

CITI Technical Report 07-3

Performance and Availability Tradeoffs
in Replicated File Systems

Jiaying Zhang
jiayingz@umich.edu

Peter Honeyman

honey@citi.umich.edu

ABSTRACT

Replication is a key technique for improving fault tolerance. Replication can
also improve application performance under some circumstances, but can have
the opposite effect under others. In this paper we focus on a class of Grid appli-
cations—long-running, compute-intensive, and write-mostly—and develop a
calculus that takes into consideration the I/O characteristics of applications and
failure behavior of distributed storage nodes to prescribe a file system replica-
tion strategy that maximizes the utilization of computational resources.

October 8, 2007

Center for Information Technology Integration
University of Michigan

535 W. William St., Suite 3100
Ann Arbor, MI 48103-4978

Performance and Availability Tradeoffs in Replicated File Systems

Jiaying Zhang
jiayingz@umich.edu

Peter Honeyman

honey@citi.umich.edu

1. Introduction
The rapid growth of network bandwidth and comput-
ing power has made Grid computing a practical solu-
tion for problems that require massive computing.
Unlike traditional clustered parallel systems, Grid
computing is characterized by geographically distrib-
uted institutions sharing computing, storage, and in-
struments in dynamic virtual organizations [1, 2].
Access to Grid resources in large-scale heterogene-
ous environments such as these often come with twin
penalties of large network latencies and frequent
component failures, posing a significant challenge to
running applications on the Grid.
Replication is a key technique for improving per-
formance and fault tolerance in distributed systems.
Failure can be hidden by making identical services
available from replication servers. In the same way,
replication can overcome latency penalties by offer-
ing nearby copies to services distributed over a wide
area and address performance scaling requirements
by tailoring the number of copies according to de-
mand.
To facilitate sharing of resources on Grid, we devel-
oped a mutable replicated file system that provides
users and applications efficient and reliable data ac-
cess with conventional file system semantics [3].
With data replication, a fundamental challenge is to
maintain consistent replicas without introducing high
performance overhead. Preserving consistency is
essential to guaranteeing correct behavior during
concurrent writes. Consistency is also needed to
guarantee durability of data modifications in the face
of failure. By exploiting locality of reference in ap-
plication updates, our earlier study shows that when
concurrent writes occur at a moderate rate, we are
able to maintain consistency with negligible overhead.
However, durability guarantees can impose a consid-
erable penalty on performance and require more care-
ful examination. To explore the tradeoff between
performance and failure resilience, this paper pro-
poses an evaluation model that estimates the expected
running time of an application given specified repli-
cation policy and application characteristics.
We focus on a specific class of Grid applications:
those whose output can be reproduced by restarting

or rolling back to a saved checkpoint, a strategy char-
acteristic of long-running applications executing on
clusters. In a replicated file system, updates are dis-
tributed to multiple file servers. In the ideal, if one or
more file servers fail, the system can fully recover as
long as one replication server holding the fresh data
is accessible. Applications connected to a failed file
server can continue their executions straightaway by
diverting their requests to the available serves. How-
ever, if no surviving server holds a fresh copy of data,
the system cannot hide the failure from applications.
In that case, the applications need to roll back to a
saved checkpoint or restart their executions after
switching to a working server.
Accordingly, the durability guarantee that a storage
system provides determines the expected cost to re-
cover a failure that might occur during the execution
of the program. Introducing replication into the file
system improves durability and reduces the risk of
losing the results of long-running applications if fail-
ure happens. On the other hand, the strength of the
durability guarantee is determined by (1) the number
of synchronous data copies maintained on different
replication servers, and (2) the incidence of corre-
lated failure among these servers. Guaranteeing high
data durability requires the system to maintain up-to-
date data copies on a number of replicas that seldom
fail at the same time. When applications consist of a
large amount of updates, this requirement can lead to
expensive performance cost. In some cases, it is
more efficient to trade durability for performance and
let applications regenerate their execution results
when the system cannot mask a failure.
In the remainder of this paper, we identify the factors
that affect the performance of a Grid application over
a replicated file system and present an evaluation
model for estimating the expected running time of an
application under various replication strategies. The
main contribution of our study is a calculus that de-
termines an optimal replication strategy for a Grid
application based on the I/O characteristics of the
application, the latency of the replication servers, the
expected frequency of storage site failure, and the
degree of correlated failure among replication servers.

 - 2 -

The rest of the paper is organized as follows. In Sec-
tion 2, we give a brief description of a mutable repli-
cated file system that we developed for Grid
applications. Section 3 develops a failure model for
distributed resources using PlanetLab trace data.
Section 4 introduces a Markov model to evaluate the
performance of a Grid application over a replicated
file system in the presence of failures. In Section 5,
we combine the failure and performance models to
predict the performance of applications with different
running time and write characteristics. Section 6
reviews related work and Section 7 concludes.

