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ABSTRACT

This paper describes the mechanisms employed to control access to system services on
the IFS project. We base our distributed computing environment on systems that we
trust, and run those systems in physically secure rooms. From that base, we add services,
modifying them to interoperate with existing access control mechanisms. Some
weaknesses remain in our environment; we conclude with a description of present vul-
nerabilities and future plans.
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INTRODUCTION

The Institutional File System (IFS) project is a
joint project of the Center for Information Tech-
nology Integration at the University of Michigan
and the IBM Corporation. The goal of the IFS
project is to offer network file services that are
institution-wide, transparent, reliable, and secure.
The initial implementation of IFS employs cen-
tralized file servers running on mainframes. The
project has several dozen staff and a comparable
number of workstations.

Like any computing environment, security
risks are a major concern, and play a large role in
the design of our system. Because they rely
almost entirely on network services, workstations
at IFS are exposed to a variety of threats. Follow-
ing Voydock and Kent [1], we classify threats
into three categories:

g unauthorized release of information,

g unauthorized modification of information, and

g unauthorized denial of resource use.

At a coarse-grained level, our access control
mechanisms attempt to prevent all three
categories of potential security violations. At
some fine-grained level (say, at the level of our
physical networks), the third category poses prob-
lems beyond the scope of this paper, and indeed
beyond our abilities to address them. However,
to the extent that resources, i.e. , services, are
offered by the project staff, unauthorized denial
of resources is addressed by our access control
mechanisms.

Bellovin [2] identifies several areas in which
networked workstations running the UNIX operat-
ing system are vulnerable to attack by outsiders;

his analysis is at the level of individual packets.
While that is of concern to us, our attention in this
paper is to the more coarse-grained problem of
how to prevent unauthorized users from invoking
processes, obtaining file system access, or deny-
ing these to legitimate users.

In general, our goal in securing services is to
make it more difficult to compromise the system
through network attacks than it is to compromise
physical security or to employ social engineer-
ing.†

In the remainder of the paper, we start with a
logical overview of access control at the IFS pro-
ject, followed by an enumeration of the services
on which the project relies, their interdependen-
cies, and the mechanisms by which access to
these services is secured. We conclude with
observations on what we do right, what we do
wrong, and what remains to be done.

OVERVIEW

Logically there are two categories of system
access that must be protected: invocation of
processes and operations on the file system. In
controlling who can do what, we face the prob-
lems of authenticationiiiiiiiiiiii (who) and authorizationiiiiiiiiiii
(can do). We now discuss how authentication
hhhhhhhhhhhhhhhhhh
† ‘‘social engineering: A nontechnical means of
gaining information simply by persuading people
to hand it over. If a hacker wished to gain access
to a computer system, for example, an act of social
engineering might be to contact a system operator
and to convince him or her that the hacker is a leg-
itimate user in need of a password; more colloqui-
ally, a con job.’’ [3]
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and authorization issues are addressed for these
two categories.

Process invocation

We define three classes of authorization: unau-
thenticated, authenticated, and administrator.

g Unauthenticated users cannot invoke any
processes except those necessary to log in and
authenticate.

g Authenticated users can invoke processes on
workstations.

g Administrators can invoke processes on sys-
tem server machines.

A user is initially unauthenticated, and there-
fore unauthorized. To move to the authorized
class, the user must successfully authenticate via
one of several programs, e.g. , xdm, the X display
manager; login, which is used by getty and
telnetd; su; ftpd; and some others. All of
these programs invoke an application called
‘‘klog’’, which authenticates the user with the
Kerberos system (explained later in the ‘‘Authen-
tication Service’’ section). If the authentication
attempt succeeds, the user is logged in as a nor-
mal user.

Administrator authorization is a little involved
and is covered further in the ‘‘File Server’’ sec-
tion. For now, it is sufficient to say that Adminis-
trators run bos, causing a bosserver process
on a secure server machine to invoke processes
there.

Another way to invoke processes on a server
machines is through the console. The following
illustration depicts the above arrangement.

Unauthenticated User

Authenticated User

Administrator

console

bosserver

bos

klog

xdm su ftpd login aufs

File System Access

Control of file system access is a little more com-
plicated. In the IFS environment, we configure
workstations to be dataless clients of AFS, the
Andrew File System [4, 5]. A few files are
accessed through the UNIX file system; every-
thing else is accessed from an AFS File Server
machine (we say ‘‘in /afs’’).

An IFS workstation has a copy of UNIX,
/dev, /tmp, and /local on the local disk,
amounting to around three megabytes; /bin,
/etc, /lib, and /usr are symbolic links to
directories in /afs. Remaining disk space is
split between swap and cache for AFS.

