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ABSTRACT 
 

Replication is a key technique for improving fault tolerance.  Replication can 
also improve application performance under some circumstances, but can have 
the opposite effect under others.  In this paper we focus on a class of Grid appli-
cations—long-running, compute-intensive, and write-mostly—and develop a 
calculus that takes into consideration the I/O characteristics of applications and 
failure behavior of distributed storage nodes to prescribe a file system replica-
tion strategy that maximizes the utilization of computational resources. 

 
 
 
October 8, 2007 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Center for Information Technology Integration 
University of Michigan 

535 W. William St., Suite 3100 
Ann Arbor, MI 48103-4978 



 



 

Performance and Availability Tradeoffs in Replicated File Systems 
 

Jiaying Zhang 
jiayingz@umich.edu 

 
Peter Honeyman 

honey@citi.umich.edu 
 

1. Introduction 
The rapid growth of network bandwidth and comput-
ing power has made Grid computing a practical solu-
tion for problems that require massive computing.  
Unlike traditional clustered parallel systems, Grid 
computing is characterized by geographically distrib-
uted institutions sharing computing, storage, and in-
struments in dynamic virtual organizations [1, 2].  
Access to Grid resources in large-scale heterogene-
ous environments such as these often come with twin 
penalties of large network latencies and frequent 
component failures, posing a significant challenge to 
running applications on the Grid. 
Replication is a key technique for improving per-
formance and fault tolerance in distributed systems.  
Failure can be hidden by making identical services 
available from replication servers.  In the same way, 
replication can overcome latency penalties by offer-
ing nearby copies to services distributed over a wide 
area and address performance scaling requirements 
by tailoring the number of copies according to de-
mand. 
To facilitate sharing of resources on Grid, we devel-
oped a mutable replicated file system that provides 
users and applications efficient and reliable data ac-
cess with conventional file system semantics [3].  
With data replication, a fundamental challenge is to 
maintain consistent replicas without introducing high 
performance overhead.  Preserving consistency is 
essential to guaranteeing correct behavior during 
concurrent writes.  Consistency is also needed to 
guarantee durability of data modifications in the face 
of failure.  By exploiting locality of reference in ap-
plication updates, our earlier study shows that when 
concurrent writes occur at a moderate rate, we are 
able to maintain consistency with negligible overhead.  
However, durability guarantees can impose a consid-
erable penalty on performance and require more care-
ful examination.  To explore the tradeoff between 
performance and failure resilience, this paper pro-
poses an evaluation model that estimates the expected 
running time of an application given specified repli-
cation policy and application characteristics. 
We focus on a specific class of Grid applications: 
those whose output can be reproduced by restarting 

or rolling back to a saved checkpoint, a strategy char-
acteristic of long-running applications executing on 
clusters.  In a replicated file system, updates are dis-
tributed to multiple file servers.  In the ideal, if one or 
more file servers fail, the system can fully recover as 
long as one replication server holding the fresh data 
is accessible.  Applications connected to a failed file 
server can continue their executions straightaway by 
diverting their requests to the available serves.  How-
ever, if no surviving server holds a fresh copy of data, 
the system cannot hide the failure from applications.  
In that case, the applications need to roll back to a 
saved checkpoint or restart their executions after 
switching to a working server. 
Accordingly, the durability guarantee that a storage 
system provides determines the expected cost to re-
cover a failure that might occur during the execution 
of the program.  Introducing replication into the file 
system improves durability and reduces the risk of 
losing the results of long-running applications if fail-
ure happens.  On the other hand, the strength of the 
durability guarantee is determined by (1) the number 
of synchronous data copies maintained on different 
replication servers, and (2) the incidence of corre-
lated failure among these servers.  Guaranteeing high 
data durability requires the system to maintain up-to-
date data copies on a number of replicas that seldom 
fail at the same time.  When applications consist of a 
large amount of updates, this requirement can lead to 
expensive performance cost.  In some cases, it is 
more efficient to trade durability for performance and 
let applications regenerate their execution results 
when the system cannot mask a failure. 
In the remainder of this paper, we identify the factors 
that affect the performance of a Grid application over 
a replicated file system and present an evaluation 
model for estimating the expected running time of an 
application under various replication strategies.  The 
main contribution of our study is a calculus that de-
termines an optimal replication strategy for a Grid 
application based on the I/O characteristics of the 
application, the latency of the replication servers, the 
expected frequency of storage site failure, and the 
degree of correlated failure among replication servers.   
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The rest of the paper is organized as follows.  In Sec-
tion 2, we give a brief description of a mutable repli-
cated file system that we developed for Grid 
applications.  Section 3 develops a failure model for 
distributed resources using PlanetLab trace data.  
Section 4 introduces a Markov model to evaluate the 
performance of a Grid application over a replicated 
file system in the presence of failures.  In Section 5, 
we combine the failure and performance models to 
predict the performance of applications with different 
running time and write characteristics.  Section 6 
reviews related work and Section 7 concludes. 