2. Performance and Reliability Tradeoffs
In earlier work [3], we developed a mutable repli-
cated file system to facilitate Grid computing over
wide area networks that provides users high perform-
ance data access with standard file system semantics.
In this section, we briefly describe that replicated file
system.
Our mutable replicated file system is built as an ex-
tension to the NFS version 4 protocol [37], the Inter-
net standard for distributed filing. As the protocol
specifies, the first time a client accesses a replicated
file system, it receives a list of replication server lo-
cations and chooses a nearby one. To support muta-
ble replication, we use a variant of the well
understood and intuitive primary-copy scheme to
coordinate concurrent writes. Before a client can
write a file or modify a directory, one of the replica-
tion servers must be designated as the primary server
for the file or the directory to be modified. If there is
none, the replication server that the client connects to
is elected as the primary server. To guarantee syn-
chronized data access, all of the other replication
servers then forward client read and write requests
for that file or directory to the primary server. When
the client updates are complete and all replication
servers are synchronized, the primary server releases
its role. (For details, see our earlier paper [3]).
When there are no writers, the performance of our
system is identical to a read-only replication system:
all requests are serviced by a nearby server with no
additional overhead. However, when updates occur,
there are costs for maintaining consistent access. E.g.,
write sharing is synchronized by passing all client
requests to the primary server, so clients being served
elsewhere experience additional latencies as their
requests and replies are relayed.
Write sharing is usually rare, but replication intro-
duces two other sources of overhead. First, before a
client can write a file or modify a directory, the sys-
tem must use a consensus algorithm [38] to elect a
primary server. Second, a primary server is respon-
sible for distributing updates to other replication
servers during file or directory modification.

We address the cost of electing a primary server by
amortizing it over multiple updates: we allow a pri-
mary server to take control over more than just a sin-
gle file or directory. In particular, we allow an
election to grant control for a directory and all of its
constituent entries or even for the entire subtree
rooted at a directory. Our experimental results con-
firm that this strategy reduces the overhead for repli-
cation control to a negligible amount, even for
update-intensive applications.
Reducing the cost of updating replication servers
suggests a number of design options, each providing
a different tradeoff between performance and failure
resilience. For example, instead of awaiting update
acknowledgements from all replication servers before
processing a client update, a primary server can allow
the client to proceed when it has heard from a major-
ity of the replication servers. With this requirement,
as long as more than half of the replication servers
are available, a fresh copy of the file or directory can
always be recovered. However, for scientific appli-
cations characterized by many synchronous updates,
performance still suffers when most replication serv-
ers are distant [7].
On the other hand, if we allow a primary server to
respond immediately to a client update and distribute
the update to the other replication servers asynchro-
nously, the latency penalty is eliminated. However,
updates are at risk of loss if the primary server fails.
Between these two options, we can require that a
primary server distribute updates to a specified num-
ber of backup servers before acknowledging a client
update request. This still puts durability at risk, but
reduces the risk: data is lost only if all of the updated
servers fail simultaneously. Furthermore, while this
approach reduces the cost of updating replication
servers, it does not eliminate that cost.
We assume that the cost of updating a remote replica-
tion server is accounted for by its distance: updating
nearby servers introduces low latency while updating
distant servers leads to long latency. However, we
hypothesize that the closer two servers are from each
other, the more likely it is that they might fail at the
same time. This introduces another tradeoff in de-
signing a replication strategy.
 Summarizing, maintaining synchronous replication
servers can insulate a computation from failure, but
increases the running time. For failure rates below
some threshold, it is better not to distribute updates
synchronously. When synchronous replication is
advantageous, increasing the number of up-to-date
replication servers improves the durability of applica-
tion updates. Meanwhile, failure is correlated with
the distance among these servers, so we should main-
tain synchronous data copies on distant servers as

 - 3 -

well as nearby ones. However, the cost of replication
increases with the distance to the servers.
To determine the best replication configuration, we
need to consider the failure conditions of the running
environment, as well as application characteristics.
Generally, we want to maintain more synchronous
data copies when component failures are frequent and
when applications are computation intensive. If fail-
ures are rare or applications rely heavily on synchro-
nous writes or metadata updates, a delayed update
distribution policy might provide a better perform-
ance tradeoff. In the following sections, we explore
these tradeoffs.

3. Modeling Failure
To evaluate a replication strategy, we need to know
the frequency, probability distribution, and correla-
tion of failure. Our focus is on wide-area distribution,
so we use PlanetLab [2] to exemplify a wide-area
distributed computing environment. PlanetLab is an
open, globally distributed platform, consisting (at this
writing) of 716 machines, hosted at 349 sites, span-
ning 25 countries. All PlanetLab machines are con-
nected to the Internet, which creates a unique
environment for conducting experiments at Internet
scale. We find PlanetLab a well-suited platform to
study failure characteristics of large-scale distributed
computing: PlanetLab nodes experience many of the
correlated failures expected in widely distributed
computation platforms. Moreover, failure traces of
PlanetLab are collected over a long term and publicly
available.
We use failure distribution data from the all-pairs
ping data [20] collected from January 2004 to June
2005. The data set consists of ICMP echo re-
quest/reply packets (“pings”) sent every 15 minutes
between all pairs of PlanetLab nodes, 692 nodes in
total. Each node recorded and stored its results lo-
cally and periodically transferred the results to a cen-

