multiple update requests.  

The remainder of the paper is organized as follows.  
Section 2 reviews our earlier work in developing a 
replication control protocol that coordinates concurrent 
writes by electing a primary server at the granularity of 
a single file or directory.  We refer to it as the fine-
grained replication control protocol in the following 
discussion.  In Section 3, we introduce a hierarchical 
replication control protocol that allows a primary 
server to assert control at various granularities to amor-
tize the performance cost of primary server election 
over more update requests.  In Section 4, we examine 
the performance of these protocols with a prototype 
implementation and several realistic benchmarks.  In 
Sections 5 and 6, we discuss related work, summarize, 
and conclude.  

2. Fine-grained Replication Control  
In this section, we review the design of a mutable 

replication protocol for NFSv4 that guarantees close-
to-open consistency semantics by electing a primary 
server upon client updates at the granularity of a single 
file or directory [6].  Section 2.1 introduces the replica-
tion protocol, Section 2.2 presents the primary server 
election algorithm, and Section 2.3 describes the han-
dling of various kinds of failures. 

2.1 Replication Control Protocol 
Most applications, scientific and otherwise, are 

dominated by reads, so it is important that a replication 
control protocol avoids overhead for read requests.  We 
achieve this in our system by using a variant of the 
well understood and intuitive primary-copy scheme to 
coordinate concurrent writes.  Under the conventional 
primary copy approach, a primary server is statically 
assigned for each mount point during configuration so 
all write requests under a single mount point go to the 
same primary server.  On the contrast, in our system, 

the server to which a client sends the first write request 
is elected as the primary server for the file or the direc-
tory to be modified.  With no writers, our system has 
the natural performance advantages of systems like 
AFS that support read-only replication: use a nearby 
server, support transparent client rollover on server 
failure, etc.  However, we also support concurrent 
write access without weakening NFSv4 consistency 
guarantees. 

The system works as follows.  When a client opens 
a file for writing, it sends the open request to the NFS 
server that it has selected for the mount point to which 
the file belongs.  An application can open a file in 
write mode without actually writing any data for a long 
time, e.g., forever, so the server does nothing special 
until the client makes its first write request.  When the 
first write request arrives, the server invokes the repli-
cation control protocol, a server-to-server protocol 
extension to the NFSv4 standard.   

First, the server arranges with all other replication 
servers to acknowledge its primary role.  Then, all 
other replication servers are instructed to forward client 
read and write requests for that file to the primary 
server.  The primary server distributes (ordered) up-
dates to other servers during file modification.  When 
the file is closed (or has not been modified for a long 
time) and all replication servers are synchronized, the 
primary server notifies the other replication servers that 
it is no longer the primary server for the file.       

Directory updates are handled similarly, except for 
the handling of concurrent writes.  Directory updates 
complete quickly, so a replication server simply waits 
for the primary server to relinquish its role if it needs to 
modify a directory undergoing change.  For directory 
updates that involve multiple objects, a server must 
become the primary server for all objects.  The com-
mon case for this is rename, which needs to make two 
updates atomically.  To prevent deadlock, we group 
these update requests and process them together. 

Two requirements are necessary to guarantee close-
to-open semantics.  First, a server becomes the primary 
server for an object only after it collects acknowl-
edgements from a majority of the replication servers.  
Second, a primary server must ensure that all working 
replication servers have acknowledged its role when a 
written file is closed, so that subsequent reads on any 
server reflect the contents of a file when it was closed.  
The second requirement is satisfied automatically if the 
client access to the written file lasts longer than the 
duration of the primary server election.  However, an 
application that writes many small files can suffer non-
negligible delays.  These files are often temporary 
files, i.e., files that were just created (and are soon to 
be deleted), so we allow a new file to inherent the pri-
mary server that controls its parent directory for file 
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creation.  Since the primary server does not need to 
propose a new election for writing a newly created file, 
close-to-open semantics is often automatically guaran-
teed without additional cost. 

A primary server is responsible for distributing up-
dates to other replication servers during file or direc-
tory modification.  In an earlier version of the protocol, 
we required that a primary server not process a client 
update request until it receives update acknowledge-
ments from a majority of the replication servers [7].  
With this requirement, as long as a majority of the rep-
lication servers are available, a fresh copy can always 
be recovered from them.  Then, by having all active 
servers synchronize with the most current copy, we 
guarantee that the data after recovery reflects all ac-
knowledged client updates, and a client needs to reis-
sue its last pending request only. 

The earlier protocol transparently recovers from a 
minority of server failures and balances performance 
and availability well for applications that mostly read.  
However, performance suffers for scientific applica-
tions that are characterized by many synchronous 
writes or directory updates and replication servers that 
are far away from each other [7].  Meeting the per-
formance needs of Grid applications requires a differ-
ent trade-off. 

Failures occur in distributed computations, but are 
rare in practice.  Furthermore, the results of most scien-
tific applications can be reproduced by simply re-
executing programs or re-starting from the last check-
point.  This suggests a way to relax the costly update 
distribution requirement so that the system provides 
higher throughput for synchronous updates at the cost 
of sacrificing the durability of data undergoing change 
in the face of failure. 

