
C I T I - T R - 9 0 - 6 November 8, 1990

Analysis of X.500 Distributed
Directory Refresh Strategies

Guy A. Fasulo
Kevin H. Klinge

Sailesh Makkapati
David W. Bachmann
Michael H. Kamlet

Toby J. Teorey
Michael A. Bauer

J. Michael Bennett

Center for Information Technology Integration (CITI)
The University of Michigan, Ann Arbor, MI 48105-2016

Center for Information
Technology Integration

The University of Michigan
Information Technology Division
535 W. William
Ann Arbor, MI 48103-4943

Analysis of X.500 Distributed
Directory Refresh Strategies

Guy A. Fasulo
Kevin H. Klinge

Sailesh Makkapati
David W. Bachmann
Michael H. Kamlet

Professor Toby J. Teorey, Project Director

Michael A. Bauer
J. Michael Bennett

Computer Science Department
University of Western Ontario

Sponsor: IBM Toronto Laboratories (Center for Advanced Studies)

CITI Technical Report 90-6
Center for Information Technology Integration (CITI)

The University of Michigan
535 W. William Street

Ann Arbor, Michigan 48103-4943
313-747-4060

November 1990 (Revised)

Analysis of X.500 Distributed Page 2
Directory Refresh Strategies

Table of Contents

1. Introduction ... 3
Overview.. 3
Basic Definitions ... 4

2. Basic Steps in the Refresh Process .. 6
Asynch Pull .. 6
Asynch Push ... 7

3. The Distributed Directories Modeling Tool (DirMod) 8
NetMod Basis.. 8
Extensions for Distributed Directories....................................... 9

4. Experiments... 14
Parameters.. 14
Hypotheses.. 15
Analysis.. 15

5. Conclusions.. 22
References ... 24
Appendix A - Formulae .. 26

Basic Steps.. 26
Overall Times Pull/Push case.. 28
Overall Time for n Shadows in Push case................................... 29

Analysis of X.500 Distributed Page 3
Directory Refresh Strategies

Abstract

Distributed database directory refresh strategies, commonly recommended for
the X.500 standard, are defined and analytically modeled for variations on
push/pull and total/differential under idealistic asynchronous control conditions.
The models are implemented in a HyperCard-based tool called DirMod (for
“directory model”). Experimental test results show important elapsed time
performance tradeoff among the different strategies, and live test data contribute
to the verification of the models.

1. Introduction

Overview

In distributed systems, one major concern is the mapping of names to services. A
directory provides this mechanism. The problem of replicating directory
information and maintaining the data (updating...) is still being addressed. We
choose to study the emerging X.500 standard for directories since Quipu (an
implementation of X.500) is readily available [Kille89, KRRT90], and this would
be ideal for experimentation to discover the good, the bad and the ugly about
directories [BBS89, ISO89a, ISO89b]. The experiments conducted form the basis
for the parametric modeling of the refresh strategies.

The X.500 directory system is a set of interconnected open systems which
cooperate to provide directory services [Bennettb 89]. X.500 uses attribute-based
naming for identification of objects within its name space. The attribute name
space is restricted to a hierarchy and one of the primary reasons for doing so is
to be able to support a unique (i.e. distinguished) name for each object. X.500
accommodates access to objects using incomplete information by associating a set
of attributes with each object and allowing users to browse the attributes at each
node in the hierarchy [Bauer 89].

The refresh strategies of the X.500 distributed directory system involve three
main parameters:

1) Initiation Source
Pull - Shadow
Push - Supplier/Master

Analysis of X.500 Distributed Page 4
Directory Refresh Strategies

2) Size - Total vs Differential

3) Consistency - Synch vs Asynch (Synch implies multiple levels of the
DSA hierarchy are refreshed. Asynch implies only one level of the
hierarchy is refreshed.)

Therefore, the eight strategies are:

1) Pull, Total, Asynch 5) Pull, Total, Synch
2) Pull, Diff, Asynch 6) Pull, Diff, Synch
3) Push, Total, Asynch 7) Push, Total, Synch
4) Push, Diff, Asynch 8) Push, Diff, Synch

This paper includes our analysis on the first four strategies, with
asynchronization (asynch) being the common parameter. No analysis on the four
synch alternatives has been performed as of the date of this paper; however, the
intent is to perform future analysis on them. All of the above asynch alternatives
are implemented in a HyperCard-based analytical model (see Sec. 3: The
Distributed Directories Modeling Tool).