tral archive. We classify a node live in a 15-minute
interval if at least one ping sent to it in that interval
succeeded. If the archive received no data from a
node for the given time period, then that node is clas-
sified failed. Thus, the failures detected in our study
include nodes that crashed as well as network failures
that partitioned nodes from the others. This agrees
with the failure conditions in Grid computing: from
an application’s point of view, a network failure
makes the data generated on a partitioned node inac-
cessible to other computing elements and requires
that the partition be recovered to advance the compu-
tation.
An important measure in reliability study is time-to-
failure (TTF), i.e., continuous time intervals when a
node is live. Figure 2 shows the cumulative fre-
quency of PlanetLab node TTF. The mean TTF is
122.8 hours. Previous studies have shown that TTF
can be modeled by a Weibull distribution [6, 7, 9]
and our analysis agrees: the best-fit Weibull distribu-
tion generated with MATLAB, shown in Figure 2,
agrees pretty well with the empirical data. The scale
and shape parameters of the best-fit Weibull distribu-
tion are 8.0556E+04 and 0.3549, respectively.
We next investigate correlated failures among
PlanetLab nodes. In related work, Chun et al. use
conditional probabilities P(X is down | Y is down) to
characterize the correlated failures between nodes X
and Y [19]. Since we assume that a failed node can
be replaced with an active one when failure happens,
we are more interested in the frequency that two
nodes fail at the same time instead of the amount of
time that two nodes are down simultaneously. We
therefore quantify the failure correlations for nodes X
and Y with the conditional probabilities P(X fails at
time t | Y fails at time t). Similarly, we measure the
failure correlation for nodes X1, X2, …, Xn by com-
puting the conditional probabilities P(X2, …, Xn all
fail at time t | X1 fails at time t). We note that in the
formula, X1, X2, …, Xn are all supposed to be alive
before time t. Thus, given a group of nodes, our cal-
culation uses only the failure times that satisfy this
condition.
We first look at the failure correlations for nodes in
the same site. Our analysis proceeds as follows. We
first pick a node from each PlanetLab site and then
select a different node from the same site to calculate
the failure correlations. In the failure data we ana-
lyzed, 264 sites have more than two nodes (but only
259 of them contain more than two nodes that simul-
taneously live), 65 sites have more than three nodes,
21 sites have more than four nodes, and only 11 sites
have more than five PlanetLab nodes.

15min 1hr 1day 10days 100days
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time-to-failure

C
u
m
u
l
a
t
i
v
e

F
r
e
q
u
e
n
c
y

Time-to-failure CDF of Planetlab nodes

empirical

weibull

Figure 1. Time-to-failure CDF of PlanetLab nodes.

 - 4 -

Table 1. Failure Correlations for PlanetLab nodes
from the same site

sites
nodes 259 65 21 11

2 0.526 0.593 0.552 0.561
3 0.546 0.440 0.538
4 0.378 0.488
5 0.488

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140 160 180 200

Maxium RTT (ms)

A
v
e
ra

g
e
 F

a
il
u

re
 C

o
rr

e
la

ti
o

n
s

2nodes 3nodes 4nodes 5nodes

Figure 2. Failure correlations for PlanetLab
nodes from different sites.

Table 1 presents the average failure correlations com-
puted with different number of nodes and PlanetLab
sites. In the table, the first column indicates the
number of nodes we select from a PlanetLab site to
compute the failure correlations. The first row
enumerates the number of PlanetLab sites that con-
tain more than 2, 3, 4, and 5 nodes, respectively. The
data marked in bold on row N is calculated with the
failure data from all the PlanetLab sites that contain
at least N nodes. For comparison, we also compute
the failure correlations with fewer sites, shown in the
upper right part of the table above the diagonal.
In spite of the small numbers of sites available for
computing the failure correlations among multiple
nodes, several inferences can be drawn from Table 1.
First, there is a high probability that two nodes in the
same site fail simultaneously — more than half of the
time, if one node fails, another node in the same site
also fails. Furthermore, as we increase the number of
nodes that we consider within a site, correlated fail-
ures do not fall dramatically. Table 1 suggests that it
is common for all nodes at a site to fail simultane-
ously. These failures might include administrators
powering down all PlanetLab nodes in a site, or net-
work failures that partition an entire site from the rest
of network.
Next, we explore the failure correlations among
nodes chosen from different sites. We hypothesize
that failure correlation decreases with increasing
number of nodes and distance between nodes, so we
focus on the impacts that these two aspects have on
failure correlations.
To analyze the impact of RTT on failure correlations,
we partition nodes into equivalence classes for vari-
ous RTT intervals, with the length of each RTT in-
terval set to 10 milliseconds. Specifically, for a given
node X, a number n, and a range [rtt, rtt+10], we find
all groups of n-1 nodes whose maximum RTT to X is
between rtt and rtt+10. We then calculate the aver-
age failure correlations for all of these groups with
different n values.
Figure 2 shows the results. For a given point <x, y>
in the figure, the x value gives the median RTT of the
corresponding RTT interval and the y value shows
the average failure correlations for that RTT interval.
We observe that correlated failure for nodes chosen
from different sites is half of that shown in Table 1.
Moreover, although increasing the number of nodes
reduces failure correlations, we still see correlated
failures of 5-10%, even when we consider failure of
four or five nodes. These correlated failures may be
caused by broad DDoS attacks or system bugs.
Figure 2 bears out our hypothesis that failure correla-
tion tends to decline as the RTTs between nodes in-