/vmunix
/dev
/tmp
/local

/bin
/etc
/lib
/usr

/afs}
Dataless AFS Client

We describe the mechanism for initializing
clients into this configuration in the ‘‘Scrub Ser-
vice’’ section.
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The Servers

Machines providing the services described above
run in a locked room. The server machines are
divided into two classes: trusted AFS clients and
trusted AFS servers. Trusted AFS servers run the
absolute minimum necessary to offer AFS file
service, which is intended to restrict the space of
possible security lapses on these servers. In par-
ticular, trusted AFS servers do not run the ordi-
nary complement of network services, such as
inetd, telnetd, rshd, etc .

On the other hand, a trusted AFS client is
configured like any other AFS client machine, so
that the lion’s share of its files are in /afs. All
services that require a secure host but are not
required to bootstrap an AFS file server are run
on trusted AFS clients rather than trusted AFS
servers.

scrub aufs nfs name

file

auth time

Trusted
AFS
Client

Trusted
AFS
Server

This picture shows the organization and serves as
a reference point for the sections that follow.

TAXONOMY

The previous section presented a logical overview
of access control in the IFS development environ-
ment. While describing this, several services
were mentioned, among them scrub, aufs,
AFS file servers, and authentication. These ser-
vices in turn depend on time and name service.
This section describes each of the above services,
giving an overview of its function, authorization
model, and dependencies on other services.

Physical security

The basis of trust in our system is physical secu-
rity. We have a locked room in which we main-
tain a small number of trusted computing sys-
tems. Access to this room is restricted to system
staff in possession of a special piece of shaped
metal.

We use thin Ethernet, which admits promiscuous

snooping, but the strategic direction for campus
local networks is twisted pair Ethernet with hubs
in locked rooms. The campus backbone is fiber
with gateways in secure rooms.

Trusted AFS Servers

From our base of physical security, we deploy the
services necessary for supporting the
workstation-based computing environment. The
most fundamental of these — time, authentica-
tion, and file service — are run on trusted AFS
servers.

Trusted AFS servers are managed by bos, the
AFS basic overseer program. Bos maintains a
list of users permitted to execute privileged com-
mands in the bos subsystem. The list of
privileged bos users is kept on the server’s local
disk.

Since one of the privileged bos commands
can be used to modify the list of privileged users,
privilege in bos is not to be given nor taken
lightly. Another privileged bos command allows
the issuer to execute a command on the bos
server. Through a suitable incantation, this com-
mand can initiate an interactive shell. It is not
strictly necessary to allow anyone to execute a
command on the bos server in this fashion; it is
done for convenience, obviating the need to enter
the locked room physically.

Authentication service. We use Kerberos
[6], developed by Project Athena [7], for our
authentication needs. The Kerberos authentica-
tion model is based on a shared secret, which a
client uses to prove its identity to a service, and
similarly to authenticate a service to a client.
These shared secrets are managed by a Kerberos
service that listens for requests on a well-known
port.

Kerberos provides authentication services to
principals, which can be users or programs. The
Kerberos service keeps a database of its princi-
pals; for each principal, it stores a private key .
This key constitutes the secret shared between
Kerberos and the principal.

When a user logs in to a workstation, UNIX
initiates a Kerberos authentication session by cal-
ling the klog program. Klog forwards the login
name to the Kerberos authentication service run-
ning on a trusted AFS server, along with the name
of a ticket granting service (TGS), also running
on a trusted AFS server. The authentication ser-
vice checks that the user name is valid, creates a
ticket for the TGS, and encrypts the ticket with a
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key known only to the TGS and the authentica-
tion service. This ticket contains, among other
things, a lifetime, which limits the length of time
that the ticket is valid.

The TGS also generates a random session
key, which can be used for secure communication
between the client and the TGS. This encrypted
ticket and session key are then stored in a
response, the response is encrypted with the
user’s private key, and is sent back to the client.
The client then prompts the user for a password,
and the password is converted to a private key
used to decrypt the response. The encrypted
ticket, opaque to the client, and session key are
extracted from the decrypted response and stored
for future use. The login authentication session is
now complete.

When the user wishes to authenticate with a
new service, the ticket obtained above is sent to
the TGS to obtain another ticket usable for secure
communications with the new service. The proto-
col used for this authentication step is similar to
the one outlined above; see [6] for details. Klog
uses this protocol to obtain a file system authenti-
cation ticket.

We don’t have a sophisticated white pages
service, just a shared /etc/passwd file in
/afs. Because Kerberos provides our authenti-
cation service, we store dummy entries in the
password field.

Time service. Time service is provided via
NTP, the Network Time Protocol [8]. Since Ker-
beros tickets rely on accurate clocks, reliance on
a network time service exposes clients to denial
of service attacks. NTP does not offer a facility
for remote process invocation, so denial of ser-
vice is the limit of exposure. NTP has facilities
for authentication, although the mechanism for
key distribution is rudimentary.