Basic Definitions

The following is a list of basic terms in X.500 with definition for each [ISO89a]:

1) DIT: Directory Information Tree (Database). Each node in the DIT
refers to a directory.

2) DSA: Directory Service Agent -- a server responsible for
manipulating the directory data.

3) Master DSA: This DSA has administrative authority over a set of data.
Updates (modification to data) can only be done at the master.

4) Shadow DSA: This DSA maintains a read-only copy of the data and must get
changes from the master. Also called a slave, consumer, or
shadow-consumer.

Analysis of X.500 Distributed Page 5
Directory Refresh Strategies

5) Supplier DSA: Cannot update itself, but can update shadows (acts like a
master and a shadow)1.

6) Refresh: The process where the shadow receives a current copy of the
data.

7) Pull: Shadow initiated refresh. Update schedule held at shadow.
(This is the implementation of Quipu).

8) Push: Master initiated refresh. Update schedule held at master.

9) Total refresh: The entire data set (whole table) is sent to the shadow. (This is
the implementation of Quipu).

10) Differential
 refresh: The set of changes to the data is sent to the shadow.

11) Synch: Multi-level refresh. In the case of a Push - all copies of the data
will be consistent. In the case of a Pull if a shadow receives
refreshes from a supplier, then the supplier AND shadow will
be refreshed.

12) Asynch: Single-level refresh. In the case of a Push only shadows of the
master will be refreshed. (This is the implementation of
Quipu).

13) Snap Time: The last time the shadow received a refresh. In Quipu this is
implemented with a version number.

To keep the terminology consistent, DSAs will be referred as either a master or
shadow, although the DSA could be a supplier in any of the alternatives discussed.

1 Supplier DSAs arise when the DSA hierarchy contains more than two levels. The top
level is occupied by the master and the bottom level is occupied by the shadow(s).
Suppliers lie between the master and shadow levels; therefore, a supplier is considered
the master of the shadow(s) beneath it, and the shadow of the master above it.

Analysis of X.500 Distributed Page 6
Directory Refresh Strategies

2. Basic Steps in the Refresh Process

Asynch Pull

The basic steps followed in the Asynch Pull refresh process are:

1) Shadow sends message to Master indicating it desires a refresh.

2) The Master processes the message (identifies which shadow is making the
request, determines if there been any changes to the data since the last refresh
to the requesting Shadow, etc), and determines if a refresh is warranted (If
time of last change to data is later than snap time).

3) If a refresh is warranted, the Master prepares the data for transmission
(selection and packing time). If a refresh is not warranted, then the Master
returns a message indicating so. The Differential algorithm may take longer
to pack up the data because each record's time stamp is compared to the
shadow's snap time. Preparation includes encoding into ASN.1

4) The data is transmitted to the Shadow. The data file is first transferred to the
CP (Communication Processor), and then the CP transmits the data file over
the network.

5) Shadow receives the data, directly placing it in main memory. This includes
decoding the data and placing the data into a tree structure. Shadow is locked
out from other users during the refresh operation.

6) Shadow backs up memory by copying data to disk. Shadow writes out entire
data set in both Total and Differential cases in this example. Quipu is
implemented on a Unix platform and maintains the data file in virtual
memory, since the data file usually exceeds the main memory capacity of the
computer. A copy of the file is written to disk to serve as a backup in the
event the Master is not accessible. In general, Unix based systems do not
provided any form of indexed file structure; therefore, Quipu provides the
simple solution: rewrite the entire data file.

Note: The shadow does not acknowledge the receipt of refresh.

We assume the CPU processing time to construct a request message to be
insignificant; therefore, it is not considered in the analysis.

Analysis of X.500 Distributed Page 7
Directory Refresh Strategies

Asynch Push

The basic steps followed in the Asynch Push refresh process are:

1) When a refresh is warranted, the Master prepares the data for transmission
(selection and encoding time). The Differential algorithm may take longer
because each record's time stamp is compared to each shadow’s snap time.