crease. For example, when the RTT between two
PlanetLab nodes is a few msec, the failure correlation
is around 0.2, but when the RTT is 200 msec, the
failure correlation drops to 0.13.
Overall, the analysis of PlanetLab failure shows that
correlated failures are reduced as the number of
nodes increases and as the distance between nodes
increases. This suggests that we can improve the
durability of data by maintaining copies on remote
replicas and by increasing the number of replicas.
However, both of these strategies come at a cost: the
former increases update latency while the latter im-
poses storage and network overheads. In the next
section, we propose a model that uses failure statis-
tics and application characteristics to estimate the
expected execution time of an application for various
replication configurations. We then show how to use
the model to minimize the expected execution time of
a Grid computation by selecting an optimal replica-
tion configuration given available storage resources.

4. The Evaluation Model
In this section, we describe a model for estimating
the expected running time of an application that uses
a replicated file system subject to failure. We use the
following nomenclature, with some terms borrowed
from previous studies by other researchers on optimal
checkpoint intervals [24, 25, 28].
Failure-free no-replication running time (F) is the
running time of an application in the absence of fail-
ure without replication. This is equal to the execu-
tion time with a single local server that does not fail.
Replication overhead (C) is the performance pen-
alty for maintaining synchronous data copies on
replication servers (which we call backup servers in
the following discussion) in a failure-free execution

 - 5 -

following discussion) in a failure-free execution of
the application. We can estimate C as follows. First,
we assume (and our experiments confirm) that the
replication overhead is strictly proportional to the
maximal distance between the primary server and the
backup servers. Let rtt represent the maximal round-
trip time (in msec.) between the primary server and
backup servers and let Cmsec denote the replication
overhead to update a backup server with a one msec.
round-trip time from the primary server. Cmsec de-
pends only on application write characteristics and
can be measured during a test run of the application.
We can then calculate the replication overhead
C = rtt × Cmsec.
Recovery time (R) is the time for the system to de-
tect the failure of a replication server and replace it
with another active server.
Expected execution time (E) is the expected appli-
cation execution time in the presence of failures.
Utilization ratio (U), defined as U = F / E, describes
the fraction of time that the system spends doing use-
ful work.
We model the execution of an application with a
four-state Markov chain, shown in Figure 3. Appli-
cation execution begins in an initial start state and
makes an immediate transition to the run state, where
it remains until a replication server fails or the execu-
tion completes. Upon replication server failure, the
execution is suspended by transitioning to the recover
state. During recovery, a replacement server is
sought and the system attempts to recover the data
under modification on the failed server. If a syn-
chronous data copy survives on any active replication
server, the system can recover the data on the appli-
cation’s behalf. On the other hand, if the failed
server holds the only valid copy of the data (i.e., the
server distributes updates to other replication servers
asynchronously) or if all replication servers that
maintain synchronous copies fail simultaneously,
then the system cannot recover the data generated up
to the point that the execution halted. After the fail-
ure recovery, the client where the application exe-
cutes is migrated to the replacement server. Then
depending on whether the output data generated by
the application is recovered, the application either
resumes its computation (continue in the run state) or
restarts from the beginning (from the initial start
state). When execution finishes, the application exits
to the end state.
In the Markov model just described, the expected
running time of an application in the presence of fail-
ure can be expressed as the expectation of the time to
transit from the initial start state to the end state.
This can be estimated using the specified time-to-
failure distribution and the failure correlations of the

replication servers that maintain synchronous data
copies. In particular, the time-to-failure distribution
determines the waiting time in the run state before
moving to the recover state, while the failure correla-
tion gives the probability of moving from the recover
state to the start state.
In our study, we calculate the expected execution
time of an application through simulation. We wrote
a simulator that takes input the time-to-failure distri-
bution data and the running time parameters of an
application with a specified replication policy, i.e., F,
C, and R. The simulation proceeds as follows. The
simulator begins with the start state and moves di-
rectly to the run state. In the run state, the simulator
either waits for F+C and then exists to the end state,
or jumps to the recover state if a failure happens
within F+C. After spending the amount of time R in
the recover state, the simulator either moves back to
the run state or restarts from the start state, with the
probability of the latter equal to the given failure cor-
relations. We assume that the same replication policy
is used for an application throughout a simulation.
This implies that the replication overhead C does not
change after an application is migrated to a replace-
ment server.

