
CITI Technical Report 06-07

Hierarchical Replication Control in a Global File System

Jiaying Zhang
jiayingz@eecs.umich.edu

Peter Honeyman

honey@citi.umich.edu

ABSTRACT
To meet the rigorous demands of large-scale data sharing in global collaborations, we present a replication
scheme for NFSv4 that supports mutable replication without sacrificing strong consistency guarantees.
Experimental evaluation indicates a substantial performance advantage over a single server system. With
the introduction of a hierarchical replication control protocol, the overhead of replication is negligible even
when applications mostly write and replication servers are widely distributed. Evaluation with the NAS
Grid Benchmarks demonstrates that our system provides comparable — and often better — performance
than GridFTP, the de facto standard for Grid data sharing.

Sep 06, 2006

Center for Information Technology Integration
University of Michigan

535 W. William St., Suite 3100
Ann Arbor, MI 48103-4978

 2

Hierarchical Replication Control in a Global File System
Jiaying Zhang and Peter Honeyman

Center for Information Technology Integration
University of Michigan at Ann Arbor

jiayingz@eecs.umich.edu honey@citi.umich.edu

1. Introduction
Grid-based scientific collaborations are character-

ized by geographically distributed institutions sharing
computing, storage, and instruments in dynamic virtual
organizations [1, 2]. By aggregating globally distrib-
uted resources, Grid middleware provides an infra-
structure for computations far beyond the scope of a
single organization.

Grid computations feature high performance com-
puting clusters connected with long fat pipes, a signifi-
cantly departure from the traditional high-end setting
of a collection of nodes sited at one location connected
by a fast local area network. This difference intro-
duces new challenges in storage management, job
scheduling, security provision, etc., stimulating grow-
ing research in these areas. In particular, the need for
flexible and coordinated resource sharing among geo-
graphically distributed organizations demands effi-
cient, reliable, and convenient data access and move-
ment schemes to ease users’ efforts for using Grid data.

The state of the art in Grid data access is character-
ized by parallel FTP driven manually or by scripts
[22]. FTP has the advantage of following a strict and
simple standard and widespread vendor support. How-
ever, FTP has some fundamental inadequacies. Distri-
bution is clumsy and inefficient: applications must
explicitly transfer a remote file in its entirety to view or
access even a small piece of it, then transfer it back if
the file is modified. Consistent sharing for distributed
applications is not supported. The distribution model
also leads to long first-byte latency. To overcome
these problems, this paper introduces an alternative for
distributed filing on the Grid that allows users and ap-
plications to access widely distributed data as simply
and efficiently as they access them locally.

Recent advances in Internet middleware infrastruc-
ture — notably, broad support for NFSv4 [3, 4] —
offer remarkable opportunities for virtual organizations
to share data through a unified global file system. De-
signed with Internet data management in mind, NFSv4
has the potential to meet the requirements of widely
distributed collaborations. As a distributed file system
protocol, NFSv4 allows users to access data with tradi-
tional file system semantics: NFSv4 supports the so-
called “close-to-open” consistency guarantee, i.e., an
application opening a file is guaranteed to see the data

written by the last application that writes and closes the
file. This model, which proves adequate for most ap-
plications and users [5], can also serve as an enabling
feature for re-using existing software in Grid comput-
ing.

In spite of these advantages, extending NFSv4 ac-
cess to a global scale introduces performance chal-
lenges. Our evaluation indicates that conventional
NFS distribution — multiple clients connected to stor-
age elements through a common server — cannot meet
Grid performance requirements when computational
elements are widely distributed [6]. To overcome this,
we developed a replication protocol for NFSv4 that
allows placement of replication servers near the com-
pute nodes [7]. The protocol supports exactly the same
semantics that NFSv4 provides and requires no client-
side extensions, which simplifies deployment in wide
area networks.

Our replication extension to NFSv4 coordinates
concurrent writes by dynamically electing a primary
server upon client updates. With no writers, our sys-
tem has the performance profile of systems that sup-
port read-only replication. But unlike read-only sys-
tems, we also support concurrent write access without
compromising NFSv4 consistency guarantees. Fur-
thermore, the system can automatically recover from
minority server failures, offering higher availability
than single server systems.

Although that replication protocol breaks new
ground in performance and availability for read-
dominant applications, further analysis exposes a con-
siderable performance penalty for large synchronous
writes, bursty directory updates, and widely separated
replication servers, characteristic data access patterns
of Grid computing. The observed performance penalty
is mainly due to the cost of guaranteeing durability and
the cost of synchronization. Specifically, the durability
requirement delays the response to a client update re-
quest until a majority of the replication servers have
acknowledged the update. This provides a simple re-
covery mechanism for server failure but synchronous
writes or directory updates suffer when replication
servers are far away. The synchronization require-
ment, which amounts to an election for consensus
gathering, also delays applications — especially when
they emit a burst of metadata updates — while waiting
for distant replication servers to vote.

 3

We assume (and observe) that failures are rare in
practice. Furthermore, the computation results by sci-
entific applications can usually be reproduced by sim-
ply re-executing programs or restarting from a recent
checkpoint. This suggests that we may relax the dura-
bility requirement to improve performance for syn-
chronous updates. Instead of automatically guarantee-
ing durability to a client, we may elect to report the
failure to the application immediately by making the
data under modification inaccessible. The application
can then decide whether to wait for server recovery or
to regenerate the computation results. To reduce the
cost of synchronization, we propose a hierarchical rep-
lication control protocol that allows a primary server to
assert control at granularities coarser than a single file
or directory, allowing control over an entire subtree
rooted at a directory. This amortizes the cost of syn-
chronization over multiple update requests.

The remainder of the paper is organized as follows.
Section 2 reviews our earlier work in developing a
replication control protocol that coordinates concurrent
writes by electing a primary server at the granularity of
a single file or directory. We refer to it as the fine-
grained replication control protocol in the following
discussion. In Section 3, we introduce a hierarchical
replication control protocol that allows a primary
server to assert control at various granularities to amor-
tize the performance cost of primary server election
over more update requests. In Section 4, we examine
the performance of these protocols with a prototype
implementation and several realistic benchmarks. In
Sections 5 and 6, we discuss related work, summarize,
and conclude.

2. Fine-grained Replication Control
In this section, we review the design of a mutable

replication protocol for NFSv4 that guarantees close-
to-open consistency semantics by electing a primary
server upon client updates at the granularity of a single
file or directory [6]. Section 2.1 introduces the replica-
tion protocol, Section 2.2 presents the primary server
election algorithm, and Section 2.3 describes the han-
dling of various kinds of failures.

2.1 Replication Control Protocol
Most applications, scientific and otherwise, are

dominated by reads, so it is important that a replication
control protocol avoids overhead for read requests. We
achieve this in our system by using a variant of the
well understood and intuitive primary-copy scheme to
coordinate concurrent writes. Under the conventional
primary copy approach, a primary server is statically
assigned for each mount point during configuration so
all write requests under a single mount point go to the
same primary server. On the contrast, in our system,

the server to which a client sends the first write request
is elected as the primary server for the file or the direc-
tory to be modified. With no writers, our system has
the natural performance advantages of systems like
AFS that support read-only replication: use a nearby
server, support transparent client rollover on server
failure, etc. However, we also support concurrent
write access without weakening NFSv4 consistency
guarantees.