2) The data is transmitted to the Shadow(s) sequentially one after another. The
data file is first transferred to the CP (Communication Processor), and then
the CP transmits the data file over the network.

Steps 3, 4 and 5 occur in parallel.

3) Shadow(s) receives the data, directly placing it in main memory.
Decoding and recreating the tree structure.

4) Shadow(s) backs up memory by copying data to disk. As in Asynch Pull,
shadow writes out entire data set in both Total and Differential cases.

5) Shadow(s) sends acknowledge message to Master.

6) Master reads the acknowledgement message(s).

We assume the CPU processing time to construct an acknowledgement message to
be insignificant; therefore, it is not considered in the analysis.

The real elapsed time is the real time cost to complete the Push refresh process.
The "start" time is the moment the master begins the refresh process. The
"finish" time is moment the master finishes reading the last acknowledgement
message from a shadow. The real elapsed time is the difference between the start
and finish times.

Although the real elapsed time may vary, a lower bound estimate can be
calculated (a best case time).

Analysis of X.500 Distributed Page 8
Directory Refresh Strategies

Legend

RET = Real Elapsed Time.
ST = Shadow Time. Time to refresh one shadow (Summation of Steps 1 thru

6 in Push).
NRS = Number of Remaining Shadows. Total number of shadows - 1.
MT = Message Time. Time to read/process acknowledgement message from

shadow (Step 6 in Push).
CPT = Communication Processor transfer Time. This is the time it takes the

master to transfer the data file from memory of the CPU to the memory
buffer of the communication processor (Part of Step 2 in Push).

The Best case time is calculated by:

RET = ST + NRS * Max(MT, CPT)

After the first acknowledgement message, the remaining acknowledgement
messages will arrive at time intervals of time equal to CPT. If MT < CPT then
the master is waiting for the next message to arrive. If MT > CPT then the
master will still be processing the previous message and the current message sits
in the queue waiting to be processed. Hence Max (MT, CPT).

3. The Distributed Directories Modeling Tool (DirMod)

NetMod Basis
The Network Modeling Tool (NetMod), a HyperCard-based tool, uses simple
analytical models to provide the designers of large interconnected local area
networks with an in-depth analysis of the potential performance of these systems.
It assists the development of an understanding of the performance of state-of-the-
art local area network (LAN) technologies in either a university, industrial, or
government campus networking environment consisting of thousands of computer
sites. A principal application of the tool is to help the campus network designer to
configure a potential user's data network using proposed hardware and software
components.

NetMod can analyze an existing or proposed network in terms of its basic
performance characteristics, e.g. component utilization, throughput, and packet

Analysis of X.500 Distributed Page 9
Directory Refresh Strategies

delay times. It provides a capability for sensitivity analysis of the performance
based on changes in the workload parameters and either minor or major changes
in the network topology and connectivity. Thus it is possible to quickly evaluate
and compare several alternate configurations: a feature which will greatly assist
not only the network design process but also distributed directory design.

NetMod provides a graphic interface that corresponds to the world view of the
network designer, with icons that represent rings, buses, routers, workstations,
etc. This is combined with the quick feedback which is possible using the analytic
approach, to provide a capability for interactive analysis of potential network
designs, quickly ruling out trouble-prone configurations and identifying potential
bottlenecks. The designer does not need to be an expert in any modeling
discipline, nor does he/she need to keep a bookshelf lined with the specifications
of various network media and protocols. One merely needs to know what devices
are present in the networks and how they are connected.

Extensions for Distributed Directories

The Distributed Directories Modeling Tool (DirMod) is a HyperCard extension of the
Network Modeling tool (NetMod)[BSST90]. The purpose of DirMod is to model and
provide the user with the performance statistics of refresh strategies over various types
of networks. NetMod provides all interconnect devices (bridges, routers, gateways,
etc...) and their corresponding network statistics. DirMod uses the available network
calculations (mainly propagation delay over a network), and incorporates Directory
System Agents (DSAs) and their various refresh strategies defined earlier into this tool.
The following sections describe the additions to NetMod that have been made that define
DirMod (see Appendix A for a list of equations utilized by DirMod to calculate Pull and
Push times).