Adopting this strategy, we allow a primary server to 
respond immediately to a client write request before 
distributing the written data to other replication serv-
ers.  Thus, with a single writer, even when replication 
servers are widely distributed, the client experiences 
longer delay only for the first write (whose processing 
time includes the cost of primary server election), 
while subsequent writes have the same response time 
as accessing a local server (assuming the client and the 
chosen primary server are in the same LAN).  Of 
course, should concurrent writes occur, performance 
takes a back seat to consistency, so some overhead is 
imposed on the application whose reads and writes are 
forwarded to the primary server. 

2.2 Primary Server Election 
Two (or more) servers may contend to become the 

primary server for the same object (file or directory) 
concurrently.  To guarantee correctness of our replica-
tion control protocol, we need to ensure that more than 

one primary server is never chosen for a given object, 
even in the face of conflicts and/or failures.  This prob-
lem is a special case of the extensively studied consen-
sus problem. 

In the consensus problem, all correct processes must 
reach an agreement on a single proposed value [13].  
Many problems that arise in practice, such as electing a 
leader or agreeing on the value of a replicated object, 
are instances of the consensus problem.  In our case, if 
we assign each replication server a unique identifier, 
the primary server election problem is easily seen to be 
an instance of the consensus problem: electing a pri-
mary server is equivalent to agreeing on a primary 
server identifier. 

Achieving consensus is a challenging problem, 
especially in an asynchronous distributed system.  In 
such a system, there is no upper bound on the message 
transmission delays or the time to execute a computing 
step.  A good consensus algorithm needs to maintain 
consistency, i.e., only a single value is chosen, and to 
guarantee progress so that the system is eventually 
synchronous for a long enough interval [14].  Unfortu-
nately, Fischer et al. showed that the consensus prob-
lem cannot be solved in an asynchronous distributed 
system in the presence of even a single fault [15]. 

Observing that failures are rare in practice, candi-
date consensus algorithms have been proposed to sepa-
rate the consistency requirement from the progress 
property [16-20].  That is, while consistency must be 
guaranteed at all times, progress may be hampered 
during periods of instability, as long as it is eventually 
guaranteed after the system returns to the normal state.  
Our system also follows this design principle.  Rather 
than using an existing consensus protocol such as 
Paxos [16], we develop a primary server election algo-
rithm of our own based on the following considera-
tions.   

Most of the proposed consensus algorithms attempt 
to minimize the amount of time between the proposal 
of a value and the knowledge of a chosen value by all 
members.  In our system, a replication server initiates 
the primary server election procedure upon receiving 
an update request from a client.  The server cannot 
process the client’s request until it determines the pri-
mary server for the object to be modified.  Our aim is 
therefore to minimize the elapsed time between these 
two events.  Consequently, we use the primary server 
election algorithm sketched in Figure 1 in our replica-
tion control protocol. 

It is easy to verify that the algorithm satisfies the 
consistency requirement: a primary server needs to 
accumulate the acknowledgments from a majority of 
the replication servers and a replication server cannot 
commit to more than one primary server, so only a 
single primary server is elected for a given object.  
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Figure 1. Primary Server Election.  This pseu-
docode sketches the election protocol.  Section 
2.3 discusses failure handling in more detail. 

 

Furthermore, for the common case — no failures and 
only one server issues the proposal request — primary 
server election completes with only one message delay 
between the elected primary server and the farthest 
replication server.  In fact, since the server can process 
the client’s update request as soon as it receives ac-
knowledgments from a majority of the replication 
servers, the conflict- and failure- free response time is 
bounded by the largest round-trip time (RTT) separat-
ing the primary server and half of the nearest replica-
tion servers.  We note for emphasis that this improves 
on many existing consensus algorithms that require 
two message delays to decide on a chosen value [18]. 

If multiple servers compete to be the primary server 
for an object, it is possible that none of them collects 
acknowledgments from a majority of the replication 
servers in the first round of the election.  Absent fail-
ure, the conflict is quickly learned by each competing 
server from the replies it receives from other replica-
tion servers.  In this case, the server with the largest 
identifier is allowed to proceed and its competitors 
abort their proposals by releasing the servers that have 
already acknowledged. 

In the presented algorithm, the winner of the compe-
tition keeps sending proposal requests to replication 
servers that have not acknowledged its role, subject to 
timeout.  However, the abort request from a yielding 
competitor may arrive at such a replication server after 
several rounds of proposal distribution, resulting in 
redundant network messages.  The situation can be 

improved with a small optimization in the second 
round of the election: the winning server can append 
the replies it has collected in previous rounds to its 
subsequent proposals.  With this information, a server 
that receives a late-round proposal can learn that the 
server it is currently treating as primary will soon abort 
the election.  Thus, it can briefly delay replying to the 
new proposal, increasing the chance that the object is 
released by the old primary server before responding to 
the late-round proposal.  We leave the detailed discus-
sion of failures to the next subsection, but point out 
that when the system is free of failure, primary server 
election converges in two message delays even in the 
face of contention. 

2.3 Coping with Failure 
The discussion so far focuses on replication control 

in normal — i.e., failure-free — system states.  How-
ever, failure introduces complexity.  Different forms of 
failure may occur: client failure, replication server fail-
ure, network partition, or any combination of these.  In 
this subsection, we describe the handling of each case.  
Our failure model is fail stop [25], i.e., no Byzantine 
failures [21].1 

Following the specification of NFSv4, a file opened 
for writing is associated with a lease on the primary 
server, subject to renewal by the client.  If the client 
fails, the server receives no further renewal requests, so 
the lease expires.  Once the primary server decides that 
the client has failed, it closes any files left open by the 
failed client on its behalf.  If the client was the only 
writer for a file, the primary server relinquishes its role 
for the file. 