The system works as follows. When a client opens
a file for writing, it sends the open request to the NFS
server that it has selected for the mount point to which
the file belongs. An application can open a file in
write mode without actually writing any data for a long
time, e.g., forever, so the server does nothing special
until the client makes its first write request. When the
first write request arrives, the server invokes the repli-
cation control protocol, a server-to-server protocol
extension to the NFSv4 standard.

First, the server arranges with all other replication
servers to acknowledge its primary role. Then, all
other replication servers are instructed to forward client
read and write requests for that file to the primary
server. The primary server distributes (ordered) up-
dates to other servers during file modification. When
the file is closed (or has not been modified for a long
time) and all replication servers are synchronized, the
primary server notifies the other replication servers that
it is no longer the primary server for the file.

Directory updates are handled similarly, except for
the handling of concurrent writes. Directory updates
complete quickly, so a replication server simply waits
for the primary server to relinquish its role if it needs to
modify a directory undergoing change. For directory
updates that involve multiple objects, a server must
become the primary server for all objects. The com-
mon case for this is rename, which needs to make two
updates atomically. To prevent deadlock, we group
these update requests and process them together.

Two requirements are necessary to guarantee close-
to-open semantics. First, a server becomes the primary
server for an object only after it collects acknowl-
edgements from a majority of the replication servers.
Second, a primary server must ensure that all working
replication servers have acknowledged its role when a
written file is closed, so that subsequent reads on any
server reflect the contents of a file when it was closed.
The second requirement is satisfied automatically if the
client access to the written file lasts longer than the
duration of the primary server election. However, an
application that writes many small files can suffer non-
negligible delays. These files are often temporary
files, i.e., files that were just created (and are soon to
be deleted), so we allow a new file to inherent the pri-
mary server that controls its parent directory for file

 4

creation. Since the primary server does not need to
propose a new election for writing a newly created file,
close-to-open semantics is often automatically guaran-
teed without additional cost.

A primary server is responsible for distributing up-
dates to other replication servers during file or direc-
tory modification. In an earlier version of the protocol,
we required that a primary server not process a client
update request until it receives update acknowledge-
ments from a majority of the replication servers [7].
With this requirement, as long as a majority of the rep-
lication servers are available, a fresh copy can always
be recovered from them. Then, by having all active
servers synchronize with the most current copy, we
guarantee that the data after recovery reflects all ac-
knowledged client updates, and a client needs to reis-
sue its last pending request only.

The earlier protocol transparently recovers from a
minority of server failures and balances performance
and availability well for applications that mostly read.
However, performance suffers for scientific applica-
tions that are characterized by many synchronous
writes or directory updates and replication servers that
are far away from each other [7]. Meeting the per-
formance needs of Grid applications requires a differ-
ent trade-off.

Failures occur in distributed computations, but are
rare in practice. Furthermore, the results of most scien-
tific applications can be reproduced by simply re-
executing programs or re-starting from the last check-
point. This suggests a way to relax the costly update
distribution requirement so that the system provides
higher throughput for synchronous updates at the cost
of sacrificing the durability of data undergoing change
in the face of failure.

Adopting this strategy, we allow a primary server to
respond immediately to a client write request before
distributing the written data to other replication serv-
ers. Thus, with a single writer, even when replication
servers are widely distributed, the client experiences
longer delay only for the first write (whose processing
time includes the cost of primary server election),
while subsequent writes have the same response time
as accessing a local server (assuming the client and the
chosen primary server are in the same LAN). Of
course, should concurrent writes occur, performance
takes a back seat to consistency, so some overhead is
imposed on the application whose reads and writes are
forwarded to the primary server.

2.2 Primary Server Election
Two (or more) servers may contend to become the

primary server for the same object (file or directory)
concurrently. To guarantee correctness of our replica-
tion control protocol, we need to ensure that more than

one primary server is never chosen for a given object,
even in the face of conflicts and/or failures. This prob-
lem is a special case of the extensively studied consen-
sus problem.

In the consensus problem, all correct processes must
reach an agreement on a single proposed value [13].
Many problems that arise in practice, such as electing a
leader or agreeing on the value of a replicated object,
are instances of the consensus problem. In our case, if
we assign each replication server a unique identifier,
the primary server election problem is easily seen to be
an instance of the consensus problem: electing a pri-
mary server is equivalent to agreeing on a primary
server identifier.

Achieving consensus is a challenging problem,
especially in an asynchronous distributed system. In
such a system, there is no upper bound on the message
transmission delays or the time to execute a computing
step. A good consensus algorithm needs to maintain
consistency, i.e., only a single value is chosen, and to
guarantee progress so that the system is eventually
synchronous for a long enough interval [14]. Unfortu-
nately, Fischer et al. showed that the consensus prob-
lem cannot be solved in an asynchronous distributed
system in the presence of even a single fault [15].

Observing that failures are rare in practice, candi-
date consensus algorithms have been proposed to sepa-
rate the consistency requirement from the progress
property [16-20]. That is, while consistency must be
guaranteed at all times, progress may be hampered
during periods of instability, as long as it is eventually
guaranteed after the system returns to the normal state.
Our system also follows this design principle. Rather
than using an existing consensus protocol such as
Paxos [16], we develop a primary server election algo-
rithm of our own based on the following considera-
tions.

Most of the proposed consensus algorithms attempt
to minimize the amount of time between the proposal
of a value and the knowledge of a chosen value by all
members. In our system, a replication server initiates
the primary server election procedure upon receiving
an update request from a client. The server cannot
process the client’s request until it determines the pri-
mary server for the object to be modified. Our aim is
therefore to minimize the elapsed time between these
two events. Consequently, we use the primary server
election algorithm sketched in Figure 1 in our replica-
tion control protocol.

It is easy to verify that the algorithm satisfies the
consistency requirement: a primary server needs to
accumulate the acknowledgments from a majority of
the replication servers and a replication server cannot
commit to more than one primary server, so only a
single primary server is elected for a given object.

 5

Figure 1. Primary Server Election. This pseu-
docode sketches the election protocol. Section
2.3 discusses failure handling in more detail.

Furthermore, for the common case — no failures and
only one server issues the proposal request — primary
server election completes with only one message delay
between the elected primary server and the farthest
replication server. In fact, since the server can process
the client’s update request as soon as it receives ac-
knowledgments from a majority of the replication
servers, the conflict- and failure- free response time is
bounded by the largest round-trip time (RTT) separat-
ing the primary server and half of the nearest replica-
tion servers. We note for emphasis that this improves
on many existing consensus algorithms that require
two message delays to decide on a chosen value [18].

If multiple servers compete to be the primary server
for an object, it is possible that none of them collects
acknowledgments from a majority of the replication
servers in the first round of the election. Absent fail-
ure, the conflict is quickly learned by each competing
server from the replies it receives from other replica-
tion servers. In this case, the server with the largest
identifier is allowed to proceed and its competitors
abort their proposals by releasing the servers that have
already acknowledged.