The DSA icon resembles the familiar Bell picture of fingers paging
through a directory. The DSA icons have identical connection properties
as workstations do in a network, but they contain different attributes
based on their purpose in the model. Each DSA has an associated disk

random block and sequential block access time, processing speed, average packet size
and rate, block size, and background load on its host machine. These properties are
used in the calculations for a given refresh algorithm and are easily entered for each
DSA by double-clicking on the icon.

Analysis of X.500 Distributed Page 10
Directory Refresh Strategies

The Summary icon is represented by a summation symbol. Its
purpose is to actually specify the refresh algorithm performed on a
set of existing DSAs. Thus each summary icon provides the refresh
attributes of master, slave(s), refresh policy (in terms of Pull/Push,

Total/Differential, and Asynchronous/Synchronous), the number of records involved in
a refresh from the master, and the record size of each record in the master DSA. Each
summary then can capture a refresh policy for DSAs on any part of a network provided
they are in some way connected.

Once DSAs have been defined and properly connected over a network, and summaries
have been created to specify the refresh algorithm performed on a set of DSAs (see Fig.
1), calculations can be performed as in NetMod.

Analysis of X.500 Distributed Page 11
Directory Refresh Strategies

Figure 1 : Basic DSA and Summary setup in DirMod

Analysis of X.500 Distributed Page 12
Directory Refresh Strategies

 By turning calculations on, each summary computes master, network, and shadow(s)
times based on its refresh policy as shown in Fig. 2.

 Figure 2 : DirMod screen with Calculations On

Analysis of X.500 Distributed Page 13
Directory Refresh Strategies

 By double clicking on a summary's adjacent viewfield on a network diagram in
DirMod, the three different times for a refresh calculation can be viewed on a summary
statistics page. These results can be compared with other summaries containing the
same DSA relationships with different refresh strategies. For example, the summary
containing a Push from Wooly Monkey to Llama and umich.edu can be compared to a
refresh strategy with a Pull from Llama and umich.edu to Wooly Monkey (see Figs. 3
and 4). Additionally, changes can be made to DSA properties to try and improve the
master, shadow(s), and network times for a given relationship summary.

Figure 3 : Summary statistics for a Push Total Asynch

Analysis of X.500 Distributed Page 14
Directory Refresh Strategies

Figure 4 : Summary statistics for a Pull Total Asynch

DirMod, with its NetMod framework and its directory extensions, provides the tools
and experimentation grounds to accurately study refresh performance results of real or
planned distributed directories.

Analysis of X.500 Distributed Page 15
Directory Refresh Strategies

4. Experiments

Parameters

The following is a list of the parameters involved in the refresh strategies :

1. The file size is 500 records.

2. The block size is 2 KBytes, which results in a blocking factor of 1.

3. The average distance between the supplier and a shadow is 2000
kilometers.

4. The CPU processing time has a fixed instruction count of 1000. This
appears in the following steps in our Push and Pull algorithms :

a) Supplier prepares data (Push and Pull)
b) Shadow places data into memory (Push and Pull)
c) Supplier decodes request message (Pull)
c) Supplier reads acknowledgment message (Push)

5. The instruction count time per record (for encoding/decoding) is 50000
for a total refresh and 55000 for a differential refresh. This occurs for
the master encoding and the shadow decoding the data. The instruction
count for the shadow to reconstruct the tree is 70000 for a total refresh
and 75000 for a differential refresh. We assign the extra 5000
instructions to compensate for the extra DSA CPU time in a differential
refresh.

6. The computer speed is 4 MIPS.

7. The channel speed2 is 5 Megabytes per second. This is considered a
conservative lower bound.

2 Channel speed is the memory to memory transfer time between the CPU and CP
(Communication Processor).

Analysis of X.500 Distributed Page 16
Directory Refresh Strategies

Hypotheses

1 . Network transmission time is the bottleneck in both Push and Pull algorithms.
2 . The Differential refresh algorithm provides significant time savings compared

to the Total refresh algorithm in the overall refresh time.
3 . The Push refresh algorithm provides a higher degree of parallelism not found

in the Pull algorithm.
4 . Although the total refresh time for all shadows in a Push, Asynch operation is

dependent on the number of shadows, the actual elapsed time is only slightly
larger than the total refresh time for one shadow.