To guarantee consistency upon server failure, our 
system maintains an active view among replication 
servers [47].  During file or directory modification, a 
primary server removes from its active view any repli-
cation server that fails to respond to its election request 
or update requests within a specified time bound.  The 
primary server distributes its new view to other replica-
tion servers whenever the active view changes.  We 
require an active view to contain a majority of the rep-
lication servers.  The primary server replies to a client 
close operation only after a majority of the replication 
servers have acknowledged the new active view.  Each 
replication server records the active view in stable 
storage.  A server not in the active view may have stale 
data, so the working servers must deny any requests 
coming from a server not in the active view.  We note 
that if the server failure is caused by network partition, 
close-to-open semantics is not guaranteed on the 

                                                           
1 Security of the protocol follows from the use of secure RPC 

channels, mandatory in NFSv4, for server-to-server com-
munication 

Upon receiving a client update request, initiate primary 
server election if the object’s primary server is NULL 
set the object’s primary server to MyID  // ack self 
loop until all active servers ack 

propose <MyID, object> to unacked servers 
wait until all those servers reply or timeout 
if the number of acks received is less than majority then 

identify competitors from the replies 
if any competitor is accepted by a majority of servers, or 
any competitor’s identifier is larger than MyID then 

set the object’s primary server to NULL 
send abort <MyID, object> to all acked servers 
exit loop 

else mark timed out servers inactive 

Upon receiving propose <ServerID, object>  
if the object’s primary server is NULL then 

set the object’s primary server to ServerID 
send ack 

else  
send nack <the object’s primary server> 

Upon receiving abort <ServerID, object> 
if the object’s primary server equals to ServerID then 

set the object’s primary server to NULL 
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“failed” server(s), i.e., clients may have read stale data 
without awareness.  However, a server excluded from 
the active view cannot update any working server, 
which prevents the system from entering an inconsis-
tent state.2 

If a replication server fails after sending primary 
server election requests to a minority of replication 
servers, the failure can be detected by a subsequently 
elected primary server.  As described above, that pri-
mary server eliminates the failed server from the active 
view and distributes the new view to the other replica-
tion servers.  The servers that have acknowledged the 
failed server switch to the new primary server after 
employing the new active view.  The consistency of 
the data is unaffected: the failed server had not re-
ceived acknowledgements from a majority of the repli-
cation servers so it cannot have distributed any up-
dates.  

A primary server may fail during file or directory 
modification.  With the relaxed update distribution 
requirement, the primary server responds to a client 
update request immediately before distributing updates 
to the other replication servers.  As a result, other ac-
tive servers cannot recover the most recent copy 
among themselves.  The “principle of least surprise” 
argues the importance of guaranteed durability of data 
written by a client and acknowledged by the server, so 
we make the object being modified inaccessible until 
the failed primary server recovers or an outside admin-
istrator re-configures the system.  However, clients can 
continue to access objects that are outside the control 
of the failed server, and applications can choose 
whether to wait for the failed server to recover or to re-
produce the computation results. 

Since our system does not allow a file or a directory 
to be modified simultaneously on more than one server 
even in case of failure, the only valid data copy for a 
given file or directory is the most recent copy found 
among the replication servers.  This feature simplifies 
the failure recovery in our system: when an active 
server detects the return of a failed server, either upon 
receiving an election or update request from the return-
ing server or under the control of an external admini-
stration service, it notifies the returning server to initi-
ate a synchronization procedure.  During synchroniza-
tion, write operations are suspended, and the returning 
server exchanges the most recent data copies with all 
active replication servers.3  After recovery, all the ob-

                                                           
2 Generally, the computation results on a failed server are 

dubious since they might be generated with stale input data.  
To be safe, applications should re-compute these results. 

3 This process can be done easily by alternately executing a 
synchronization program, such as rsync, between the re-
turning server and each active replication server, with the 

jects that were controlled by the returning server, i.e., 
those for which it was the primary server at the mo-
ment it failed, are released and the server is added to 
the active view.   

Should a majority of the replication servers fail si-
multaneously, an external administrator must enforce a 
grace period after the recovering from the failure.  To 
be safe, the administration service should instruct each 
replication server to execute the synchronization pro-
cedure during the grace period. 

3. Hierarchical Replication Control 
Notwithstanding an efficient consensus protocol, a 

server can still be delayed waiting for acknowledg-
ments from slow or distant replication servers.  This 
can adversely affect performance, e.g., when an appli-
cation issues a burst of metadata updates to widely 
distributed objects.  Conventional wisdom holds that 
such workloads are common in Grid computing, and 
we have observed them ourselves when installing, 
building, and upgrading Grid application suites.  To 
address this problem, we have developed a hierarchical 
replication control protocol that amortizes the cost of 
primary server election over more requests by allowing 
a primary server to assert control over an entire subtree 
rooted at a directory.  In this section, we detail the de-
sign of this tailored protocol. 

The remainder of this section proceeds as follows.  
Section 3.1 introduces two control types that a primary 
server can hold on an object.  One is limited to a single 
file or directory, while the other governs an entire sub-
tree rooted at a directory.  Section 3.2 discusses revi-
sions to the primary server election needed for hierar-
chical replication control.  Section 3.3 then investigates 
mechanisms to balance the performance and concur-
rency trade-off related to the two control types. 