2. Performance and Reliability Tradeoffs 
In earlier work [3], we developed a mutable repli-
cated file system to facilitate Grid computing over 
wide area networks that provides users high perform-
ance data access with standard file system semantics.  
In this section, we briefly describe that replicated file 
system. 
Our mutable replicated file system is built as an ex-
tension to the NFS version 4 protocol [37], the Inter-
net standard for distributed filing.  As the protocol 
specifies, the first time a client accesses a replicated 
file system, it receives a list of replication server lo-
cations and chooses a nearby one.  To support muta-
ble replication, we use a variant of the well 
understood and intuitive primary-copy scheme to 
coordinate concurrent writes.  Before a client can 
write a file or modify a directory, one of the replica-
tion servers must be designated as the primary server 
for the file or the directory to be modified.  If there is 
none, the replication server that the client connects to 
is elected as the primary server.  To guarantee syn-
chronized data access, all of the other replication 
servers then forward client read and write requests 
for that file or directory to the primary server.  When 
the client updates are complete and all replication 
servers are synchronized, the primary server releases 
its role.  (For details, see our earlier paper [3]). 
When there are no writers, the performance of our 
system is identical to a read-only replication system: 
all requests are serviced by a nearby server with no 
additional overhead.  However, when updates occur, 
there are costs for maintaining consistent access.  E.g., 
write sharing is synchronized by passing all client 
requests to the primary server, so clients being served 
elsewhere experience additional latencies as their 
requests and replies are relayed. 
Write sharing is usually rare, but replication intro-
duces two other sources of overhead.  First, before a 
client can write a file or modify a directory, the sys-
tem must use a consensus algorithm [38] to elect a 
primary server.  Second, a primary server is respon-
sible for distributing updates to other replication 
servers during file or directory modification.  