5. Simulation Results
In this section, we use discrete event simulation,
based on the analyzed PlanetLab failure statistics
from Section 3, to evaluate the efficiency of different
replication policies with various application running
time characteristics.
We use the replicated file system described in Sec-
tion 2 as the reference model for our study. Since the
system can automatically detect and recover from the
failure of a replication server, we suggest that a small
amount of time for failure recovery is reasonable. In
our simulation experiments, we fix the failure recov-
ery time R to 10 minutes. Further analysis (not de-
tailed in this paper) shows that varying R in the range
from 1 minute to 1 hour does not have much effect on
the results for the (much larger) expected application
running times we are most interested in.

end

run

start

re-
cover

server fails

recover the data copy

cannot recover the
data copy

Figure 3. Four-state Markov chain describing the
execution of an application over a replicated file
system in the presence of failures.

 - 6 -

Cmsec = 0.1 F Cmsec = 0.01 F Cmsec = 0.001 F Cmsec = 0.0001 F asynchronous

single backup server, F = 1 hour

0.900

0.910

0.920

0.930

0.940

0.950

0.960

0.970

0.980

0.990

1.000

0 10 20 30 40 50 60

single backup server, F = 10 days

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40 50 60

single backup server, F = 1 day

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0 10 20 30 40 50 60

2 backup servers, F = 1 hour

0.900

0.910

0.920

0.930

0.940

0.950

0.960

0.970

0.980

0.990

1.000

0 10 20 30 40 50 60

2 backup servers, F = 1 day

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0 10 20 30 40 50 60

2 backup servers, F = 10 days

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40 50 60

3 backup servers, F = 1 hour

0.900

0.910

0.920

0.930

0.940

0.950

0.960

0.970

0.980

0.990

1.000

0 10 20 30 40 50 60

3 backup servers, F = 1 day

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0 10 20 30 40 50 60

3 backup servers, F = 10 days

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40 50 60

4 backup servers, F = 1 hour

0.900

0.910

0.920

0.930

0.940

0.950

0.960

0.970

0.980

0.990

1.000

0 10 20 30 40 50 60

4 backup servers, F = 1 day

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0 10 20 30 40 50 60

4 backup servers, F = 10 days

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40 50 60

 Figure 4. Utilization ratio (F/E) as the RTT between the primary server and backup servers increases. In
each graph, X-axis indicates the maximum RTT (in ms) between the primary server and backup servers, and
Y-axis indicates the utilization ratio.

 - 7 -

In our simulation, each measured expected execution
time is the average execution time from 100,000 con-
secutive runs of simulation. The PlanetLab data does
not contain enough failures for so many simulations,
so we use MATLAB to generate time-to-failure data
from the Weibull distribution that best fits the
PlanetLab failure data, analyzed in Section 3. For
failure correlations with different replication configu-
rations, we use the probability data calculated in Sec-
tion 3.
Figure 4 shows the results of the simulation. In each
graph, the X-axis indicates the maximum RTT (in
milliseconds) between the primary server and backup
servers, and Y-axis indicates the utilization ratio.
We assume that asynchronous update distribution
adds no performance cost to an application’s execu-
tion, i.e., C is always zero. Furthermore, with
asynchronous update distribution, no synchronous
data copy is available if the primary server fails, so
we always restart an execution from the beginning.
Thus, the utilization ratio with asynchronous update
distribution depends on only the application running
parameters and time-to-failure distribution. The
utilization ratios with asynchronous update distribu-
tion for F = 1 hour, F = 1 day, and F = 10 days are
0.996048, 0.947075, and 0.689764, respectively,
which is marked as red horizontal line in each graph.
The results suggest that applications with different
characteristics benefit from different replication poli-
cies.
For applications that make heavy use of synchronous
writes or metadata updates (C = 0.1F), whether long-
or short-running, maintaining synchronous replicated
data copies is costly even with nearby backup servers,
so asynchronous update distribution is usually pre-
scribed. For very long-running applications (10
days), the cost of losing intermediate computation
results becomes enormous, so it is beneficial to main-
tain synchronous data copies on local backup servers.
We observe that the utilization ratio for long-running
applications is relatively low. This indicates the
benefit of using checkpoint to shorten the modeled
execution time.
For applications that write at a moderate rate (C =
0.01F), maintaining nearby backup servers provides
the highest utilization. When the running time of an
application is small, a local backup server offers the
best tradeoff between performance and failure resil-
ience. As the execution time of an application in-
creases, the cost of losing intermediate computation
results because of multiple failures also grows. Here,
maintaining synchronous data copies in the same
local area network is inadequate since this replication
policy cuts correlated failures only in half. Instead,
the simulation indicates that the performance penalty