In the presented algorithm, the winner of the compe-
tition keeps sending proposal requests to replication
servers that have not acknowledged its role, subject to
timeout. However, the abort request from a yielding
competitor may arrive at such a replication server after
several rounds of proposal distribution, resulting in
redundant network messages. The situation can be

improved with a small optimization in the second
round of the election: the winning server can append
the replies it has collected in previous rounds to its
subsequent proposals. With this information, a server
that receives a late-round proposal can learn that the
server it is currently treating as primary will soon abort
the election. Thus, it can briefly delay replying to the
new proposal, increasing the chance that the object is
released by the old primary server before responding to
the late-round proposal. We leave the detailed discus-
sion of failures to the next subsection, but point out
that when the system is free of failure, primary server
election converges in two message delays even in the
face of contention.

2.3 Coping with Failure
The discussion so far focuses on replication control

in normal — i.e., failure-free — system states. How-
ever, failure introduces complexity. Different forms of
failure may occur: client failure, replication server fail-
ure, network partition, or any combination of these. In
this subsection, we describe the handling of each case.
Our failure model is fail stop [25], i.e., no Byzantine
failures [21].1

Following the specification of NFSv4, a file opened
for writing is associated with a lease on the primary
server, subject to renewal by the client. If the client
fails, the server receives no further renewal requests, so
the lease expires. Once the primary server decides that
the client has failed, it closes any files left open by the
failed client on its behalf. If the client was the only
writer for a file, the primary server relinquishes its role
for the file.

To guarantee consistency upon server failure, our
system maintains an active view among replication
servers [47]. During file or directory modification, a
primary server removes from its active view any repli-
cation server that fails to respond to its election request
or update requests within a specified time bound. The
primary server distributes its new view to other replica-
tion servers whenever the active view changes. We
require an active view to contain a majority of the rep-
lication servers. The primary server replies to a client
close operation only after a majority of the replication
servers have acknowledged the new active view. Each
replication server records the active view in stable
storage. A server not in the active view may have stale
data, so the working servers must deny any requests
coming from a server not in the active view. We note
that if the server failure is caused by network partition,
close-to-open semantics is not guaranteed on the

1 Security of the protocol follows from the use of secure RPC

channels, mandatory in NFSv4, for server-to-server com-
munication

Upon receiving a client update request, initiate primary
server election if the object’s primary server is NULL
set the object’s primary server to MyID // ack self
loop until all active servers ack

propose <MyID, object> to unacked servers
wait until all those servers reply or timeout
if the number of acks received is less than majority then

identify competitors from the replies
if any competitor is accepted by a majority of servers, or
any competitor’s identifier is larger than MyID then

set the object’s primary server to NULL
send abort <MyID, object> to all acked servers
exit loop

else mark timed out servers inactive

Upon receiving propose <ServerID, object>
if the object’s primary server is NULL then

set the object’s primary server to ServerID
send ack

else
send nack <the object’s primary server>

Upon receiving abort <ServerID, object>
if the object’s primary server equals to ServerID then

set the object’s primary server to NULL

 6

“failed” server(s), i.e., clients may have read stale data
without awareness. However, a server excluded from
the active view cannot update any working server,
which prevents the system from entering an inconsis-
tent state.2

If a replication server fails after sending primary
server election requests to a minority of replication
servers, the failure can be detected by a subsequently
elected primary server. As described above, that pri-
mary server eliminates the failed server from the active
view and distributes the new view to the other replica-
tion servers. The servers that have acknowledged the
failed server switch to the new primary server after
employing the new active view. The consistency of
the data is unaffected: the failed server had not re-
ceived acknowledgements from a majority of the repli-
cation servers so it cannot have distributed any up-
dates.

A primary server may fail during file or directory
modification. With the relaxed update distribution
requirement, the primary server responds to a client
update request immediately before distributing updates
to the other replication servers. As a result, other ac-
tive servers cannot recover the most recent copy
among themselves. The “principle of least surprise”
argues the importance of guaranteed durability of data
written by a client and acknowledged by the server, so
we make the object being modified inaccessible until
the failed primary server recovers or an outside admin-
istrator re-configures the system. However, clients can
continue to access objects that are outside the control
of the failed server, and applications can choose
whether to wait for the failed server to recover or to re-
produce the computation results.

Since our system does not allow a file or a directory
to be modified simultaneously on more than one server
even in case of failure, the only valid data copy for a
given file or directory is the most recent copy found
among the replication servers. This feature simplifies
the failure recovery in our system: when an active
server detects the return of a failed server, either upon
receiving an election or update request from the return-
ing server or under the control of an external admini-
stration service, it notifies the returning server to initi-
ate a synchronization procedure. During synchroniza-
tion, write operations are suspended, and the returning
server exchanges the most recent data copies with all
active replication servers.3 After recovery, all the ob-

2 Generally, the computation results on a failed server are

dubious since they might be generated with stale input data.
To be safe, applications should re-compute these results.

3 This process can be done easily by alternately executing a
synchronization program, such as rsync, between the re-
turning server and each active replication server, with the

jects that were controlled by the returning server, i.e.,
those for which it was the primary server at the mo-
ment it failed, are released and the server is added to
the active view.

Should a majority of the replication servers fail si-
multaneously, an external administrator must enforce a
grace period after the recovering from the failure. To
be safe, the administration service should instruct each
replication server to execute the synchronization pro-
cedure during the grace period.

3. Hierarchical Replication Control
Notwithstanding an efficient consensus protocol, a

server can still be delayed waiting for acknowledg-
ments from slow or distant replication servers. This
can adversely affect performance, e.g., when an appli-
cation issues a burst of metadata updates to widely
distributed objects. Conventional wisdom holds that
such workloads are common in Grid computing, and
we have observed them ourselves when installing,
building, and upgrading Grid application suites. To
address this problem, we have developed a hierarchical
replication control protocol that amortizes the cost of
primary server election over more requests by allowing
a primary server to assert control over an entire subtree
rooted at a directory. In this section, we detail the de-
sign of this tailored protocol.

The remainder of this section proceeds as follows.
Section 3.1 introduces two control types that a primary
server can hold on an object. One is limited to a single
file or directory, while the other governs an entire sub-
tree rooted at a directory. Section 3.2 discusses revi-
sions to the primary server election needed for hierar-
chical replication control. Section 3.3 then investigates
mechanisms to balance the performance and concur-
rency trade-off related to the two control types.

3.1 Shallow vs. Deep Control
We introduce nomenclature for two types of control:

shallow and deep. A server exercising shallow control
on an object (file or directory) L is the primary server
for L. A server exercising deep control on a directory
D is the primary server for D and all of the files and
directories in D, and additionally exercises deep con-
trol on all the directories in D. In other words, deep
control on D makes the server primary for everything
in the subtree rooted at D. In the following discussion,
when a replication server P is elected as the primary
server with shallow control for an object L, we say that
P has shallow control on L. Similarly, when a replica-
tion server P is elected as the primary server with deep
control on a directory D, we say that P has deep con-

option to skip any file or directory whose modification time
is newer than the source node.

 7

trol on D. Relinquishing the role of primary server for
an object L amounts to revoking shallow or deep con-
trol on L. We say that a replication server P controls
an object L if P has (shallow or deep) control on L or
P has deep control on an ancestor of L.