We address the cost of electing a primary server by 
amortizing it over multiple updates: we allow a pri-
mary server to take control over more than just a sin-
gle file or directory.  In particular, we allow an 
election to grant control for a directory and all of its 
constituent entries or even for the entire subtree 
rooted at a directory.  Our experimental results con-
firm that this strategy reduces the overhead for repli-
cation control to a negligible amount, even for 
update-intensive applications. 
Reducing the cost of updating replication servers 
suggests a number of design options, each providing 
a different tradeoff between performance and failure 
resilience.  For example, instead of awaiting update 
acknowledgements from all replication servers before 
processing a client update, a primary server can allow 
the client to proceed when it has heard from a major-
ity of the replication servers.  With this requirement, 
as long as more than half of the replication servers 
are available, a fresh copy of the file or directory can 
always be recovered.  However, for scientific appli-
cations characterized by many synchronous updates, 
performance still suffers when most replication serv-
ers are distant [7].   
On the other hand, if we allow a primary server to 
respond immediately to a client update and distribute 
the update to the other replication servers asynchro-
nously, the latency penalty is eliminated.  However, 
updates are at risk of loss if the primary server fails. 
Between these two options, we can require that a 
primary server distribute updates to a specified num-
ber of backup servers before acknowledging a client 
update request.  This still puts durability at risk, but 
reduces the risk: data is lost only if all of the updated 
servers fail simultaneously.  Furthermore, while this 
approach reduces the cost of updating replication 
servers, it does not eliminate that cost.   
We assume that the cost of updating a remote replica-
tion server is accounted for by its distance: updating 
nearby servers introduces low latency while updating 
distant servers leads to long latency.  However, we 
hypothesize that the closer two servers are from each 
other, the more likely it is that they might fail at the 
same time.  This introduces another tradeoff in de-
signing a replication strategy. 
 Summarizing, maintaining synchronous replication 
servers can insulate a computation from failure, but 
increases the running time.  For failure rates below 
some threshold, it is better not to distribute updates 
synchronously.  When synchronous replication is 
advantageous, increasing the number of up-to-date 
replication servers improves the durability of applica-
tion updates.  Meanwhile, failure is correlated with 
the distance among these servers, so we should main-
tain synchronous data copies on distant servers as 
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well as nearby ones.  However, the cost of replication 
increases with the distance to the servers. 
To determine the best replication configuration, we 
need to consider the failure conditions of the running 
environment, as well as application characteristics.  
Generally, we want to maintain more synchronous 
data copies when component failures are frequent and 
when applications are computation intensive.  If fail-
ures are rare or applications rely heavily on synchro-
nous writes or metadata updates, a delayed update 
distribution policy might provide a better perform-
ance tradeoff.  In the following sections, we explore 
these tradeoffs. 

3. Modeling Failure 
To evaluate a replication strategy, we need to know 
the frequency, probability distribution, and correla-
tion of failure.  Our focus is on wide-area distribution, 
so we use PlanetLab [2] to exemplify a wide-area 
distributed computing environment.  PlanetLab is an 
open, globally distributed platform, consisting (at this 
writing) of 716 machines, hosted at 349 sites, span-
ning 25 countries.  All PlanetLab machines are con-
nected to the Internet, which creates a unique 
environment for conducting experiments at Internet 
scale.  We find PlanetLab a well-suited platform to 
study failure characteristics of large-scale distributed 
computing:  PlanetLab nodes experience many of the 
correlated failures expected in widely distributed 
computation platforms.  Moreover, failure traces of 
PlanetLab are collected over a long term and publicly 
available. 
We use failure distribution data from the all-pairs 
ping data [20] collected from January 2004 to June 
2005.  The data set consists of ICMP echo re-
quest/reply packets (“pings”) sent every 15 minutes 
between all pairs of PlanetLab nodes, 692 nodes in 
total.  Each node recorded and stored its results lo-
cally and periodically transferred the results to a cen-

tral archive.  We classify a node live in a 15-minute 
interval if at least one ping sent to it in that interval 
succeeded.  If the archive received no data from a 
node for the given time period, then that node is clas-
sified failed.  Thus, the failures detected in our study 
include nodes that crashed as well as network failures 
that partitioned nodes from the others.  This agrees 
with the failure conditions in Grid computing: from 
an application’s point of view, a network failure 
makes the data generated on a partitioned node inac-
cessible to other computing elements and requires 
that the partition be recovered to advance the compu-
tation. 
An important measure in reliability study is time-to-
failure (TTF), i.e., continuous time intervals when a 
node is live.  Figure 2 shows the cumulative fre-
quency of PlanetLab node TTF.  The mean TTF is 
122.8 hours.  Previous studies have shown that TTF 
can be modeled by a Weibull distribution [6, 7, 9] 
and our analysis agrees: the best-fit Weibull distribu-
tion generated with MATLAB, shown in Figure 2, 
agrees pretty well with the empirical data.  The scale 
and shape parameters of the best-fit Weibull distribu-
tion are 8.0556E+04 and 0.3549, respectively. 
We next investigate correlated failures among 
PlanetLab nodes.  In related work, Chun et al. use 
conditional probabilities P(X is down | Y is down) to 
characterize the correlated failures between nodes X 
and Y [19].  Since we assume that a failed node can 
be replaced with an active one when failure happens, 
we are more interested in the frequency that two 
nodes fail at the same time instead of the amount of 
time that two nodes are down simultaneously.  We 
therefore quantify the failure correlations for nodes X 
and Y with the conditional probabilities P(X fails at 
time t | Y fails at time t).  Similarly, we measure the 
failure correlation for nodes X1, X2, …, Xn by com-
puting the conditional probabilities P(X2, …, Xn all 
fail at time t | X1 fails at time t).  We note that in the 
formula, X1, X2, …, Xn are all supposed to be alive 
before time t.  Thus, given a group of nodes, our cal-
culation uses only the failure times that satisfy this 
condition. 
We first look at the failure correlations for nodes in 
the same site.  Our analysis proceeds as follows.  We 
first pick a node from each PlanetLab site and then 
select a different node from the same site to calculate 
the failure correlations.  In the failure data we ana-
lyzed, 264 sites have more than two nodes (but only 
259 of them contain more than two nodes that simul-
taneously live), 65 sites have more than three nodes, 
21 sites have more than four nodes, and only 11 sites 
have more than five PlanetLab nodes. 