Analysis

Based on our model and parameters above, we have calculated times for the
various steps and have made some initial observations about the refresh
algorithms to support our Hypotheses.

Hypothesis one: Network transmission time is the bottleneck.

In most of the test cases, network transmission time represented about 83% of the
total refresh time. We initially set the network speed to 56 kilobits per second
(Kbps), and observed the network time to be the dominating factor. (see Figs. 5
and 6).

Analysis of X.500 Distributed Page 17
Directory Refresh Strategies

2 0 4 0 6 0 8 0 1 0 0 t o t a l
0

50000

100000

150000

MASTER
SHADOW
NETWORK

PERCENT OF TOTAL RECORDS

T
O

T
A

L
 T

IM
E

 (
m

s)

 Differential Refresh
Total

File Size 20% 40% 60% 80% 100% Refresh
Unit
Master 1414.722 2828.833 4242.834 5656.945 7070.947 6445.947
Shadow 8319.471 11608.583 14897.584 18186.695 21475.697 20225.697
Network 29396 58689.714 87901.143 117194.85 146406.286 146406.286

(time in milliseconds)

Figure 5: Asynch Pull for 500 records at 56 Kbps

Analysis of X.500 Distributed Page 18
Directory Refresh Strategies

2 0 4 0 6 0 8 0 100 total
0

100000

200000

300000

400000

500000

MASTER
SHADOW
NETWORK

PERCENT OF TOTAL RECORDS

T
O

T
A

L
 T

IM
E

 (
M

S)

 Differential Refresh
Total

File Size 20% 40% 60% 80% 100% Refresh
Unit
Master 1414.721 2828.832 4242.833 5656.945 7070.947 6445.947
Shadow 8319.471 11608.583 14897.584 18186.695 21475.697 20225.697
Network 29396.00 58689.714 87901.143 117194.857 146406.286 146406.286

(time in milliseconds)

Figure 6: Asynch Push for 500 records & 3 shadows
at 56 Kbps

Analysis of X.500 Distributed Page 19
Directory Refresh Strategies

When the network speed was increased to 154 Kbps, the shadow time dominated. The
best case was at the total refresh when the shadow time was 63% of the total. while the
worst case, 76%, was at the 20% differential. By using a faster network we have shown
that the shadow time becomes the dominating force. The master also plays a significant
role as it has higher times than the network.
So our original hypothesis of the network as the bottle-neck is incorrect. The shadow is
the bottle-neck with a lot of time spent on making the new tree structure in memory.
(see Figs. 7 and 8).

2 0 4 0 6 0 8 0 100 TOTAL
0

5000

10000

15000

20000

25000

MASTER
SHADOW
NETWORK

PERCENT OF TOTAL RECORDS

T
O

T
A

L
 T

IM
E

 (
m

s)

 Differential Refresh
 Total

File Size 20% 40% 60% 80% 100% Refresh
Unit
Master 1414.722 2828.833 4242.834 5656.945 7070.947 6445.947
Shadow 8319.472 11608.583 14897.584 18186.695 21475.697 20225.697
Network 1085.451 2147.917 3207.399 4269.865 5329.347 5329.347

(time in milliseconds)

Figure 7: Asynch Pull for 500 records at 1.544 Mbps

Analysis of X.500 Distributed Page 20
Directory Refresh Strategies

2 0 4 0 6 0 8 0 100 total
0

10000

20000

30000

40000

50000

60000

70000

MASTER
SHADOW
NETWORK

PERCENT OF TOTAL RECORDS

T
O

T
A

L
 T

IM
E

 (
M

S)

 Differential Refresh
 Total

File Size 20% 40% 60% 80% 100% Refresh
Unit
Master 1493.664 2985.998 4478.002 5970.336 7462.340 6837.340
Shadow 24958.414 34825.748 44692.752 54560.085 64427.090 60677.090
Network 3256.352 6443.751 9622.197 12809.596 15988.042 15988.042