We introduced deep control to improve performance
for a single writer without sacrificing correctness for
concurrent updates. Electing a primary server with the
granularity of a single file or directory allows high
concurrency and fine-grained load balancing, but a
coarser granularity is suitable for applications whose
updates exhibit high temporal locality and are spread
across a directory or a file system. A primary server
can process any client update in a deeply controlled
directory immediately, so it improves performance for
applications that issue a burst of metadata updates.

Introducing deep control complicates consensus dur-
ing primary server election. To guarantee that an ob-
ject is under the control of a single primary server, we
enforce the rules shown in Figure 2. We consider sin-
gle writer cases to be more common than concurrent
writes, so a replication server attempts to acquire a
deep control on a directory whenever it can. On the
other hand, we must prevent an object from being con-
trolled by multiple servers. Therefore, a replication
server needs to ensure that an object in a (shallow or
deep) control request is not already controlled by an-
other server. Furthermore, it must guarantee that a
directory in a deep control request has no descendant
under the control of another server.

To validate the first condition, a replication server
scans each directory along the path from the referred
object to the mount point. If an ancestor of the object
has a primary server other than the one who issues the
request, the validation fails. Checking the second con-
dition is more complex. Scanning the directory tree

during the check is too expensive, so we do some
bookkeeping when electing a primary server: each
replication server maintains an ancestry table for files
and directories whose controls are granted to some
replication servers. An entry in the ancestry table cor-
responds to a directory that has one or more decedents
whose primary servers are not empty. Figure 3 shows
entries in the ancestry table and an example that illus-
trates how the ancestry table is maintained.

An ancestry entry contains an array of counters,
each of which corresponds to a replication server. E.g.,
if there are three replication servers in the system, an
entry in the ancestry table contains three corresponding
counters. Whenever a (deep or shallow) control for an
object L is granted or revoked, each server updates its
ancestry table by scanning each directory along the
path from L to the mount point, adjusting counters for
the server that owns the control. A replication server
also updates its ancestry table appropriately if a con-
trolled object is moved, linked, or unlinked during di-
rectory modifications.

A replication server needs only one lookup in its an-
cestry table to tell whether a directory subtree holds an
object under the control of a different server: It first
finds the mapping entry of the directory from its ances-
try table, and then examines that entry’s counter array.
If the counter on any replication server other than the
one that issues the deep control request has a non-zero
value, the replication server knows that some other
server currently controls a descendant of the directory,
so it rejects the deep control request.

3.2 Primary Server Election with Deep Control
With the introduction of deep control, two primary

server election requests on two different objects can
conflict if one of them wants deep control on a direc-
tory, as the example in Figure 4 illustrates. To guaran-
tee progress during conflicts, we extend the primary
server election algorithm described in Section 2.2 as
follows. When a replication server receives a shallow
control request for an object L from a peer server P but
cannot grant the control according to the rules listed in
Figure 2, it replies to P with the identifier of the pri-
mary server that currently controls L. On the other
hand, if a replication server judges that it cannot grant
a deep control request, it simply replies with a nack. A
server downgrades a deep control request to shallow if
it fails to accumulate acknowledgments from a major-
ity of the replication servers. Then with shallow con-
trols only, the progress of primary server election fol-
lows the discussion in Section 2.2.

3.3 Performance and Concurrency Tradeoff
The introduction of deep control introduces a per-

formance and concurrency trade-off. A primary server

Upon receiving a client update request for object L
if L is controlled by self then serve the request
if L is controlled by another server then forward the request
else // L is uncontrolled

if L is a file then request shallow control on L
if L is a directory then

if a descendant of L is controlled by another server then
request shallow control on L

else
request deep control on L

Upon receiving a shallow control request for object L from
peer server P
grant the request if L is not controlled by a server other than P

Upon receiving a deep control request for directory D from
peer server P
grant the request if D is not controlled by a server other than P,
and no descendant of D is controlled by a server other than P

Figure 2. Using and granting controls.

 8

can process any client update in a deep-controlled di-
rectory, which substantially improves performance
when an application issues a burst of updates. This
argues for holding deep control as long as possible.
On the other hand, holding a deep control can intro-
duce conflicts due to false sharing. In this subsection,
we strive for balance in the trade-off between perform-
ance and concurrency when employing shallow and
deep controls.

First, we postulate that the longer a server controls
an object, the more likely it will receive conflicting
updates, so we start a timer on a server when it obtains
a deep control. The primary server resets its timer if it
receives a subsequent client update under the deep-
controlled directory before the timeout. When the
timer expires, the primary server relinquishes its role.

Second, recall that in a system with multiple writers,
we increase concurrency by issuing a revoke request
from one server to another if the former server receives
an update request under a directory deep-controlled by
the latter. Locality of reference suggests that more
revoke requests will follow shortly, so the primary
server shortens the timer for relinquishing its role for
that directory. We note that a replication server does
not send a revoke request when it receives a directory
read request under a deep-controlled directory. This
strategy is based on observing that the interval from the
time that a client receives a directory update acknowl-
edgment and the time that other replication servers
implement the update is small (because the primary
server distributes a directory update to other replication
servers immediately after replying to the client). This
model complies with NFSv4 consistency semantics: in
NFSv4, a client caches attributes and directory con-
tents for a specified duration before requesting fresh
information from its server.

Third, when a primary server receives a client write
request for a file under a deep-controlled directory, it
distributes a new shallow control request for that file to
other replication servers. The primary server can proc-
ess the write request immediately without waiting for
replies from other replication servers as it is already the
primary server of the file’s ancestor. However, with a
separate shallow control on the file, subsequent writes
on that file do not reset the timer of the deep controlled
directory. Thus, a burst of file writes has minimal im-
pact on the duration that a primary server holds a deep
control. Furthermore, to guarantee close-to-open se-
mantics, a replication server need only check whether
the accessed file is associated with a shallow control
before processing a client read request, instead of
scanning each directory along the path from the re-
ferred file to the mount point.

Fourth, a replication server can further improve its
performance by issuing a deep control request for a
directory that contains many frequently updated de-
scendants if it observes no concurrent writes. This
heuristic is easy to implement with the information
recorded in the ancestry table: a replication server can
issue such a request for directory D if it observes that
in the ancestry entry of D, the counter corresponding to
itself is beyond some threshold and the counters of all
other replication servers are zero.

The introduction of deep control provides significant
performance benefits, but can adversely affect data
availability in the face of failure: if a primary server
with deep control on a directory fails, updates in that
directory subtree cannot proceed until the failed pri-
mary server is recovered. Recapitulating the discus-
sion of false sharing above, this argues in favor of a
small value for the timer.

In the next section, we show that timeouts as short
as one second are long enough to reap the performance
benefits of deep control. Combined with our assump-
tion that failure is infrequent, we anticipate that the
performance gains of deep control far outweigh the

Consider three replication servers: S0, S1, and S2. Simul-
taneously, S0 requests (deep or shallow) control of direc-
tory b, S1 requests control of directory c, and S2 requests
deep control of directory a. According to the rules listed in
Figure 2, S0 and S1 succeed in their primary server elec-
tions, but S2’s election fails due to conflicts. S2 then re-
tries by asking for shallow control of a.