15min 1hr 1day 10days 100days
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time-to-failure

C
u
m
u
l
a
t
i
v
e
 
F
r
e
q
u
e
n
c
y

Time-to-failure CDF of Planetlab nodes

 

 

empirical

weibull

Figure 1.  Time-to-failure CDF of PlanetLab nodes. 
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Table 1.  Failure Correlations for PlanetLab nodes 
from the same site 

sites 
nodes 259 65 21 11 

2 0.526 0.593 0.552 0.561 
3  0.546 0.440 0.538 
4   0.378 0.488 
5    0.488 
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Figure 2.  Failure correlations for PlanetLab 
nodes from different sites. 

Table 1 presents the average failure correlations com-
puted with different number of nodes and PlanetLab 
sites.  In the table, the first column indicates the 
number of nodes we select from a PlanetLab site to 
compute the failure correlations.  The first row 
enumerates the number of PlanetLab sites that con-
tain more than 2, 3, 4, and 5 nodes, respectively.  The 
data marked in bold on row N is calculated with the 
failure data from all the PlanetLab sites that contain 
at least N nodes.  For comparison, we also compute 
the failure correlations with fewer sites, shown in the 
upper right part of the table above the diagonal. 
In spite of the small numbers of sites available for 
computing the failure correlations among multiple 
nodes, several inferences can be drawn from Table 1.  
First, there is a high probability that two nodes in the 
same site fail simultaneously — more than half of the 
time, if one node fails, another node in the same site 
also fails.  Furthermore, as we increase the number of 
nodes that we consider within a site, correlated fail-
ures do not fall dramatically.  Table 1 suggests that it 
is common for all nodes at a site to fail simultane-
ously.  These failures might include administrators 
powering down all PlanetLab nodes in a site, or net-
work failures that partition an entire site from the rest 
of network. 
Next, we explore the failure correlations among 
nodes chosen from different sites.  We hypothesize 
that failure correlation decreases with increasing 
number of nodes and distance between nodes, so we 
focus on the impacts that these two aspects have on 
failure correlations.   
To analyze the impact of RTT on failure correlations, 
we partition nodes into equivalence classes for vari-
ous RTT intervals, with the length of each RTT in-
terval set to 10 milliseconds.  Specifically, for a given 
node X, a number n, and a range [rtt, rtt+10], we find 
all groups of n-1 nodes whose maximum RTT to X is 
between rtt and rtt+10.  We then calculate the aver-
age failure correlations for all of these groups with 
different n values.  
Figure 2 shows the results.  For a given point <x, y> 
in the figure, the x value gives the median RTT of the 
corresponding RTT interval and the y value shows 
the average failure correlations for that RTT interval. 
We observe that correlated failure for nodes chosen 
from different sites is half of that shown in Table 1.  
Moreover, although increasing the number of nodes 
reduces failure correlations, we still see correlated 
failures of 5-10%, even when we consider failure of 
four or five nodes.  These correlated failures may be 
caused by broad DDoS attacks or system bugs. 
Figure 2 bears out our hypothesis that failure correla-
tion tends to decline as the RTTs between nodes in-