File service. We rely on AFS for distributed
file service. Client access to the file system is
controlled by Kerberos authentication and access
control lists (ACLs). A special kind ACL, the
negative ACL, removes rights from individuals
and groups, which helps administrators react
quickly to potential breaches.

The AFS hierarchy is pieced together out of
volumes . AFS employs quotas to address the
resource denial that can arise from malicious or
negligent abuse of file system space.

The security and access control characteristics
of AFS are detailed by M. Satyanarayanan [9].

Trusted AFS Clients.

Other network services provided to the IFS pro-
ject are offered on auxiliary hosts under the
project’s control. Like the file servers, these
machines are kept in a locked room, open only to
systems staff, and are inaccessible through ordi-
nary network services like telnet or rsh. The
auxiliary servers also run bos, so their exposure
to unwanted access is like that of the file servers.

Name service. We use bind [10] for
domain name service (DNS) [11]. DNS is subject
to attacks in which the bad guy modifies the map-
ping between, say, a hostname and an Internet
address. We therefore minimize our reliance on
hostnames for security, and rely instead on shared
secrets. Unfortunately, there are applications and
service providers that continue to rely on
trustworthy name service, in particular the X win-
dow system (see below), and the Berkeley ‘‘r
commands’’: rsh, rcp, etc . Over time, we
expect to see these components replaced by
Kerberos-based ones. Nevertheless, attacks on
DNS can lead to denial of service, so we secure
our name servers.

Scrub service. Workstations on the IFS pro-
ject are dataless, so they rely on AFS for per-
manent storage. The local disk is used for boot-
ing, for storing files specific to the machine, for
temporary storage (/tmp), and as a disk cache
for AFS. Differences between individual works-
tations, such as the presence or absence of a
printer, are reflected in startup scripts stored in
AFS.

The /local directory on a workstation con-
tains roughly 50 files broken into three categories:
booting, workstation-specific, and convenience
programs. The boot-related files are those neces-
sary to bootstrap the workstation to the point that
/afs is made available. The workstation-
specific ones are those that need to be different
for each machine, e.g. , /usr/adm/messages
is a symbolic link to
/local/usr/adm/messages. Finally, the
/local/tools/ directory contains files that
are useful to have when all file servers are down,
e.g. , telnet, ftp, and vi. The programs in
/local/tools/ are unused when the file
servers are up.

The intent of this design is that any worksta-
tion can be ‘‘scrubbed’’ clean of its existing local
files and loaded with new local files at any time.
Scrubbing entails establishing a network connec-
tion with a scrub server and downloading the
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local files.

Our scrub server runs on a trusted AFS client.
The scrub server provides a UNIX dump format
image of the workstation’s local disk to the ser-
vice requester. This is then piped into the UNIX
restore command on the requesting machine.
We do not enforce any restrictions on who can
scrub or which machines can be scrubbed.

File system translation. We offer access to
the AFS file system through other distributed file
system protocols: NFS [12] and AFP [13]. These
‘‘foreign’’ protocols are served by processes run-
ning on trusted AFS clients, nfsd and aufs,
respectively.

NFS and AFP have their own authentication
models, which we have attempted to integrate
into our own. For NFS, we developed an applica-
tion that allows a user to establish AFS creden-
tials for a third-party NFS server. For AFP, we
developed an authentication module integrated
with the AppleShare client that similarly estab-
lishes AFS credentials for the AFP server.

Normal AFS Clients

Interaction service. Workstations on the IFS
project run the X Window System [14]. X has
only the most rudimentary sort of access control
mechanism. In carefully controlled experiments,
we have developed techniques for remotely moni-
toring a user’s activity, including the entering of
passwords in windows. These techniques have
validated our belief that X should be viewed as a
gaping hole in the security structure in the IFS
development environment. We are hoping that
future releases of X applications take a closer
look at security concerns, in particular to Ker-
beros integration.

Super-user access. Because AFS caches files
on the local disk, it is important that local disk
access be tightly controlled. Thus it is unwise to
allow the super-user password to be widely
known, as is done by Project Athena [15, p. 333].
Unfortunately, even without knowing the super-
user password, it is usually possible to obtain
privileged access to the file system by rebooting
the machine into single-user mode. It is therefore
important that private files be expunged from the
local cache when a user logs out from a machine
that is not physically secure.

DISCUSSION

In our academic setting, it is challenging to offer
secure yet usable services. Our approach to
building trustworthy systems starts with some
things that we trust: locked rooms, Kerberos, and
AFS; and builds from them other things we trust,
name servers, scrub servers, etc . However, it is
important to be conscious of the vulnerabilities
that remain in a system such as ours.

Kerberos appears to be a secure and reliable
authentication system. There are, however, some
potential problems with it. First, since the Ker-
beros authentication mechanism depends on the
notion of shared secrets, each secret must be
stored twice. Kerberos thus suffers from standard
key-distribution problems: securely transmitting
keys to each site, and ensuring that the two copies
of each such key are identical.