Figure 4. Potential conflicts in primary
server election caused by deep control.

Consider three replication servers: S0, S1, and S2. S0 is
currently the primary server of file f1 and directory d1. S1
is currently the primary server of file f2. S2 is currently
the primary server of directory d2. The right table shows
the content of the ancestry table maintained on each repli-
cation server.

Figure 3. Structure and maintenance of the
ancestry table.

 9

potential cost of servers failing while holding deep
control on directories.

4. Evaluation
In this section, we evaluate the performance of hier-

archical replication control with a series of experiments
over simulated wide area networks. We start with a
coarse evaluation in Section 4.1 using the SSH-Build
benchmark, and find that hierarchical replication con-
trol is very successful in reducing overhead, even when
the time that deep control is held is short. In Section
4.2, we explore system performance with the NAS
Grid Benchmarks in simulated wide area networks and
find that our replicated file system holds a substantial
performance advantage over a single server system. At
the same time, it provides comparable and often better
performance than GridFTP, the conventional approach
to moving data sets in the Grid.

We conducted all the experiments presented in this
paper with a prototype implemented in the Linux
2.6.16 kernel. Servers and clients all run on dual
2.8GHz Intel Pentium4 processors with 1 MB L2
cache, 1 GB memory, and onboard Intel 82547GI Gi-
gabit Ethernet card. The NFS configuration parame-
ters for reading (rsize) and writing (wsize) are set to 32
KB. We use Netem [23] to simulate network latencies.
Our experiments focus on evaluating the performance
impact caused by WAN delays. Hence, we do not
simulate packet loss or bandwidth limits in our meas-
urements, and enable the async option (asynchro-
nously write data to disk) on the NFS servers. Al-
though not comprehensive, we expect that our settings
closely resemble a typical Grid environment — high
performance computing clusters connected by long fat
pipes.

All measurements presented in this paper are mean
values from five trials of each experiment; measured
variations in each experiment are negligible. Each
experiment is measured with a warm client cache, but

the temperature of the client cache has little effect on
the presented results.

4.1 Evaluation with SSH-Build Benchmark
The SSH-Build benchmark [24] runs in three

phases. The unpack phase decompresses a tar archive
of SSH v3.2.9.1. This phase is relatively short and is
characterized by metadata operations on files of vary-
ing sizes. The configure phase builds various small
programs that check the configuration of the system
and automatically generates header files and Makefiles.
The build phase compiles the source tree and links the
generated object files into the executables. The last
phase is the most CPU intensive, but it also generates a
large number of temporary files and a few executables
in the compiling tree.

Before diving into the evaluation of hierarchical rep-
lication, we look at performance when accessing a sin-
gle distant NFSv4 server. Figure 5 shows the meas-
ured times when we run the SSH-Build benchmark
with an increasingly distant file server. In the graph,
the RTT marked on the X-axis shows the round-trip
time between the client and the remote server, starting
with 200 µsec, the network latency of our test bed
LAN. Figure 5 shows (in log-scale) that the SSH build
that completes in a few minutes on a local NFSv4
server takes hours when the RTT between the server
and the client increases to tens of milliseconds. The
experiment demonstrates that it is impractical to exe-
cute update-intensive applications using a stock remote
NFS server. Network RTT is the dominant factor in
NFS WAN performance, which suggests the desirabil-
ity of a replicated file system that provides client ac-
cess to a nearby server.

1

10

100

1000

10000

0.2 5 10 20 30 40
RTT between NFS server and client (ms)

SS
H

 b
ui

ld
 ti

m
e

(s
)

unpack configure build

Figure 5. SSH build on a single NFSv4 server.

0

100
200

300

400

500
600

700

800

0.2 20 40 60 80 100 120 single
local

server
RTT between two replication servers (ms)

SS
H

 b
ui

ld
 ti

m
e

(s
)

unpack configure build

Figure 6. Fine-grained replication control vs.
hierarchical replication control. The first col-
umn shows the time to build SSH using fine-
grained replication control. The second column
shows the time when using hierarchical replication
control. For runs with hierarchical replication con-
trol, the primary server relinquishes deep control if
it receives no client updates for one second.

 10

Next, we compare the time to build SSH using fine-
grained replication control and hierarchical replication
control with a local replication server and an increas-
ingly distant replication server. The results, shown (in
linear scale) in Figure 6, demonstrate the performance
advantage of file system replication. Even with fine-
grained replication control, adding a nearby replication
server significantly shortens the time to build SSH, as
expensive reads from a remote server are now serviced
nearby. Moreover, we see dramatic improvement with
the introduction of hierarchical replication control: the
penalty for replication is now negligible, even when
replication servers are distant.

In Section 3, we discussed the use of a timer for
each deep-controlled directory to balance performance
and concurrency but did not fix the timeout value. To
determine a good value for the timer, we measure the
time to build SSH for timeout values of 0.1 second, 0.5
second, and 1 second. Figure 7 shows the results.

Figure 7 shows that when we set the timeout value
to one second, the SSH build with a distant replication
server runs almost as fast as one accessing a single
local server. Furthermore, almost all of the perform-
ance differences among the three timeout values come
from the CPU intensive build phase. For the unpack
and configure phases, which emit updates more com-
pactly, even a tiny timeout value yields performance
very close to that for single local server access. Of
course, in practice the “optimal” timeout value depends
on the workload characteristics of the running applica-
tions. However, the SSH build experiment suggests
that a small timer value — a few seconds at most —-
can capture most of the bursty updates.

So far, our experiments focus on evaluation with
two replication servers. Generally, our system is de-
signed to be used with a small number of replication
servers, say, fewer than ten. Under this assumption,

we do not expect performance to suffer when addi-
tional replication servers are added because a primary
server distributes updates to other replication servers in
parallel. To test this conjecture, we measure the time
to build SSH as the number of replication servers in-
creases in a local area network and in a simulated wide
area network. For local area replication, the measured
RTT between any two machines is around 200 µsec.
For wide area replication, the RTT between any two
replication servers is set to 120 msec, while the RTT
between the client and the connected server is kept at
200 µsec.

Figure 8 shows that performance is largely unaf-
fected as the number of replication servers increases.
However, distributing client updates consumes pro-
gressively more primary server bandwidth as we in-
crease the number of replication servers. As a ge-
danken experiment, we might imagine the practical
limits to scalability as the number of replication servers
grows. A primary server takes on an output bandwidth
obligation that multiplies its input bandwidth by the
number of replication servers. For the near term, then,
the cost of bandwidth appears to be a barrier to mas-
sive replication with our design.

4.2 Evaluation with Grid Benchmarks
The NAS Grid Benchmarks (NGB), released by

NASA, provide an evaluation tool for Grid computing
[26]. The benchmark suite evolves from the NAS Par-
allel Benchmarks (NPB), a toolkit designed and widely
used for benchmarking on high-performance comput-
ing [27]. An instance of NGB comprises a collection

0

40

80

120

160

200

0.2
20 40 60 80 100
120

0.2
20 40 60 80 100
120

0.2
20 40 60 80 100
120

RTT between two replication servers (ms)

SS
H

 b
ui

ld
 ti

m
e

(s
)

unpack configure build

0.1s timer 0.5s timer 1s timer

single
local
server

Figure 7. Deep control timeout values. The
diagram shows the time to build SSH using hier-
archical replication control when the the timeout
for releasing a deep control is set to 0.1 second,
0.5 second, and 1 second.