3.1 Shallow vs. Deep Control 
We introduce nomenclature for two types of control: 

shallow and deep.  A server exercising shallow control 
on an object (file or directory) L is the primary server 
for L.  A server exercising deep control on a directory 
D is the primary server for D and all of the files and 
directories in D, and additionally exercises deep con-
trol on all the directories in D.  In other words, deep 
control on D makes the server primary for everything 
in the subtree rooted at D.  In the following discussion, 
when a replication server P is elected as the primary 
server with shallow control for an object L, we say that 
P has shallow control on L.  Similarly, when a replica-
tion server P is elected as the primary server with deep 
control on a directory D, we say that P has deep con-

                                                                                          
option to skip any file or directory whose modification time 
is newer than the source node. 
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trol on D.  Relinquishing the role of primary server for 
an object L amounts to revoking shallow or deep con-
trol on L.  We say that a replication server P controls 
an object L if P has (shallow or deep) control on L or 
P has deep control on an ancestor of L.  

We introduced deep control to improve performance 
for a single writer without sacrificing correctness for 
concurrent updates.  Electing a primary server with the 
granularity of a single file or directory allows high 
concurrency and fine-grained load balancing, but a 
coarser granularity is suitable for applications whose 
updates exhibit high temporal locality and are spread 
across a directory or a file system.  A primary server 
can process any client update in a deeply controlled 
directory immediately, so it improves performance for 
applications that issue a burst of metadata updates. 

Introducing deep control complicates consensus dur-
ing primary server election.  To guarantee that an ob-
ject is under the control of a single primary server, we 
enforce the rules shown in Figure 2.  We consider sin-
gle writer cases to be more common than concurrent 
writes, so a replication server attempts to acquire a 
deep control on a directory whenever it can.  On the 
other hand, we must prevent an object from being con-
trolled by multiple servers.  Therefore, a replication 
server needs to ensure that an object in a (shallow or 
deep) control request is not already controlled by an-
other server.  Furthermore, it must guarantee that a 
directory in a deep control request has no descendant 
under the control of another server.   

To validate the first condition, a replication server 
scans each directory along the path from the referred 
object to the mount point.  If an ancestor of the object 
has a primary server other than the one who issues the 
request, the validation fails.  Checking the second con-
dition is more complex.  Scanning the directory tree 

during the check is too expensive, so we do some 
bookkeeping when electing a primary server:  each 
replication server maintains an ancestry table for files 
and directories whose controls are granted to some 
replication servers.  An entry in the ancestry table cor-
responds to a directory that has one or more decedents 
whose primary servers are not empty.  Figure 3 shows 
entries in the ancestry table and an example that illus-
trates how the ancestry table is maintained. 

An ancestry entry contains an array of counters, 
each of which corresponds to a replication server.  E.g., 
if there are three replication servers in the system, an 
entry in the ancestry table contains three corresponding 
counters.  Whenever a (deep or shallow) control for an 
object L is granted or revoked, each server updates its 
ancestry table by scanning each directory along the 
path from L to the mount point, adjusting counters for 
the server that owns the control.  A replication server 
also updates its ancestry table appropriately if a con-
trolled object is moved, linked, or unlinked during di-
rectory modifications. 

A replication server needs only one lookup in its an-
cestry table to tell whether a directory subtree holds an 
object under the control of a different server:  It first 
finds the mapping entry of the directory from its ances-
try table, and then examines that entry’s counter array.  
If the counter on any replication server other than the 
one that issues the deep control request has a non-zero 
value, the replication server knows that some other 
server currently controls a descendant of the directory, 
so it rejects the deep control request. 

3.2 Primary Server Election with Deep Control 
With the introduction of deep control, two primary 

server election requests on two different objects can 
conflict if one of them wants deep control on a direc-
tory, as the example in Figure 4 illustrates.  To guaran-
tee progress during conflicts, we extend the primary 
server election algorithm described in Section 2.2 as 
follows.  When a replication server receives a shallow 
control request for an object L from a peer server P but 
cannot grant the control according to the rules listed in 
Figure 2, it replies to P with the identifier of the pri-
mary server that currently controls L.  On the other 
hand, if a replication server judges that it cannot grant 
a deep control request, it simply replies with a nack.  A 
server downgrades a deep control request to shallow if 
it fails to accumulate acknowledgments from a major-
ity of the replication servers.  Then with shallow con-
trols only, the progress of primary server election fol-
lows the discussion in Section 2.2. 

3.3 Performance and Concurrency Tradeoff  
The introduction of deep control introduces a per-

formance and concurrency trade-off.  A primary server 

Upon receiving a client update request for object L 
if L is controlled by self then serve the request 
if L is controlled by another server then forward the request 
else   // L is uncontrolled 

if L is a file then request shallow control on L 
if L is a directory then 

if a descendant of L is controlled by another server then  
request shallow control on L 

else 
request deep control on L 

 
Upon receiving a shallow control request for object L from 
peer server P 
grant the request if L is not controlled by a server other than P 
 
Upon receiving a deep control request for directory D from 
peer server P 
grant the request if D is not controlled by a server other than P, 
and no descendant of D is controlled by a server other than P 

 

Figure 2. Using and granting controls. 
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can process any client update in a deep-controlled di-
rectory, which substantially improves performance 
when an application issues a burst of updates.  This 
argues for holding deep control as long as possible.  
On the other hand, holding a deep control can intro-
duce conflicts due to false sharing.  In this subsection, 
we strive for balance in the trade-off between perform-
ance and concurrency when employing shallow and 
deep controls. 