Second, Kerberos tickets are written to /tmp
on the user’s workstation. Once gaining root
access of the workstation, the bad guy can obtain
a copy of any tickets stored in the filesystem and,
until they expire, masquerade as the user who
obtained them. Kerberos does not destroy its
tickets automatically, so a separate administrative
step, such as a .logout script, is required to
remove the tickets. However, if the bad guy is
able to gain root access to a workstation while a
user is logged in, this step is not effective.

Third, the Kerberos login authentication phase
admits dictionary attacks. The bad guy can take a
list of likely passwords, convert each to a private
key, and use the result to decrypt the authentica-
tion server’s response to a request for a ticket.
From the structure inherent in the server’s
response, the bad guy can know when the correct
password has been used. Furthermore, this dic-
tionary attack can be carried out absent further
communication with Kerberos servers. As a pro-
phylactic measure, we employ a Kerberized
‘‘password cracker,’’ which doggedly pursues
this line of attack.

This last problem with Kerberos authentica-
tion makes systems that use it potentially more
vulnerable than those relying on traditional UNIX
authentication with shadow passwords, and
almost as vulnerable as UNIX systems that adver-
tise their encrypted password files, given that the
bad guy is able to guess a valid user name.

In our environment, it is easy for a completely
unauthorized user to obtain valid user names,
simply by inspecting the access control lists of
world-readable directories. This inspection can
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yield both user and group names; for any interest-
ing groups found, the system can be induced to
divulge the group membership list. It is also pos-
sible to guess interesting group names, e.g. ,
system:administrators.

We suggest that the following change to the
Kerberos login authentication phase would close
this hole: instead of passing back an encrypted
response containing some structure, the authenti-
cation server returns a nonce identifier. The
client is then required to encrypt this nonce with
the user’s private key, and return to the server. If
the server correctly decrypts the nonce, it then
provides the usual response.

This method not only foils the bad guy’s
attempt to decrypt the ticket, because the nonce
has no structure and the bad guy can’t tell a valid
from an invalid decryption, but also involves the
authentication server in each decryption attempt.
This permits such attacks to be tracked and
moderated, possibly by artificially increasing the
time required to process each attempt, as is done
by the MTS operating system [16].

By virtue of our participation in NAFS, the
nationwide file system experiment [17, 18], our
file system is accessible to users from universi-
ties, laboratories, and commercial interests from
Boston to Berkeley. We have not determined the
best way to allow users to log in — we now issue
unauthenticated access to system binaries. In
essence, we are forced to assume that our NAFS
colleagues are licensed for the system binaries
that we run.

In a similar vein, our home directories are
world-readable, so that the Berkeley ‘‘r com-
mands’’ can read .rhosts files kept there. We
hope to abandon all reliance on the Berkeley r
commands, at which time we can restrict access
to home directories.

While AFS successfully denies a superuser
universal access to its files, obtaining privileged
access on workstations or servers permits access
to the local disk, bypassing the Kerberos authenti-
cation mechanism entirely. It is possible for the
bad guy to become superuser on a UNIX worksta-
tion by any of several trivial procedures;
machines acting as file servers are similarly prone
to attack if not locked up. Anyone with superuser
access on a file server machine has access to all
AFS files stored there. Anyone with superuser
access on a client workstation has access to all
AFS files cached there. This underlines the
importance of physically securing both servers

and workstations for total system protection.

Furthermore, it is possible to leave a Trojan
horse [19] behind on a workstation, e.g. , one that
grabs passwords. By minimizing the time
required to scrub a workstation, it is conceivable
to scrub every public workstation after each use.
Scrub time is on the order of five minutes now,
clearly too long to be included in the login pro-
cedure, but we are investigating scrub optimiza-
tions. Of course, this will require a second look
at the access control mechanisms employed by
the scrub server; a system penetration there would
be disastrous.

CONCLUSION

Our computing environment is not structured
from the top down with a security architecture in
mind. Instead, it is built piecemeal from services
that address our various computing needs. This
challenges our ability to build an integrated set of
services that works together to protect users and
their resources.

As the systems that offer these services
mature, they tend to have better access control
capabilities. For example, early distributed file
system protocols paid scant attention to authenti-
cation, but more recent ones offer good protec-
tion. Physical security and interaction services
are on opposite ends of the spectrum. The former
has a history reaching back through the ages, and
requires little more effort than drafting a purchase
order, while the latter is still quite young and
leaves much to be desired in controlling access to
resources.

The access control mechanisms employed by
distributed services work best when they work
together. While this axiom is honored more in
the breach than in the observance, we are begin-
ning to see the pieces molding into a unified
structure, based on physical security and Ker-
beros authentication.
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