0

40

80

120

160

200

2 3 4 5 2 3 4 5

Number of replication servers

SS
H

 b
ui

ld
 ti

m
e

(s
)

unpack configure build

LAN Replicaton WAN Replication

single local
server

Figure 8. Increasing the number of replication
servers. For LAN replication, the RTT between
any two machines is around 200 µsec. For WAN
replication, the RTT between any two replication
servers is set to 120 msec, while the RTT be-
tween the client and the connected server is kept
as 200 µsec. The primary server relinquishes
deep control if it receives no further client updates
for one second.

 11

of slightly modified NPB problems, each of which is
specified by class (mesh size, number of iterations),
source(s) of input data, and consumer(s) of solution
values. The current NGB consists of four problems:
Embarrassingly Distributed (ED), Helical Chain (HC),
Visualization Pipe (VP), and Mixed Bag (MB).

ED, HC, VP, and MB highlight different aspects of
a computational Grid. ED represents the important
class of Grid applications called parameter studies,

which constitute multiple independent runs of the same
program, but with different input parameters. It re-
quires virtually no communication, and all the tasks in
it execute independently. HC represents long chains of
repeating processes; tasks in HC execute sequentially.
VP simulates logically pipelined processes, like those
encountered when visualizing flow solutions as the
simulation progresses. The three tasks included in VP
fulfill the role of flow solver, post processor, and visu-

Figure 9. Data flow graphs of the NAS Grid Benchmarks.

Figure 10. NGB evaluation experiment setup.

Table 1. Amount of data exchanged between NGB tasks
Helical Chain Visualization Pipe Mixed Bag Class

BT→SP SP→LU LU→BT BT→MG MG→FT BT→BT FT→FT BT→MG MG→FT
S 169K 169K 169K 34K 641k 169K 5.1M 34K 641K
W 1.4M 4.5M 3.5M 271K 41M 1.4M 11M 702K 41M
A 26M 26M 26M 5.1M 321M 26M 161M 5.1M 321M

 12

alization, respectively. MB is similar to VP, but intro-
duces asymmetry. Different amounts of data are trans-
ferred between different tasks, and some tasks require
more work than others do.

Figure 9 illustrates the Data Flow Graph for each of
these benchmarks. The nodes in the graph, indicated
by the rectangular boxes, represent computational
tasks. Dashed arrows indicate control flow between
the tasks. Solid arrows indicate data as well as control
flow. Launch and Report do little work; the former
initiates execution of tasks while the latter collects and
verifies computation results.

The NGB instances are run for different problem
sizes (denoted Classes). For the evaluation results
presented in this paper, we use the three smallest
Classes: S, W, and A. Table 1 summarizes the amount
of data communicated among tasks for these Classes.

A fundamental goal of Grid computing is to harness
globally distributed resources for solving large-scale
computation problems. To explore the practicality and
benefit of using NFS replication to facilitate Grid com-
puting, we compare the performance of running NGB
under three configurations, referred as NFS, NFS/R,
and GridFTP.

In the experiments, we use three computing nodes to
emulate three computing clusters, with the RTT be-
tween each pair increased from 200 µsec to 120 msec.
In the NFS configuration, the three computing nodes
all connect to a single NFS server. In the NFS/R con-
figuration, we replace the single NFS server with three
replicated NFS servers, with each computing node
connected to a nearby server. In the GridFTP configu-
ration, we use GridFTP to transfer data among comput-
ing nodes. The GridFTP software we use is globus-
url-copy from Globus-4.0.2 toolkit. In our experi-
ments, we start eight parallel data connections in each
GridFTP transfer, which we found provides the best-
measured performance for GridFTP. (The NFS/R pro-
totype also supports parallel data connections between
replicated NFS servers. But in the experiments pre-
sented here, the performance improvement using mul-
tiple data connections is small, so we report results
measured with a single server-to-server data connec-
tion only.) Figure 10 illustrates the experiment setup.

For the GridFTP configuration, we run the NGB
tasks using the Korn shell Globus implementation from
the NGB3.1 package. In this implementation, a Korn
shell script launches the NGB tasks in round robin on
the specified computing nodes. Tasks are started
through the globusrun command with the batch flag
set. After a task completes, output data is transferred
to the computing node(s), where the tasks require the
data as input. A semaphore file is used to signal task
completion: computing nodes poll their local file sys-

tems for the existence of the semaphore files to moni-
tor the status of the required input files. After all tasks
start, the launch script periodically queries their com-
pletion using globus-job-status command.

For the NFS and NFS/R setups, we extended the
original NGB Korn shell scripts. The modified pro-
grams use ssh to start NGB tasks in round robin on
the specified computing nodes. The computing nodes
and the launch script poll for the status of the required
input data and tasks with semaphore files, as above.

Figure 11 shows the results of executing NGB on
NFS, NFS/R, and GridFTP as the RTT among the
three computing nodes increases from 200 µsec to 120
msec. The data presented is the “measured turn-
around” time, i.e., the time between starting a job and
obtaining the result. With GridFTP, turnaround time
does not include deployment and cleanup of executa-
bles on Grid machines. The time taken in these two
stages ranges from 10 seconds to 40 seconds, as the
RTT increases from 200 µsec to 120 msec.

Evidently, in Grid computing, deployment and
cleanup can sometimes take significant time with large
size of executables and input data [28]. Furthermore,
in some cases, it is hard for users to determine which
files to stage [29]. With NFS and NFS/R, on the other
hand, there is no extra deployment and cleanup time,
because computing nodes access data directly from file
servers. Even so, the times we report do not reflect this
inherent advantage.

The histograms in Figure 11 show that performance
with a single NFS server suffers dramatically as the
RTT between the server and the computing nodes in-
creases. Except for the ED problem — whose tasks
run independently — on larger data sets, the experi-
ments take a very long time to execute when the RTT
increases to 120 msec. In fact, the times are even
longer than the times measured when running the prob-
lems on a single computing node without parallel com-
puting. (Table 2 shows NGB execution times on a
single computing node with a local ext3 file system.)
Clearly, in most cases it is impractical to run applica-
tions on widely distributed clients connected to a single
NFS server, even for CPU intensive applications.

On the other hand, with NFS/R and GridFTP on
large class sizes, run times are not adversely affected
by increasing RTT. When the class size is small (e.g.,
the results of Class S), NFS/R outperforms GridFTP,
because the latter requires extra time to deploy dy-
namically created scripts and has extra Globus-layer
overhead. The NGB experiments demonstrate that
well-engineered replication control provides superior
file system semantics and easy programmability to
WAN-based Grid applications without sacrificing per-
formance.

 13

5. Related Work
Replicated File Systems. Echo [34] and Harp [35]

are file systems that use the primary copy scheme to
support mutable replication. Both of these systems use
a pre-determined primary server for a collection of
disks, a potential bottleneck if those disks contain hot
spots or if the primary server is distant. In contrast,
our system avoids this problem by allowing any server
to be primary for any file, determined dynamically in
response to client behavior.