(time in milliseconds)

Figure 8: Asynch Push for 500 records & 3 shadows
 at 1.544 Mbps

Analysis of X.500 Distributed Page 21
Directory Refresh Strategies

Hypothesis two: Differential vs Total

From our test cases (Figs. 5 thru 8), it is apparent that the Differential provides savings
in data transmission time, since usually less than 100% of the file is transmitted over the
network. The processing time spent at the master and shadow also decrease due to the
differential refresh. In addition, when the Differential is a significant percentage of the
total file (approaching 100%), the CPU processing time will exceed that of the Total
refresh algorithm. It will be important to find the exact threshold limit of the
differential algorithm so that a total refresh can be performed in cases where the size of
the differential is greater than the limit.

Hypothesis three: Push vs Pull.

The Push refresh algorithm provides a higher degree of parallelism despite the
fact that our tests indicated that a Push and Pull consist of almost identical
resource usage for the same number of shadows.

In the case of a Pull, we are speaking of n shadows requesting a refresh from the
same master. Since locking occurs with each transaction to the master, the other
n - 1 shadows will initially wait for the locks to be released before their refreshes
can be processed. Thus, although each algorithm has the same resource usage,
the elapsed time to complete the total refresh time will be quite different.

As will be shown by the analysis for hypothesis four, the data in a Push can be
transferred to each shadow almost in parallel, while in the Pull algorithm, each
shadow will wait until the data is transferred over the network and the locks are
released before the next refresh can be processed. This fact shows the advantage
in real elapsed time of using the Push algorithm over Pulls from all n shadows.

Hypothesis four: Push elapsed time

Three metrics for measuring a Push exist: Per Shadow, Sequential elapsed time
over all Shadows, and Real elapsed time. Real elapsed time was discussed earlier
as the time to complete the Push process. The following chart illustrates the three
metrics for a Total refresh for 3 shadows at 1.544 Mbps (see Fig. 8. Time
figures are in milliseconds).

 Sequential

Analysis of X.500 Distributed Page 22
Directory Refresh Strategies

Elapsed Time Elapsed Time Real
Steps executed Per Shadow Over 3 Shadows Elapsed Time

Master prepares data 6250.250 6250.250 6250.250
Master send data to CP 195.337 586.011 195.337

Data transmitted over network 5316.363 15949.088 5316.363

Shadow receives data 15195.587 45586.761 15195.587
Shadow stores data on disk 5030.000 15090.000 5030.000
Shadow sends Ack. msg. to CP 0.110 0.330 0.110

Message transmitted over network 12.984 38.953 12.984

Master reads Ack. message 0.360 1.080 391.034

Total Time 32000.991 83502.472 32391.665

The first metric (per shadow), is the breakdown of time for each individual
shadow in a Push. The second metric (sequential elapsed time) contains the total
times for all shadows in a Push refresh. In our model, we used three shadows.
Notice that the numbers in this metric are essentially three times the values given
on a per shadow basis. This is consistent with what we would expect given that
algorithm for an Asynch Push refreshes all shadows immediately underneath of
the master.

The third metric gives the real elapsed time. This is the calculated best case time.
Using our formula: RET = ST + NRS * Max(MT, CPT)

RET = 32000.991 + 2 * max(0.360, 195.337)
RET = 32000.991 + 2 * 195.337
RET = 32391.665 (which agrees with the total real elapsed time in the chart).

As the data indicates, the time spent at the master, shadow, and on the network
are only slightly larger than the values for elapsed time for an individual shadow.
For the real elapsed time case, we take into account the large degree of
parallelism that naturally takes place which reduces the actual real time. As our
description indicated when we earlier introduced the steps in the Push algorithm,
after the master transmits the initial dataset to the first shadow, everything is
done in parallel for the remaining shadows until the point where the master has to

Analysis of X.500 Distributed Page 23
Directory Refresh Strategies

acknowledge each individual message from all shadows. The values in the real
elapsed time metric reflect this knowledge of parallelism in the model.