crease.  For example, when the RTT between two 
PlanetLab nodes is a few msec, the failure correlation 
is around 0.2, but when the RTT is 200 msec, the 
failure correlation drops to 0.13. 
Overall, the analysis of PlanetLab failure shows that 
correlated failures are reduced as the number of 
nodes increases and as the distance between nodes 
increases.  This suggests that we can improve the 
durability of data by maintaining copies on remote 
replicas and by increasing the number of replicas.  
However, both of these strategies come at a cost: the 
former increases update latency while the latter im-
poses storage and network overheads.  In the next 
section, we propose a model that uses failure statis-
tics and application characteristics to estimate the 
expected execution time of an application for various 
replication configurations.  We then show how to use 
the model to minimize the expected execution time of 
a Grid computation by selecting an optimal replica-
tion configuration given available storage resources. 

4. The Evaluation Model 
In this section, we describe a model for estimating 
the expected running time of an application that uses 
a replicated file system subject to failure.  We use the 
following nomenclature, with some terms borrowed 
from previous studies by other researchers on optimal 
checkpoint intervals [24, 25, 28]. 
Failure-free no-replication running time (F) is the 
running time of an application in the absence of fail-
ure without replication.  This is equal to the execu-
tion time with a single local server that does not fail. 
Replication overhead (C) is the performance pen-
alty for maintaining synchronous data copies on 
replication servers (which we call backup servers in 
the following discussion) in a failure-free execution 
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following discussion) in a failure-free execution of 
the application.  We can estimate C as follows.  First, 
we assume (and our experiments confirm) that the 
replication overhead is strictly proportional to the 
maximal distance between the primary server and the 
backup servers.  Let rtt represent the maximal round-
trip time (in msec.) between the primary server and 
backup servers and let Cmsec denote the replication 
overhead to update a backup server with a one msec. 
round-trip time from the primary server.  Cmsec de-
pends only on application write characteristics and 
can be measured during a test run of the application.  
We can then calculate the replication overhead 
C = rtt × Cmsec. 
Recovery time (R) is the time for the system to de-
tect the failure of a replication server and replace it 
with another active server.   
Expected execution time (E) is the expected appli-
cation execution time in the presence of failures. 
Utilization ratio (U), defined as U = F / E, describes 
the fraction of time that the system spends doing use-
ful work. 
We model the execution of an application with a 
four-state Markov chain, shown in Figure 3.  Appli-
cation execution begins in an initial start state and 
makes an immediate transition to the run state, where 
it remains until a replication server fails or the execu-
tion completes.  Upon replication server failure, the 
execution is suspended by transitioning to the recover 
state.  During recovery, a replacement server is 
sought and the system attempts to recover the data 
under modification on the failed server.  If a syn-
chronous data copy survives on any active replication 
server, the system can recover the data on the appli-
cation’s behalf.  On the other hand, if the failed 
server holds the only valid copy of the data (i.e., the 
server distributes updates to other replication servers 
asynchronously) or if all replication servers that 
maintain synchronous copies fail simultaneously, 
then the system cannot recover the data generated up 
to the point that the execution halted.  After the fail-
ure recovery, the client where the application exe-
cutes is migrated to the replacement server.  Then 
depending on whether the output data generated by 
the application is recovered, the application either 
resumes its computation (continue in the run state) or 
restarts from the beginning (from the initial start 
state).  When execution finishes, the application exits 
to the end state. 
In the Markov model just described, the expected 
running time of an application in the presence of fail-
ure can be expressed as the expectation of the time to 
transit from the initial start state to the end state.  
This can be estimated using the specified time-to-
failure distribution and the failure correlations of the 