of backing up data to a different site is more than
compensated by the expected reduction in the execu-
tion time lost to correlated failure.
If applications make few synchronous writes or
metadata updates, replication overhead is relatively
small even when we maintain synchronous data cop-
ies far away from the primary server. For these ap-
plications, maintaining remote backup servers
provides the highest utilization.
Finally, we find that increasing the number of backup
servers does not yield much improvement in utiliza-
tion. For example, with F = 10 days, the maximum
utilization ratio increases from 0.68 to 0.71 as we
raise the number of backup servers from 1 to 4. Fur-
thermore, we observe that increasing the distance
between the primary server and backup servers pro-
vides limited advantage even for read-dominant ap-
plications. That is, although the failure analysis in
Section 3 shows that increasing the number of syn-
chronous data copies and the distance among the
maintained data copies helps to reduce correlated
failures, they offer small benefits for reducing the
expected running time. These findings follow from
the low overall failure rate; correlated failures are
addressed effectively by maintaining a single backup
server in a different site.
In summary, our simulation results indicate that ap-
plications with different characteristics benefit most
from different replication policies. A Grid infrastruc-
ture that provides a mechanism for choosing a repli-
cation policy based on application characteristics and
the failure conditions of the environment can improve
the utilization of computational resources. Focusing
on the tradeoff between performance and failure re-
silience, our evaluation omits other replication over-
head such as network bandwidth and storage space.
However, the work presented in this paper constitutes
a first step towards dynamic replication management
in the Grid computing.

6. Related Work
Our work is related to three research fields: availabil-
ity studies on system, Internet services and experi-
mental wide-area computing platforms, optimal
checkpoint interval analysis, and wide-area replica-
tion studies.
Availability studies. Availability problems are
widely studied by other researchers on different com-
puting systems. In particular, we take many insights
from the previous works on availability of cluster
systems, Internet services, the PlanetLab test bed [1],
and the continuously growing Grid computing plat-
forms [2, 3].
There is a large amount of work on measuring and
charactering failures in cluster systems. Xu et al. [4]

 - 8 -

studied the error logs from Windows NT servers.
Their analysis shows that while the average availabil-
ity of individual servers is over 99%, there is a high
probability that multiple servers fail within a short
interval. Sahoo et al. [5] analyzed the failure data
collected at an IBM research center. They find that
failure rates exhibit time varying behavior and differ-
ent forms of strong correlation. Heath et al. [6] stud-
ied the reboot logs from three campus clusters and
observed that the time between reboots is best mod-
eled by a Weibull distribution. This observation is
also indicated by Nurmi et al. [7], who investigate the
suitability of different statistical distributions to
model machine availability and by Schroeder et al. in
a more recent work [9] that analyzed the failure logs
collected over the past 9 years at Los Alamos Na-
tional Lab.
Pang et al. [10] investigated the availability charac-
teristics of the Domain Name Service (DNS). They
observe that most unavailability to DNS servers is
not correlated within individual network domains.
Padmanabhan et al. [12] measured the faults when
repeatedly downloading content from a collection of
websites. Regarding to the websites that have repli-
cas, they find that most correlated replica failures are
due to websites whose replicas are on the same sub-
net. The recent availability studies on peer-to-peer
systems [13–17] reveal low host availabilities in such
environments as most of their participants are unreli-
able end-users’ desktops and can depart the system at
will.
Several recent works investigate the availability
characteristics of the globally distributed PlanetLab
platform. Chun et al. [19] studied all-pairs ping data
set [20] collected on PlanetLab over a three-month
period. They find that failures on the PlanetLab ex-
hibit high correlations. The similar finding is also
observed and further addressed by Yalagandula [21]
and Nath [22] in their studies on correlated failures of
PlanetLab nodes.
As the Grid technology is still under the rapid devel-
opment, few works are done on charactering compo-
nent failures of the Grid infrastructure. Instead, the
existing works mostly focus on job failures. The
Grid2003 report [34] indicates that some projects
observe the job failure rates as high as 30% and a
large number of such failures are caused by over-
filled disks. Li et al [35] analyzed the job failure data
collected from the LHC computing Grid and argued
for the importance to take into account the historical
failure patterns when allocating jobs. Hwang et al.
[36] proposed a framework that allows Grid applica-
tions to choose the desired fault tolerant mechanisms
and evaluated the effects of the supported recovery
techniques.