Thus we can conclude that the real elapsed time for a Push from a master to n
shadows is only slightly larger than the time taken to transmit to one shadow. We
know that this value in no way approaches the magnitude of the total,
unparalleled time that is seen in the data for sequential elapsed time.

5. Conclusions

The performance statistics of refresh strategies over various types of networks
indicate that the network time plays a crucial role in determining the total refresh
time (it is important to have good through-put on the network). The
performance of the shadow is also a critical factor in the refresh process. It must
do more work than the master, and it takes a very long time to set up the data in
memory. Further research is needed so that that shadow time can be reduced.

Even though the Push algorithm has a large amount of parallel processing, the
total system time used by the Push and Pull algorithms is essentially the same
over a number of shadows.

Although this paper focused the attention on the time aspect of updating shadows
in the directory system, the use of a particular strategy, or combination thereof,
depends on many other factors such as : user needs, economic cost, etc. User
needs may dictate that one particular shadow be allowed to Pull, while other
shadows are Pushed to, since current information is of prime importance to the
users at this shadow. Economically, since dollar cost is based on system resource
usage, the Pull strategy may be better in certain circumstances.

Finally, the X.500 refresh strategies are not limited to applications in the
directory services area. For example, one function of an Executive Information
System (EIS) is to provide information, in detail and/or summarized form, to the
management of an organization. If an organization has separate systems for each
of the various functional areas (i.e. accounting, budget, personnel, etc.), a
common approach would be to extract information from all data sources, place
this data in a central database, and then make the information available to the
requesting users. Distribution, or refresh strategies will naturally have to be
resolved for such an organization.

Analysis of X.500 Distributed Page 24
Directory Refresh Strategies

References

[Bauer 89] M. Bauer. Naming and Name Management Systems: A survey
of the state of the art. Technical Report 241, The University of
Western Ontario, May 1989. Department of Computer Science
Distributed Directories Lab.

[BBS 89] M. Bauer, J.M. Bennett, J. Slonim. A conceptual Framework
for Distributed Directories. Technical Report 240, The
University of Western Ontario, June 1989. Department of
Computer Science Distributed Directories Lab.

[Bauer 90] M.E. Bauer, J.M. Bennett, S.T. Feeney, J. Blustein, R. McBrook.
Replication Strategies For X.500: Experiments with a Prototype
X.500 Directory. Technical Report 279. Oct 1990, 36pp.
Department of Computer Science, Distributed Directory Lab.
University of Western Ontario.

[Bennetta 89] J.M. Bennett. Distributed processing: A survey of the state of
the art. Technical Report 242, The University of Western
Ontario, May 1989. Department of Computer Science
Distributed Directories Lab.

[Bennettb 89] J.M. Bennett. A survey of Research in Distributed Operating
Systems. Technical Report 242, The University of Western
Ontario, June 1989. Department of Computer Science
Distributed Directories Lab.

[BSST 90] Bachmann, D.W., Segal, M.E., Srinivasan, M.M., and Teorey,
T.J. “NetMod: A Design Tool for Large-Scale Heterogeneous
Campus Networks,” to appear in IEEE J. Selected Areas in
Communications (JSAC), 1990.

[Kille 89] S.E. Kille. “The Design of QUIPU,” UCL Research Note
RN/89/14, February 1989.

[KRRT 90] S.E. Kille, C.J. Robbins, M. Roe, A. Turland. The ISO
Development Environment: User’s Manual, Volume 5: QUIPU.
Department of Computer Science, University College of London,
January 1990.

Analysis of X.500 Distributed Page 25
Directory Refresh Strategies

[LM 89] T. Lauriston, J.K. Mullin. Distributed Database Management
Systems. Technical Report 243, The University of Western
Ontario, June 1989. Department of Computer Science
Distributed Directories Lab.

[LHMHPW 86] B. Lindsay, L. Hass, C. Mohan, H. Pirahesh, P. Wilms. A
Snapshot Differential Refresh Algorithm, Proceedings of ACM,
Sigmod 1986: International Conference on Management of Data,
Washington, D.C. (May 1986) pg. 53-60.