Many replicated file systems trade consistency for
availability. Examples include Coda [12], Ficus [30],
and Locus [31]. These systems allow continued opera-
tions in the presence of failures, at the cost of sacrific-
ing consistency if conflicting updates occur. Typically,
automatic tools are provided to reconcile conflicts [32,
33]. However, in some cases, user involvement is
needed to get the desired version of data.

Recent years have seen a lot of work in peer-to-peer
file systems, including OceanStore [36], Ivy [37], Pan-
gaea [38], and Farsite [39]. These systems address the
design of systems in untrusted, highly dynamic envi-
ronments. Consequently, reliability and continuous
data availability are usually critical goals in these sys-

tems; performance or data consistency are often secon-
dary considerations. Compared to these systems, our
system addresses data replication among file system
servers, which are more reliable but have more strin-
gent requirements on average I/O performance.

The importance of maintaining strong consistency
with mutable replication is underscored by recent work
on storage systems, called Chain replication [46]. The
system intends to support high throughput and avail-
ability without sacrificing strong consistency guaran-
tees. It does this by disseminating updates to a chain
of replication servers serially, which provides high
throughput but results in slow response time for each
update request.

Hierarchical Replication Control. The use of
multiple granularities of control to balance perform-
ance and concurrency has been studied in other distrib-
uted file systems and database systems. Many modern
transactional systems use hierarchical locking [40] to
improve concurrency and performance of simultaneous
transactions. In distributed file systems, Frangipani
[41] uses distributed locking to control concurrent ac-
cesses among multiple shared-disk servers. For effi-
ciency, it partitions locks into distinct lock groups and

Table 2. Times of executing NGB on a single computing node with a local ext3 file system
Class S W A

Benchmark ED HC VP MB ED HC VP MB ED HC VP MB
Time (s) 2 1 9 6 217 31 83 101 1380 223 930 870

ED-S

0

10

20

30

40

50

60

70

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)

NFS NFS/R GridFTP

HC-S

0

20

40

60

80

100

120

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)

NFS NFS/R GridFTP

VP-S

0

20

40

60

80

100

120

140

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)

NFS NFS/R GridFTP

MB-S

0

10

20

30

40

50

60

70

80

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)

NFS NFS/R GridFTP

ED-W

0

20

40

60

80

100

120

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)

NFS NFS/R GridFTP

HC-W

0

50

100

150

200

250

300

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)

NFS NFS/R GridFTP

VP-W

0

100

200

300

400

500

600

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)

NFS NFS/R GridFTP

MB-W

0

50

100

150

200

250

300

350

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)

NFS NFS/R GridFTP

ED-A

0

100

200

300

400

500

600

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)

NFS NFS/R GridFTP

HC-A

0

100

200

300

400

500

600

700

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)

NFS NFS/R GridFTP

VP-A

0

1000

2000

3000

4000

5000

6000

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)
NFS NFS/R GridFTP

MB-A

0

400

800

1200

1600

2000

2400

0.2 20 40 60 80 100 120
rtt (ms)

Tu
rn

ar
ro

un
d

Ti
m

e
(s

)

NFS NFS/R GridFTP

Figure 11. Turnaround times (seconds) of NGB on NFS, NFS/R, and GridFTP.

 14

assign them to servers by group, not individually. Lin
et al. study the selection of lease granularity when dis-
tributed file systems use leases to provide strong cache
consistency [42]. To amortize leasing overhead across
multiple objects in a volume, they propose volume
leases that combine short-term leases on a group of
files (volumes) with long-term leases on individual
files. Farsite [39] uses content leases to govern which
client machines currently have control of a file’s con-
tent. A content lease may cover a single file or an en-
tire directory of files.

Data Grid. Various middleware systems have been
developed to facilitate data access on the Grid. Storage
Resource Broker (SRB) [43] provides a metadata cata-
log service to allow location-transparent access for
heterogeneous data sets. NeST [44], a user-level local
storage system whose goal is to bring appliance tech-
nology to the Grid, provides best-effort storage space
guarantees, mechanisms for resource and data discov-
ery, user authentication, quality of service, and multi-
ple transport protocol support. The Chimera system
[45] provides a virtual data catalog that can be used by
applications to describe a set of programs, and then to
track all the data files produced by their execution.
The work is motivated by observing that scientific data
is often derived from other data by the application of
computational procedures, which implies the need for a
flexible data sharing and access system.

A commonly omitted feature among these middle-
ware approaches is fine-grained data sharing seman-
tics. Furthermore, most of these systems provide ex-
tended features by defining their own API, so an appli-
cation has to be re-linked with their libraries in order to
use them.

6. Conclusion
Conventional wisdom holds that supporting consis-

tent mutable replication in large-scale distributed stor-
age systems is too expensive even to consider. Our
study proves otherwise: in fact, it is both feasible, prac-
tical, and can be realized today. This replicated file
system presented in this paper supports mutable repli-
cation with strong consistency guarantees. Experimen-
tal evaluation shows that the system holds great prom-
ise for accessing and sharing data in Grid computing,
delivering superior performance while rigorously ad-
herence to conventional file system semantics.

References

[1] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury,
and S. Tuecke. “The Data Grid: Towards an Architec-
ture for the Distributed Management and Analysis of
Large Scientific Datasets,” J Network and Computer
Applications (2001).

[2] I. Foster and C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann
(1998).

[3] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M.
Eisler, D. Noveck, D. Robinson, and R. Thurlow, “The
NFS Version 4 Protocol,” 2nd Intl. Conf. on System
Administration and Network Engineering, Maastricht
(2000).

[4] Sun Microsystems, Inc., “NFS Version 4 Protocol,”
RFC 3010 (2000).

[5] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D.
Lebel, and D. Hitz. “NFS Version 3 Design and Im-
plementation,” In Proceedings of the USENIX Summer
1994 Technical Conference (1994).

[6] J. Zhang and P. Honeyman, “Naming, Migration, and
Replication for NFSv4,” 5th Intl. Conf on System Ad-
ministration and Network Engineering, Delft (2006).

[7] J. Zhang and P. Honeyman, “Reliable Replication at
Low Cost,” Technical Report 06-01, Center for Infor-
mation Technology Integration (2006).

[8] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnel, and S. Tuecke, “Secure, Efficient Data Trans-
port and Replica Management for High-Performance
Data-Intensive Computing,” In Proceedings of the
18th IEEE Mass Storage Conference (2001).

[9] M. Satyanarayanan, J. H. Howard, D. A. Nichols, R. N.
Sidebotham, A. Z. Spector, and M. J. West, “The ITC
distributed file system: principles and design,”
SIGOPS Oper. Syst. Rev., 19:5 (1985).

[10] B. S. White, M. Walker, M. Humphrey, and A. S.
Grimshaw, “Legionfs: a secure and scalable file system
supporting crossdomain high-performance applica-
tions.,” In Proc. of the 2001 ACM/IEEE conference on
Supercomputing (2001).

[11] P. Kumar and M. Satyanarayanan, Supporting applica-
tion specific resolution in an optimistically replicated
file system. In Workshop on Workstation Operating
Systems (1993).