First, we postulate that the longer a server controls 
an object, the more likely it will receive conflicting 
updates, so we start a timer on a server when it obtains 
a deep control.  The primary server resets its timer if it 
receives a subsequent client update under the deep-
controlled directory before the timeout.  When the 
timer expires, the primary server relinquishes its role.  

Second, recall that in a system with multiple writers, 
we increase concurrency by issuing a revoke request 
from one server to another if the former server receives 
an update request under a directory deep-controlled by 
the latter.  Locality of reference suggests that more 
revoke requests will follow shortly, so the primary 
server shortens the timer for relinquishing its role for 
that directory.  We note that a replication server does 
not send a revoke request when it receives a directory 
read request under a deep-controlled directory.  This 
strategy is based on observing that the interval from the 
time that a client receives a directory update acknowl-
edgment and the time that other replication servers 
implement the update is small (because the primary 
server distributes a directory update to other replication 
servers immediately after replying to the client).  This 
model complies with NFSv4 consistency semantics: in 
NFSv4, a client caches attributes and directory con-
tents for a specified duration before requesting fresh 
information from its server.   

Third, when a primary server receives a client write 
request for a file under a deep-controlled directory, it 
distributes a new shallow control request for that file to 
other replication servers.  The primary server can proc-
ess the write request immediately without waiting for 
replies from other replication servers as it is already the 
primary server of the file’s ancestor.  However, with a 
separate shallow control on the file, subsequent writes 
on that file do not reset the timer of the deep controlled 
directory.  Thus, a burst of file writes has minimal im-
pact on the duration that a primary server holds a deep 
control.  Furthermore, to guarantee close-to-open se-
mantics, a replication server need only check whether 
the accessed file is associated with a shallow control 
before processing a client read request, instead of 
scanning each directory along the path from the re-
ferred file to the mount point. 

Fourth, a replication server can further improve its 
performance by issuing a deep control request for a 
directory that contains many frequently updated de-
scendants if it observes no concurrent writes.  This 
heuristic is easy to implement with the information 
recorded in the ancestry table: a replication server can 
issue such a request for directory D if it observes that 
in the ancestry entry of D, the counter corresponding to 
itself is beyond some threshold and the counters of all 
other replication servers are zero. 

The introduction of deep control provides significant 
performance benefits, but can adversely affect data 
availability in the face of failure: if a primary server 
with deep control on a directory fails, updates in that 
directory subtree cannot proceed until the failed pri-
mary server is recovered.  Recapitulating the discus-
sion of false sharing above, this argues in favor of a 
small value for the timer.   

In the next section, we show that timeouts as short 
as one second are long enough to reap the performance 
benefits of deep control.  Combined with our assump-
tion that failure is infrequent, we anticipate that the 
performance gains of deep control far outweigh the 

Consider three replication servers: S0, S1, and S2. Simul-
taneously, S0 requests (deep or shallow) control of direc-
tory b, S1 requests control of directory c, and S2 requests 
deep control of directory a.  According to the rules listed in 
Figure 2, S0 and S1 succeed in their primary server elec-
tions, but S2’s election fails due to conflicts.  S2 then re-
tries by asking for shallow control of a. 

Figure 4.  Potential conflicts in primary 
server election caused by deep control.

Consider three replication servers: S0, S1, and S2.  S0 is 
currently the primary server of file f1 and directory d1.  S1
is currently the primary server of file f2.  S2 is currently 
the primary server of directory d2.  The right table shows
the content of the ancestry table maintained on each repli-
cation server. 

Figure 3.  Structure and maintenance of the
ancestry table. 
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potential cost of servers failing while holding deep 
control on directories.  

4. Evaluation 
In this section, we evaluate the performance of hier-

archical replication control with a series of experiments 
over simulated wide area networks.  We start with a 
coarse evaluation in Section 4.1 using the SSH-Build 
benchmark, and find that hierarchical replication con-
trol is very successful in reducing overhead, even when 
the time that deep control is held is short.  In Section 
4.2, we explore system performance with the NAS 
Grid Benchmarks in simulated wide area networks and 
find that our replicated file system holds a substantial 
performance advantage over a single server system.  At 
the same time, it provides comparable and often better 
performance than GridFTP, the conventional approach 
to moving data sets in the Grid.  

We conducted all the experiments presented in this 
paper with a prototype implemented in the Linux 
2.6.16 kernel.  Servers and clients all run on dual 
2.8GHz Intel Pentium4 processors with 1 MB L2 
cache, 1 GB memory, and onboard Intel 82547GI Gi-
gabit Ethernet card.  The NFS configuration parame-
ters for reading (rsize) and writing (wsize) are set to 32 
KB.  We use Netem [23] to simulate network latencies.  
Our experiments focus on evaluating the performance 
impact caused by WAN delays.  Hence, we do not 
simulate packet loss or bandwidth limits in our meas-
urements, and enable the async option (asynchro-
nously write data to disk) on the NFS servers.  Al-
though not comprehensive, we expect that our settings 
closely resemble a typical Grid environment — high 
performance computing clusters connected by long fat 
pipes.   