replication servers that maintain synchronous data 
copies.  In particular, the time-to-failure distribution 
determines the waiting time in the run state before 
moving to the recover state, while the failure correla-
tion gives the probability of moving from the recover 
state to the start state. 
In our study, we calculate the expected execution 
time of an application through simulation.  We wrote 
a simulator that takes input the time-to-failure distri-
bution data and the running time parameters of an 
application with a specified replication policy, i.e., F, 
C, and R.  The simulation proceeds as follows.  The 
simulator begins with the start state and moves di-
rectly to the run state.  In the run state, the simulator 
either waits for F+C and then exists to the end state, 
or jumps to the recover state if a failure happens 
within F+C.  After spending the amount of time R in 
the recover state, the simulator either moves back to 
the run state or restarts from the start state, with the 
probability of the latter equal to the given failure cor-
relations.  We assume that the same replication policy 
is used for an application throughout a simulation.  
This implies that the replication overhead C does not 
change after an application is migrated to a replace-
ment server. 

5. Simulation Results 
In this section, we use discrete event simulation, 
based on the analyzed PlanetLab failure statistics 
from Section 3, to evaluate the efficiency of different 
replication policies with various application running 
time characteristics. 
We use the replicated file system described in Sec-
tion 2 as the reference model for our study.  Since the 
system can automatically detect and recover from the 
failure of a replication server, we suggest that a small 
amount of time for failure recovery is reasonable.  In 
our simulation experiments, we fix the failure recov-
ery time R to 10 minutes.  Further analysis (not de-
tailed in this paper) shows that varying R in the range 
from 1 minute to 1 hour does not have much effect on 
the results for the (much larger) expected application 
running times we are most interested in. 
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Figure 3.  Four-state Markov chain describing the 
execution of an application over a replicated file 
system in the presence of failures. 
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 Figure 4.  Utilization ratio (F/E) as the RTT between the primary server and backup servers increases.  In 
each graph, X-axis indicates the maximum RTT (in ms) between the primary server and backup servers, and 
Y-axis indicates the utilization ratio. 
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In our simulation, each measured expected execution 
time is the average execution time from 100,000 con-
secutive runs of simulation.  The PlanetLab data does 
not contain enough failures for so many simulations, 
so we use MATLAB to generate time-to-failure data 
from the Weibull distribution that best fits the 
PlanetLab failure data, analyzed in Section 3.  For 
failure correlations with different replication configu-
rations, we use the probability data calculated in Sec-
tion 3. 
Figure 4 shows the results of the simulation.  In each 
graph, the X-axis indicates the maximum RTT (in 
milliseconds) between the primary server and backup 
servers, and Y-axis indicates the utilization ratio.   
We assume that asynchronous update distribution 
adds no performance cost to an application’s execu-
tion, i.e., C is always zero.  Furthermore, with 
asynchronous update distribution, no synchronous 
data copy is available if the primary server fails, so 
we always restart an execution from the beginning.  
Thus, the utilization ratio with asynchronous update 
distribution depends on only the application running 
parameters and time-to-failure distribution.  The 
utilization ratios with asynchronous update distribu-
tion for F = 1 hour, F = 1 day, and F = 10 days are 
0.996048, 0.947075, and 0.689764, respectively, 
which is marked as red horizontal line in each graph. 
The results suggest that applications with different 
characteristics benefit from different replication poli-
cies. 
For applications that make heavy use of synchronous 
writes or metadata updates (C = 0.1F), whether long- 
or short-running, maintaining synchronous replicated 
data copies is costly even with nearby backup servers, 
so asynchronous update distribution is usually pre-
scribed.  For very long-running applications (10 
days), the cost of losing intermediate computation 
results becomes enormous, so it is beneficial to main-
tain synchronous data copies on local backup servers.  
We observe that the utilization ratio for long-running 
applications is relatively low.  This indicates the 
benefit of using checkpoint to shorten the modeled 
execution time. 
For applications that write at a moderate rate (C = 
0.01F), maintaining nearby backup servers provides 
the highest utilization.  When the running time of an 
application is small, a local backup server offers the 
best tradeoff between performance and failure resil-
ience.  As the execution time of an application in-
creases, the cost of losing intermediate computation 
results because of multiple failures also grows.  Here, 
maintaining synchronous data copies in the same 
local area network is inadequate since this replication 
policy cuts correlated failures only in half.  Instead, 
the simulation indicates that the performance penalty 