Research on optimal checkpoint Interval. Our
work is similar in spirit to determining optimal
checkpoint intervals in high-performance computing.
Checkpoint is a typical technique for ameliorating the
amount of re-execution in case of failures. Since
checkpoint also introduces performance overhead, it
is important to select an optimal checkpoint fre-
quency that minimizes the expected execution of an
application in the presence of failures.
The selection of optimal checkpoint intervals has
been studied for a long time. The problem was first
formalized by Chandy et al. on transactional systems
[23]. After that, Vaidya [24] derived equations of
average performance with checkpointing and rollback
recovery by assuming Poisson failure distribution.
Wong et al. [25] modeled the availability and per-
formance of synchronous checkpointing in distrib-
uted computing. Plank et al. investigated the
performance of parallel computing with checkpoints
[27]. Their results show that the optimal number of
active processors can vary widely, and the number of
active processors can have a significant effect on
application performance. Oliner et al. [28] evaluated
the periodic checkpoint behavior of BlueGene with a
failure trace collected from a large-scale cluster. The
study shows that when the overhead of checkpoint is
high, overly frequent checkpointing can be more det-
rimental to performance than failure.
Related works on replication. Many systems use
replication to reduce the risk of data loss. Total Re-
call [29] measures and predicts the availability of its
constituent hosts to determine the appropriate redun-
dancy mechanisms and repair policies. Glacier [30]
uses massive redundancy to mask large-scale corre-
lated failures. Carbonite [31] strives to create data
copies only faster than they are destroyed by perma-
nent failures to reduce the bandwidth cost of replica-
tion maintenance. However, all these studies focus
on masking the low host reliability in peer-to-peer
systems. The tradeoff between availability and per-
formance are not addressed.
Some recent studies investigate the fault-tolerant
techniques against correlated failures. Phoenix [33]
takes advantage of platform diversity in cooperative
systems. Oceanstore [32] uses introspection to dis-
cover groups of nodes that are independent in their
failure characteristics. It then chooses data replicas
from such a group to enhance the system availability.
These techniques can be utilized in most replication
systems while the evaluation of their benefits is be-
yond the scope of this paper.

7. Conclusion
In this paper, we describe an evaluation model for
determining the best-fit replication configuration
given the specified failure statistics and application

 - 9 -

characteristics. With the failure data from the
PlanetLab platform, we evaluate the feasibility of
various replication configurations in terms of the
overhead they introduce and the expected cost to re-
produce the execution results in case that the system
cannot mask a failure from an application. Our re-
sults show that different applications desire different
replication configurations and a replication system
should balance the tradeoff between performance and
failure resilience flexibly, based on the failure condi-
tions of the running environment as well as applica-
tion characteristics.

References
[1] B. Chun, D. Culler, T. Roscoe, A. Bavier, L.

Peterson, M. Wawrzoniak, and M. Bowman,
“PlanetLab: An Overlay testbed for broad-
coverage services. PlanetLab Design Note PDN-
03-009,” ACM SIGCOMM Computer Commu-
nication Review, Vol. 33, Issue 3 (July 2003).

[2] The Globus Alliance project.
http://www.globus.org/.

[3] The LHC Computing Grid (LCG) project.
http://lcg.web.cern.ch/LCG/.

[4] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Net-
worked Windows NT system field failure data
analysis,” in Proceedings of the 1999 Pacific
Rim International Symposium on Dependable
Computing (Dec. 1999).

[5] R. K. Sahoo, R. K., A. Sivasubramaniam, M. S.
Squillante, and Y. Zhang, “Failure data analysis
of a large-scale heterogeneous server environ-
ment,” in Proceedings of the 2004 International
Conference on Dependable Systems and Net-
works (2004).

[6] T. Heath, R. Martin, and T. D. Nguyen, “Improv-
ing cluster availability using workstation valida-
tion,” in Proceedings of the ACM SIGMETRICS
(2002).

[7] D. Nurmi, J. Brevik, and R. Wolski, “Modeling
machine availability in enterprise and wide-area
distributed computing environments,” in Pro-
ceedings of Europar 2005 (Aug. 2005).

[8] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and
S. Tuecke, “Condor-G: A computation manage-
ment agent for multi-institutional grids,” in Pro-
ceedings of the 10th IEEE Symposium on High
Performance Distributed Computing (2001).

[9] B. Schroeder, and G. A. Gibson, “A large-scale
study of failures in high-performance computing
systems,” in Proceedings of the 2006 Interna-
tional Conference on Dependable Systems and
Networks (2006).

[10] J. Pang, J. Hendricks, A. Akella, R. De Prisco, B.
Maggs, and S. Seshan, “Availability, usage, and
deployment characteristics of the domain name
system,” in Proceedings of the 4th ACM
SIGCOMM Conference on internet Measure-
ment (2004).

[11] B. Krishnamurthy and J. Wang, “On network-
aware clustering of web clients,” in Proceedings
of the SIGCOMM ’00 Symposium on Commu-
nications Architectures and Protocols (2000).

[12] V. N. Padmanabhan, S. Ramabhadran, and J.
Padhye, “Client-based characterization and
analysis of End-to-End Internet faults, ”Micro-
soft Research Technical Report, MSR-TR-2005-
29 (March 2005).

[13] W. J. Bolosky, J. R. Douceur, D. Ely, and M.
Theimer, “Feasibility of a serverless distributed
file system deployed on an existing set of desk-
top PCs,” in Proceedings of 2000 SIGMETRICS
(June 2000).

[14] J. Chu, K. Labonte, and B. Levine, “Availability
and locality measurements of peer-to-peer file
systems,” in Proceedings of ITCom: Scalability
and Traffic Control in IP Networks (July 2002).