All measurements presented in this paper are mean 
values from five trials of each experiment; measured 
variations in each experiment are negligible.  Each 
experiment is measured with a warm client cache, but 

the temperature of the client cache has little effect on 
the presented results. 

4.1 Evaluation with SSH-Build Benchmark 
The SSH-Build benchmark [24] runs in three 

phases.  The unpack phase decompresses a tar archive 
of SSH v3.2.9.1.  This phase is relatively short and is 
characterized by metadata operations on files of vary-
ing sizes.  The configure phase builds various small 
programs that check the configuration of the system 
and automatically generates header files and Makefiles.  
The build phase compiles the source tree and links the 
generated object files into the executables.  The last 
phase is the most CPU intensive, but it also generates a 
large number of temporary files and a few executables 
in the compiling tree. 

Before diving into the evaluation of hierarchical rep-
lication, we look at performance when accessing a sin-
gle distant NFSv4 server.  Figure 5 shows the meas-
ured times when we run the SSH-Build benchmark 
with an increasingly distant file server.  In the graph, 
the RTT marked on the X-axis shows the round-trip 
time between the client and the remote server, starting 
with 200 µsec, the network latency of our test bed 
LAN.  Figure 5 shows (in log-scale) that the SSH build 
that completes in a few minutes on a local NFSv4 
server takes hours when the RTT between the server 
and the client increases to tens of milliseconds.  The 
experiment demonstrates that it is impractical to exe-
cute update-intensive applications using a stock remote 
NFS server.  Network RTT is the dominant factor in 
NFS WAN performance, which suggests the desirabil-
ity of a replicated file system that provides client ac-
cess to a nearby server. 
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Figure 5.  SSH build on a single NFSv4 server.
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Figure 6.  Fine-grained replication control vs. 
hierarchical replication control.  The first col-
umn shows the time to build SSH using fine-
grained replication control.  The second column 
shows the time when using hierarchical replication 
control.  For runs with hierarchical replication con-
trol, the primary server relinquishes deep control if 
it receives no client updates for one second. 
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Next, we compare the time to build SSH using fine-
grained replication control and hierarchical replication 
control with a local replication server and an increas-
ingly distant replication server.  The results, shown (in 
linear scale) in Figure 6, demonstrate the performance 
advantage of file system replication.  Even with fine-
grained replication control, adding a nearby replication 
server significantly shortens the time to build SSH, as 
expensive reads from a remote server are now serviced 
nearby.  Moreover, we see dramatic improvement with 
the introduction of hierarchical replication control: the 
penalty for replication is now negligible, even when 
replication servers are distant. 

In Section 3, we discussed the use of a timer for 
each deep-controlled directory to balance performance 
and concurrency but did not fix the timeout value.  To 
determine a good value for the timer, we measure the 
time to build SSH for timeout values of 0.1 second, 0.5 
second, and 1 second.  Figure 7 shows the results.   

Figure 7 shows that when we set the timeout value 
to one second, the SSH build with a distant replication 
server runs almost as fast as one accessing a single 
local server.  Furthermore, almost all of the perform-
ance differences among the three timeout values come 
from the CPU intensive build phase.  For the unpack 
and configure phases, which emit updates more com-
pactly, even a tiny timeout value yields performance 
very close to that for single local server access.  Of 
course, in practice the “optimal” timeout value depends 
on the workload characteristics of the running applica-
tions.  However, the SSH build experiment suggests 
that a small timer value — a few seconds at most —- 
can capture most of the bursty updates. 

So far, our experiments focus on evaluation with 
two replication servers.  Generally, our system is de-
signed to be used with a small number of replication 
servers, say, fewer than ten.  Under this assumption, 

we do not expect performance to suffer when addi-
tional replication servers are added because a primary 
server distributes updates to other replication servers in 
parallel.  To test this conjecture, we measure the time 
to build SSH as the number of replication servers in-
creases in a local area network and in a simulated wide 
area network.  For local area replication, the measured 
RTT between any two machines is around 200 µsec.  
For wide area replication, the RTT between any two 
replication servers is set to 120 msec, while the RTT 
between the client and the connected server is kept at 
200 µsec.   

Figure 8 shows that performance is largely unaf-
fected as the number of replication servers increases.  
However, distributing client updates consumes pro-
gressively more primary server bandwidth as we in-
crease the number of replication servers.  As a ge-
danken experiment, we might imagine the practical 
limits to scalability as the number of replication servers 
grows.  A primary server takes on an output bandwidth 
obligation that multiplies its input bandwidth by the 
number of replication servers.  For the near term, then, 
the cost of bandwidth appears to be a barrier to mas-
sive replication with our design. 

4.2 Evaluation with Grid Benchmarks 
The NAS Grid Benchmarks (NGB), released by 

NASA, provide an evaluation tool for Grid computing 
[26].  The benchmark suite evolves from the NAS Par-
allel Benchmarks (NPB), a toolkit designed and widely 
used for benchmarking on high-performance comput-
ing [27].  An instance of NGB comprises a collection 
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Figure 7.  Deep control timeout values.  The 
diagram shows the time to build SSH using hier-
archical replication control when the the timeout 
for releasing a deep control is set to 0.1 second, 
0.5 second, and 1 second. 
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of slightly modified NPB problems, each of which is 
specified by class (mesh size, number of iterations), 
source(s) of input data, and consumer(s) of solution 
values.  The current NGB consists of four problems: 
Embarrassingly Distributed (ED), Helical Chain (HC), 
Visualization Pipe (VP), and Mixed Bag (MB).   