of backing up data to a different site is more than 
compensated by the expected reduction in the execu-
tion time lost to correlated failure. 
If applications make few synchronous writes or 
metadata updates, replication overhead is relatively 
small even when we maintain synchronous data cop-
ies far away from the primary server.  For these ap-
plications, maintaining remote backup servers 
provides the highest utilization. 
Finally, we find that increasing the number of backup 
servers does not yield much improvement in utiliza-
tion.  For example, with F = 10 days, the maximum 
utilization ratio increases from 0.68 to 0.71 as we 
raise the number of backup servers from 1 to 4.  Fur-
thermore, we observe that increasing the distance 
between the primary server and backup servers pro-
vides limited advantage even for read-dominant ap-
plications.  That is, although the failure analysis in 
Section 3 shows that increasing the number of syn-
chronous data copies and the distance among the 
maintained data copies helps to reduce correlated 
failures, they offer small benefits for reducing the 
expected running time.  These findings follow from 
the low overall failure rate; correlated failures are 
addressed effectively by maintaining a single backup 
server in a different site. 
In summary, our simulation results indicate that ap-
plications with different characteristics benefit most 
from different replication policies.  A Grid infrastruc-
ture that provides a mechanism for choosing a repli-
cation policy based on application characteristics and 
the failure conditions of the environment can improve 
the utilization of computational resources.  Focusing 
on the tradeoff between performance and failure re-
silience, our evaluation omits other replication over-
head such as network bandwidth and storage space.  
However, the work presented in this paper constitutes 
a first step towards dynamic replication management 
in the Grid computing. 

6. Related Work 
Our work is related to three research fields: availabil-
ity studies on system, Internet services and experi-
mental wide-area computing platforms, optimal 
checkpoint interval analysis, and wide-area replica-
tion studies. 
Availability studies.  Availability problems are 
widely studied by other researchers on different com-
puting systems.  In particular, we take many insights 
from the previous works on availability of cluster 
systems, Internet services, the PlanetLab test bed [1], 
and the continuously growing Grid computing plat-
forms [2, 3]. 
There is a large amount of work on measuring and 
charactering failures in cluster systems.  Xu et al. [4] 
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studied the error logs from Windows NT servers.  
Their analysis shows that while the average availabil-
ity of individual servers is over 99%, there is a high 
probability that multiple servers fail within a short 
interval.  Sahoo et al. [5] analyzed the failure data 
collected at an IBM research center.  They find that 
failure rates exhibit time varying behavior and differ-
ent forms of strong correlation.  Heath et al. [6] stud-
ied the reboot logs from three campus clusters and 
observed that the time between reboots is best mod-
eled by a Weibull distribution.  This observation is 
also indicated by Nurmi et al. [7], who investigate the 
suitability of different statistical distributions to 
model machine availability and by Schroeder et al. in 
a more recent work [9] that analyzed the failure logs 
collected over the past 9 years at Los Alamos Na-
tional Lab.   
Pang et al. [10] investigated the availability charac-
teristics of the Domain Name Service (DNS).  They 
observe that most unavailability to DNS servers is 
not correlated within individual network domains.  
Padmanabhan et al. [12] measured the faults when 
repeatedly downloading content from a collection of 
websites.  Regarding to the websites that have repli-
cas, they find that most correlated replica failures are 
due to websites whose replicas are on the same sub-
net.  The recent availability studies on peer-to-peer 
systems [13–17] reveal low host availabilities in such 
environments as most of their participants are unreli-
able end-users’ desktops and can depart the system at 
will. 
Several recent works investigate the availability 
characteristics of the globally distributed PlanetLab 
platform.  Chun et al. [19] studied all-pairs ping data 
set [20] collected on PlanetLab over a three-month 
period.  They find that failures on the PlanetLab ex-
hibit high correlations.  The similar finding is also 
observed and further addressed by Yalagandula [21] 
and Nath [22] in their studies on correlated failures of 
PlanetLab nodes.  
As the Grid technology is still under the rapid devel-
opment, few works are done on charactering compo-
nent failures of the Grid infrastructure.  Instead, the 
existing works mostly focus on job failures.  The 
Grid2003 report [34] indicates that some projects 
observe the job failure rates as high as 30% and a 
large number of such failures are caused by over-
filled disks.  Li et al [35] analyzed the job failure data 
collected from the LHC computing Grid and argued 
for the importance to take into account the historical 
failure patterns when allocating jobs.  Hwang et al. 
[36] proposed a framework that allows Grid applica-
tions to choose the desired fault tolerant mechanisms 
and evaluated the effects of the supported recovery 
techniques. 