[Rosea 89] M.T. Rose. NYSERNet White Pages Pilot Project: User’s
Handbook.1989. ISODE 6.0 documentations set.

[Roseb 89] M.T. Rose. NYSERNet White Pages Pilot Project:
Administrator’s Guide. 1989. ISODE 6.0 documentations set.

[Teor 90] Teorey, T.J. Database Modeling and Design: The Entity-
Relationship Approach, Morgan Kaufmann, 1990, Chapters 8-9.

[ISO 89a] Recommendation X.500 - The Directory - Overview of
Concepts, Models, and Services.

[ISO 89b] Recommendation X.521 - The Directory - Selected Object
Classes.

[ISO 90] ISO/IEC Working Documentation on Replication and
Knowledge Distribution. June 1990.

Analysis of X.500 Distributed Page 26
Directory Refresh Strategies

Appendix A - Formulae

This appendix includes a list of the formulas used to calculate the time to
complete each step of the refresh process and the overall refresh time. All
variables with respect to size are in bytes and all variables with respect to speed
are in bytes per millisecond, unless otherwise noted.

Basic Steps

Step 1: Message to Master from shadow3

Number of Packets(Message) = Ceiling

Message size

Packet size of Shadow

CP Transfer Time (Both DSAs) = 2

Number of packets * Packet size

Channel Speed

Packet Transmission Time = Max(Propagation Delay, Inverse of DSA Packet Rate)

Transmission Time = Number of Packets * Packet Transmission Time

Total Time = Propagation Delay + CP Time + Transmission Time

Step 2: Master Processes Message4

Total Time =
Number of Fixed Instructions

DSA instruction speed5

3 In the case of a Pull it is the request message. In the case of a Push it is the
acknowledgement message and is the second to last step in the Push algorithm. In both
cases, the time is the same.

4 In the case of a Pull it is the request message. In the case of a Push it is the
acknowledgement message.

5 DSA instruction speed is the number of instructions executed per millisecond

Analysis of X.500 Distributed Page 27
Directory Refresh Strategies

Step 3: Master Prepares Data

Total Number of Instructions = Fixed Instructions +
 (Number of records transferred * Instructions per record)

Total Time =
Total Number of Instructions

DSA instruction speed

Step 4: Transmission Time to Shadow

Number of Packets(Transfer) = Ceiling

Transfer File size

Packet size

CP Transfer Time (Both DSAs) = 2

Number of packets * Packet size

Channel Speed

Packet Transmission Speed = Max(Propagation Delay,
 Inverse of DSA Packet Rate)

Transmission Time = Number of Packets * Packet Transmission Speed

Total Time = Propagation Delay + CP Time + Transmission Time

Step 5: Shadow Places Data Directly into Memory

Total Number of Instructions = Fixed Instructions +
 (Number of records transferred * Instructions per record)

Total Time =
Total Number of Instructions

DSA instruction speed

Analysis of X.500 Distributed Page 28
Directory Refresh Strategies

Step 6: Shadow Writes Data to Disk

Number of RBAs = 1

Number of SBAs6 = Ceiling

Number of Records

Floor[]Block size / Record size
 - 1

Total RBA Time = Number of RBAs * Access Time per RBA

Total SBA Time = Number of SBAs * Access Time per SBA

Total Access Time = Total RBA Time + Total SBA Time

Overall Times Pull/Push case7

Shadow Time = Step 5 + Step 6 +
()Step 1 CP Time

2 +
()Step 4 CP Time

2

Master Time = Step 2 + Step 3 +
()Step 1 CP Time

2 +
()Step 4 CP Time

2

Network Time = (Step 1 Total Time - Step 1 CP Time) +
(Step 4 Total Time - Step 4 CP Time)

6 Assumes Block size >= Record size
7 Push case times are for one shadow.

Analysis of X.500 Distributed Page 29
Directory Refresh Strategies

Overall Time for n Shadows in Push case8

Shadows Time = Shadow Time9 * n

Master Time = Step 3 + n *
()Step 4 CP Time

2 + (n * Step 2)

Network Time = Network Time10 * n

8 Number of shadows > 1.
9 Time is for one shadow.
1 0 Transmission time to one shadow.