[15] S. Saroiu, P. Gummadi, and S. Gribble, “A
measurement study of peer-to-peer file sharing
systems,” in Proceedings of Multimedia Comput-
ing and Networking (2002).

[16] R. Bhagwan, S. Savage, and G. Voelker, “Under-
standing availability,” In Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems
(2003).

[17] S. Guha, N. Daswani, and R. Jain, “An experi-
mental study of the Skype Peer-to-Peer VoIP
system,” in Proceedings of the 5th International
Workshop on Peer-to-Peer Systems (2006).

[18] N. Spring, L. Peterson, A. Bavier, and V. S. Pai,
“Using planetlab for network research: Myths,
realities, and best practices,” ACM SIGOPS Op-
erating Systems Review, 40(1) (2006).

[19] B. Chun, and A. Vahdat, “Workload and failure
characterization on a large-scale federated test-
bed,” Tech. Rep. IRB-TR-03-040, Intel Research
Berkeley (Nov. 2003).

[20] Jeremy Stribling. PlanetLab all-pairs ping.
http://infospect.planet-lab.org/pings

[21] P. Yalagandula, S. Nath, H. Yu, P. B. Gibbons,
and S. Seshan, “Beyond Availability: Towards a
Deeper Understanding of Machine Failure Char-
acteristics in Large Distributed Systems,” in Pro-
ceedings of the First Workshop On Real Large
Distributed Systems (2004).

 - 10 -

[22] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan,
“Subtleties in tolerating correlated failures,” In
Proceedings of the 3rd Symposium on Net-
worked Systems Design and Implementation
(2006).

[23] K.M. Chandy and C.V. Ramamoorthy, “Rollback
and recovery strategies for computer programs,”
IEEE Transactions on Computers, pages 546--
556 (June 1972).

[24] N. H. Vaidya, “Impact of checkpoint latency on
overhead ratio of a checkpointing scheme,” IEEE
Transactions on Computers, C-46 (8), 942–947
(1997).

[25] K. Wong and M. Franklin, “Distributed comput-
ing systems and checkpointing,” in Proceedings
of the 2nd IEEE Symposium on High Perform-
ance Distributed Computing (1993).

[26] J. S. Plank, and W. R. Elwasif, “Experimental
assessment of workstation failures and their im-
pact on checkpointing systems,” in Proceedings
of the 28th International Symposium on Fault-
Tolerant Computing (1998).

[27] J. S. Plank and M. G. Thomason, “The average
availability of parallel checkpointing systems and
its importance in selecting runtime parameters,”
in Proceedings of the 29th International Sympo-
sium on Fault-Tolerant Computing (1999).

[28] A. J. Oliner, R. K. Sahoo, J. E. Moreira, M.
Gupta, “Performance Implications of Periodic
Checkpointing on Large-Scale Cluster Systems,”
in Proceedings of the 19th IEEE international
Parallel and Distributed Processing Symposium,
Workshop 18 - Volume 19 (2005).

[29] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and
G. Voelker, “Total Recall: Systems support for
automated availability management, in Proceed-
ings of the 1st USENIX Symposium on Net-
worked Systems Design and Implementation
(2004).

[30] A. Haeberlen, A. Mislove, and P. Druschel,
“Glacier: Highly durable, decentralized storage
despite massive correlated failures,” in Proceed-
ings of the 2nd USENIX Symposium on Net-
worked Systems Design and Implementation
(2005).

[31] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H.
Weatherspoon, M. F. Kaashoek, J. Kubiatowicz,
and R. Morris, “Efficient replica maintenance for
distributed storage systems,” in Proceedings of
the 3rd USENIX Symposium on Networked Sys-
tems Design and Implementation (2006).

[32] H. Weatherspoon, T. Moscovitz, and J. Kubia-
towicz, “Introspective failure analysis: Avoiding
correlated failures in Peer-to-Peer systems,” in
Proceedings of the 21st IEEE Symposium on Re-
liable Distributed Systems (2002).

[33] F. P. Junqueira, R. Bhagwan, A. Hevia, K.
Marzullo, and G. M. Voelker, “Surviving Inter-
net catastrophes,” in Proceedings of USENIX
Annual Technical Conference (2005).

[34] I. Foster, and others, “The Grid2003 Production
Grid: Principles and Practice,” in Proceedings of
the 13th IEEE International Symposium on High
Performance Distributed Computing (2004).

[35] H. Li, D. Groep, L. Wolters, and J. Templon,
“Job Failure Analysis and Its Implications in a
Large-scale Production Grid,” in Proceedings of
the 2nd IEEE International Conference on e-
Science and Grid Computing (2006).

[36] Hwang, S. and C. Kesselman, “GridWorkflow: A
Flexible Failure Handling Framework for the
Grid,” in Proceedings of the 12th IEEE Interna-
tional Symposium on High Performance Distrib-
uted Computing (2003).