Research on optimal checkpoint Interval.  Our 
work is similar in spirit to determining optimal 
checkpoint intervals in high-performance computing.  
Checkpoint is a typical technique for ameliorating the 
amount of re-execution in case of failures.  Since 
checkpoint also introduces performance overhead, it 
is important to select an optimal checkpoint fre-
quency that minimizes the expected execution of an 
application in the presence of failures.   
The selection of optimal checkpoint intervals has 
been studied for a long time.  The problem was first 
formalized by Chandy et al. on transactional systems 
[23].  After that, Vaidya [24] derived equations of 
average performance with checkpointing and rollback 
recovery by assuming Poisson failure distribution.  
Wong et al. [25] modeled the availability and per-
formance of synchronous checkpointing in distrib-
uted computing.  Plank et al. investigated the 
performance of parallel computing with checkpoints 
[27].  Their results show that the optimal number of 
active processors can vary widely, and the number of 
active processors can have a significant effect on 
application performance.  Oliner et al. [28] evaluated 
the periodic checkpoint behavior of BlueGene with a 
failure trace collected from a large-scale cluster.  The 
study shows that when the overhead of checkpoint is 
high, overly frequent checkpointing can be more det-
rimental to performance than failure.  
Related works on replication.  Many systems use 
replication to reduce the risk of data loss.  Total Re-
call [29] measures and predicts the availability of its 
constituent hosts to determine the appropriate redun-
dancy mechanisms and repair policies.  Glacier [30] 
uses massive redundancy to mask large-scale corre-
lated failures.  Carbonite [31] strives to create data 
copies only faster than they are destroyed by perma-
nent failures to reduce the bandwidth cost of replica-
tion maintenance.  However, all these studies focus 
on masking the low host reliability in peer-to-peer 
systems.  The tradeoff between availability and per-
formance are not addressed. 
Some recent studies investigate the fault-tolerant 
techniques against correlated failures.  Phoenix [33] 
takes advantage of platform diversity in cooperative 
systems.  Oceanstore [32] uses introspection to dis-
cover groups of nodes that are independent in their 
failure characteristics.  It then chooses data replicas 
from such a group to enhance the system availability.  
These techniques can be utilized in most replication 
systems while the evaluation of their benefits is be-
yond the scope of this paper. 

7. Conclusion 
In this paper, we describe an evaluation model for 
determining the best-fit replication configuration 
given the specified failure statistics and application 
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characteristics.  With the failure data from the 
PlanetLab platform, we evaluate the feasibility of 
various replication configurations in terms of the 
overhead they introduce and the expected cost to re-
produce the execution results in case that the system 
cannot mask a failure from an application.  Our re-
sults show that different applications desire different 
replication configurations and a replication system 
should balance the tradeoff between performance and 
failure resilience flexibly, based on the failure condi-
tions of the running environment as well as applica-
tion characteristics. 
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