ED, HC, VP, and MB highlight different aspects of 
a computational Grid.  ED represents the important 
class of Grid applications called parameter studies, 

which constitute multiple independent runs of the same 
program, but with different input parameters.  It re-
quires virtually no communication, and all the tasks in 
it execute independently.  HC represents long chains of 
repeating processes; tasks in HC execute sequentially.  
VP simulates logically pipelined processes, like those 
encountered when visualizing flow solutions as the 
simulation progresses.  The three tasks included in VP 
fulfill the role of flow solver, post processor, and visu-

Figure 9.  Data flow graphs of the NAS Grid Benchmarks.  
 

Figure 10.  NGB evaluation experiment setup. 
 

Table 1.  Amount of data exchanged between NGB tasks 
Helical Chain Visualization Pipe Mixed Bag Class 

BT→SP SP→LU LU→BT BT→MG MG→FT BT→BT FT→FT BT→MG MG→FT 
S 169K 169K 169K 34K 641k 169K 5.1M 34K 641K 
W 1.4M 4.5M 3.5M 271K 41M 1.4M 11M 702K 41M 
A 26M 26M 26M 5.1M 321M 26M 161M 5.1M 321M 
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alization, respectively.  MB is similar to VP, but intro-
duces asymmetry.  Different amounts of data are trans-
ferred between different tasks, and some tasks require 
more work than others do.   

Figure 9 illustrates the Data Flow Graph for each of 
these benchmarks.  The nodes in the graph, indicated 
by the rectangular boxes, represent computational 
tasks.  Dashed arrows indicate control flow between 
the tasks.  Solid arrows indicate data as well as control 
flow.  Launch and Report do little work; the former 
initiates execution of tasks while the latter collects and 
verifies computation results. 

The NGB instances are run for different problem 
sizes (denoted Classes).  For the evaluation results 
presented in this paper, we use the three smallest 
Classes: S, W, and A.  Table 1 summarizes the amount 
of data communicated among tasks for these Classes. 

A fundamental goal of Grid computing is to harness 
globally distributed resources for solving large-scale 
computation problems.  To explore the practicality and 
benefit of using NFS replication to facilitate Grid com-
puting, we compare the performance of running NGB 
under three configurations, referred as NFS, NFS/R, 
and GridFTP.   

In the experiments, we use three computing nodes to 
emulate three computing clusters, with the RTT be-
tween each pair increased from 200 µsec to 120 msec.  
In the NFS configuration, the three computing nodes 
all connect to a single NFS server.  In the NFS/R con-
figuration, we replace the single NFS server with three 
replicated NFS servers, with each computing node 
connected to a nearby server.  In the GridFTP configu-
ration, we use GridFTP to transfer data among comput-
ing nodes.  The GridFTP software we use is globus-
url-copy from Globus-4.0.2 toolkit.  In our experi-
ments, we start eight parallel data connections in each 
GridFTP transfer, which we found provides the best-
measured performance for GridFTP.  (The NFS/R pro-
totype also supports parallel data connections between 
replicated NFS servers.  But in the experiments pre-
sented here, the performance improvement using mul-
tiple data connections is small, so we report results 
measured with a single server-to-server data connec-
tion only.)  Figure 10 illustrates the experiment setup. 

For the GridFTP configuration, we run the NGB 
tasks using the Korn shell Globus implementation from 
the NGB3.1 package.  In this implementation, a Korn 
shell script launches the NGB tasks in round robin on 
the specified computing nodes.  Tasks are started 
through the globusrun command with the batch flag 
set.  After a task completes, output data is transferred 
to the computing node(s), where the tasks require the 
data as input.  A semaphore file is used to signal task 
completion: computing nodes poll their local file sys-

tems for the existence of the semaphore files to moni-
tor the status of the required input files.  After all tasks 
start, the launch script periodically queries their com-
pletion using globus-job-status command. 

For the NFS and NFS/R setups, we extended the 
original NGB Korn shell scripts.  The modified pro-
grams use ssh to start NGB tasks in round robin on 
the specified computing nodes.  The computing nodes 
and the launch script poll for the status of the required 
input data and tasks with semaphore files, as above. 

Figure 11 shows the results of executing NGB on 
NFS, NFS/R, and GridFTP as the RTT among the 
three computing nodes increases from 200 µsec to 120 
msec.  The data presented is the “measured turn-
around” time, i.e., the time between starting a job and 
obtaining the result.  With GridFTP, turnaround time 
does not include deployment and cleanup of executa-
bles on Grid machines.  The time taken in these two 
stages ranges from 10 seconds to 40 seconds, as the 
RTT increases from 200 µsec to 120 msec.   

Evidently, in Grid computing, deployment and 
cleanup can sometimes take significant time with large 
size of executables and input data [28].  Furthermore, 
in some cases, it is hard for users to determine which 
files to stage [29].  With NFS and NFS/R, on the other 
hand, there is no extra deployment and cleanup time, 
because computing nodes access data directly from file 
servers.  Even so, the times we report do not reflect this 
inherent advantage. 