[12] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Oka-
saki, W. H. Siegel, and D. C. Steere, “Coda: A highly
available file system for a distributed workstation envi-
ronment,” IEEE Transactions on Computers 39:4
(1990).

[13] M. J. Fischer, “The consensus problem in unreliable
distributed systems (a brief survey),” Technical report,
Department of Computer Science, Yale University
(1983).

[14] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus
in the presence of partial synchrony,” Journal of the
ACM, 35(2):288--323 (1988).

[15] M. J. Fischer, N. Lynch, and M. S. Paterson, “Impossi-
bility of distributed consensus with one faulty process,”
Journal of the ACM, 32(2):374 (1985).

[16] L. Lamport, “The part-time parliament,” ACM Trans-
actions on Computer Systems, 16(2):133–169 (1998).

[17] L. Lamport, “Fast Paxos,” Technical Report MSR-TR-
2005-112, Microsoft Research (2005).

[18] L. Lamport, “Lower bounds on asynchronous Consen-
sus,” In Andre Schiper, Alex A. Shvartsman, Hakim
Weatherspoon, and Ben Y. Zhao, editors, Future Di-

 15

rections in Distributed Computing, volume 2584 of
Lecture Notes in Computer Science, pages 22--23.
Springer (2003).

[19] D. Malkhi, F. Oprea, and L. Zhou, “Ω meets Paxos:
Leader election and stability without eventual timely
links,” In Proceedings of the 19th International Sym-
posium on Distributed Computing (DISC), pages 199--
213 (2005).

[20] T. Chandra and S. Toueg, “Unreliable Failure Detec-
tors for Reliable Distributed Systems,” Journal of the
ACM, 43(2):225-267 (1996).

[21] F. Cristian, H. Aghali, R. Strong and D. Dolev,
“Atomic Broadcast: From Simple Message Diffusion
to Byzantine Agreement,” in Proc. 15th FTCS (June
1985).

[22] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link,
“The Globus Striped GridFTP Framework and Server,”
In Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing (Nov. 2005).

[23] S. Hemminger, “Netem – Emulating Real Networks in
the lab,” LCA2005 (Apr. 2005).

[24] T. Ylonen, “SSH - Secure Login Connection Over the
Internet,” 6th USENIX Security Symp. (1996).

[25] Schneider, F. B., “Byzantine generals in action: Im-
plementing fail-stop processors,” ACM Transactions
on Computer Systems 2(2), 145-154 (1984).

[26] M. Frumkin and R. F. V. der Wijngaart, “NAS Grid
Benchmarks: A tool for grid space exploration,” Clus-
ter Computing, 5(3):247--255 (2002).

[27] D.H. Bailey, J. Barton, T. Lasinski, and H. Simon
(Eds.), “The NAS Parallel Benchmarks,” NAS Techni-
cal Report RNR-9 1-002, NASA Ames Research Cen-
ter, Moffett Field, CA (1991).

[28] H. Holtman, “CMS data grid system overview and
requirements,” The Compact Muon Solenoid (CMS)
Experiment Note 2001/037, CERN, Switzerland
(2001).

[29] D. Thain, J. Bent, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and M. Livny, “Pipeline and batch sharing in
grid workloads,” In Proceedings of the 12th IEEE
Symposium on High Performance Distributed Comput-
ing (2003).

[30] G. J. Popek, R. G. Guy, T. W. Page, Jr., and J. S. Hei-
demann, “Replication in Ficus distributed file sys-
tems,” In IEEE Computer Society Technical Committee
on Operating Systems and Application Environments
Newsletter, volume 4, pages 24–29 (1990).

[31] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline,
G. Rudisin, and G. Thiel, “LOCUS: A network trans-
parent, high reliability distributed system,” in Proceed-
ings of the Eigth Symposium on Operating Systems
Principles, pp. 169--177, (December 1981).

[32] P. Kumar and M. Satyanarayanan, “Log-based direc-
tory resolution in the coda file system,” In Proceedings
of the second international conference on Parallel and
distributed information systems, pages 202–213 (1993).

[33] P. Kumar and M. Satyanarayanan, “Supporting appli-
cation-specific resolution in an optimistically replicated
file system,” In Workshop on Workstation Operating
Systems, pages 66–70 (1993).

[34] A. Hisgen, A. Birrel, T. Mann, M. Schroeder, and G.
Swart, “Granularity and Semantic Level of Replication
in the Echo Distributed File System”, in Proc. Work-
shop on Mgmt. of Replicated Data (Nov. 1990).

[35] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L.
Shrira, and M. Williams, “Replication in the Harp File
System”, in Proc. 13th. ACM SOSP (Oct. 1991).

[36] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B.
Zhao, and J. Kubiatowicz, “Pond: the OceanStore Pro-
totype,” in Proc. of the second USENIX FAST (2003).

[37] A. Muthitacharoen, R. Morris, T.M. Gil, and B. Chen,
“Ivy: A Read/Write Peer-to-peer File System,” in Pro-
ceedings of 5th Symposium on Operating Systems De-
sign and Implementation (Dec. 2002).

[38] Y. Saito, C. Karamonolis, M. Karlsson, and M. Mahal-
ingam, “Taming aggressive replication in the Pangaea
wide-area file system,” in Proceedings of 5th Sympo-
sium on Operating Systems Design and Implementation
(Dec. 2002).

[39] A. Adya, W.J. Bolosky, M. Castro, R. Chaiken, G.
Cermak, J.R. Douceur, J. Howell, J.R. Lorch, M.
Theimer, R.P. Wattenhofer, “FARSITE: Federated,
Available, and Reliable Storage for an Incompletely
Trusted Environment”, in Proceedings of 5th Sympo-
sium on Operating Systems Design and Implementation
(Dec. 2002).

[40] J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger,
“Granularity of Locks and Degrees of Consistency in a
Shared Data Base,” IFIP Working Conf. on Modeling
in Data Base Management Systems (1976).

[41] C. A. Thekkath, T. Mann, and E. K. Lee, “Frangipani:
A Scalable Distributed File System,” In Proceedings of
the 16th ACM Symposium on Operating Systems Prin-
ciples (1997).

[42] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. “Volume
Leases for Consistency in Large-Scale Systems,” IEEE
Trans. on Knowledge and Data Engineering (1999).

[43] C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The
SDSC Storage Resource Broker,” In Proceedings of
CASCON'98 Conference (Nov. 1998).

[44] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J.
Stanley, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
and M. Livny, “Flexibility, Manageability, and Per-
formance in a Grid Storage Appliance,” In Proceedings
of the 11th IEEE international Symposium on High
Performance Distributed Computing (July 2002).

[45] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, “Chi-
mera: A Virtual Data System for Representing, Query-
ing, and Automating Data Derivation,” In Proceedings
of the Scientific and Statistical Database Management
Conference (July 2002).

[46] R. van Renesse and F. B. Schneider, “Chain replication
for supporting high throughput and availability,” Sym-
posium on Operating Systems Design and Implementa-
tion, pages 91--104 (2004).

[47] A. E1 Abbadi, D. Skeen, and F. Cristian, “An Efficient
Fault-tolerant Protocol for Replicated Data Manage-
ment,” in Proc. 5th ACM SIGMOD, (1985).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