The histograms in Figure 11 show that performance 
with a single NFS server suffers dramatically as the 
RTT between the server and the computing nodes in-
creases.  Except for the ED problem — whose tasks 
run independently — on larger data sets, the experi-
ments take a very long time to execute when the RTT 
increases to 120 msec.  In fact, the times are even 
longer than the times measured when running the prob-
lems on a single computing node without parallel com-
puting.  (Table 2 shows NGB execution times on a 
single computing node with a local ext3 file system.)  
Clearly, in most cases it is impractical to run applica-
tions on widely distributed clients connected to a single 
NFS server, even for CPU intensive applications.   

On the other hand, with NFS/R and GridFTP on 
large class sizes, run times are not adversely affected 
by increasing RTT.  When the class size is small (e.g., 
the results of Class S), NFS/R outperforms GridFTP, 
because the latter requires extra time to deploy dy-
namically created scripts and has extra Globus-layer 
overhead.  The NGB experiments demonstrate that 
well-engineered replication control provides superior 
file system semantics and easy programmability to 
WAN-based Grid applications without sacrificing per-
formance.  
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5. Related Work 
Replicated File Systems.  Echo [34] and Harp [35] 

are file systems that use the primary copy scheme to 
support mutable replication.  Both of these systems use 
a pre-determined primary server for a collection of 
disks, a potential bottleneck if those disks contain hot 
spots or if the primary server is distant.  In contrast, 
our system avoids this problem by allowing any server 
to be primary for any file, determined dynamically in 
response to client behavior.  

Many replicated file systems trade consistency for 
availability.  Examples include Coda [12], Ficus [30], 
and Locus [31].  These systems allow continued opera-
tions in the presence of failures, at the cost of sacrific-
ing consistency if conflicting updates occur.  Typically, 
automatic tools are provided to reconcile conflicts [32, 
33].  However, in some cases, user involvement is 
needed to get the desired version of data.  

Recent years have seen a lot of work in peer-to-peer 
file systems, including OceanStore [36], Ivy [37], Pan-
gaea [38], and Farsite [39].  These systems address the 
design of systems in untrusted, highly dynamic envi-
ronments.  Consequently, reliability and continuous 
data availability are usually critical goals in these sys-

tems; performance or data consistency are often secon-
dary considerations.  Compared to these systems, our 
system addresses data replication among file system 
servers, which are more reliable but have more strin-
gent requirements on average I/O performance. 

The importance of maintaining strong consistency 
with mutable replication is underscored by recent work 
on storage systems, called Chain replication [46].  The 
system intends to support high throughput and avail-
ability without sacrificing strong consistency guaran-
tees.  It does this by disseminating updates to a chain 
of replication servers serially, which provides high 
throughput but results in slow response time for each 
update request. 

Hierarchical Replication Control.  The use of 
multiple granularities of control to balance perform-
ance and concurrency has been studied in other distrib-
uted file systems and database systems.  Many modern 
transactional systems use hierarchical locking [40] to 
improve concurrency and performance of simultaneous 
transactions.  In distributed file systems, Frangipani 
[41] uses distributed locking to control concurrent ac-
cesses among multiple shared-disk servers.  For effi-
ciency, it partitions locks into distinct lock groups and 

Table 2.  Times of executing NGB on a single computing node with a local ext3 file system 
Class S W A

Benchmark ED HC VP MB ED HC VP MB ED HC VP MB
Time (s) 2 1 9 6 217 31 83 101 1380 223 930 870
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Figure 11.  Turnaround times (seconds) of NGB on NFS, NFS/R, and GridFTP. 
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assign them to servers by group, not individually.  Lin 
et al. study the selection of lease granularity when dis-
tributed file systems use leases to provide strong cache 
consistency [42].  To amortize leasing overhead across 
multiple objects in a volume, they propose volume 
leases that combine short-term leases on a group of 
files (volumes) with long-term leases on individual 
files.  Farsite [39] uses content leases to govern which 
client machines currently have control of a file’s con-
tent.  A content lease may cover a single file or an en-
tire directory of files. 

Data Grid.  Various middleware systems have been 
developed to facilitate data access on the Grid.  Storage 
Resource Broker (SRB) [43] provides a metadata cata-
log service to allow location-transparent access for 
heterogeneous data sets.  NeST [44], a user-level local 
storage system whose goal is to bring appliance tech-
nology to the Grid, provides best-effort storage space 
guarantees, mechanisms for resource and data discov-
ery, user authentication, quality of service, and multi-
ple transport protocol support.  The Chimera system 
[45] provides a virtual data catalog that can be used by 
applications to describe a set of programs, and then to 
track all the data files produced by their execution.  
The work is motivated by observing that scientific data 
is often derived from other data by the application of 
computational procedures, which implies the need for a 
flexible data sharing and access system. 

A commonly omitted feature among these middle-
ware approaches is fine-grained data sharing seman-
tics.  Furthermore, most of these systems provide ex-
tended features by defining their own API, so an appli-
cation has to be re-linked with their libraries in order to 
use them. 

6. Conclusion 
Conventional wisdom holds that supporting consis-

tent mutable replication in large-scale distributed stor-
age systems is too expensive even to consider.  Our 
study proves otherwise: in fact, it is both feasible, prac-
tical, and can be realized today.  This replicated file 
system presented in this paper supports mutable repli-
cation with strong consistency guarantees.  Experimen-
tal evaluation shows that the system holds great prom-
ise for accessing and sharing data in Grid computing, 
delivering superior performance while rigorously ad-
herence to conventional file system semantics. 
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