
-- --

CITI Technical Report 91−5

Taking a LITTLE WORK Along

Peter Honeyman
honey@citi.umich.edu

ABSTRACT

The continuing micro-miniaturization of components has moved high-powered,
microprocessor-based machines from the desktop, to the laptop, to notebook-sized, and
now to palmtop computers. These machines are distinguished in their hardware technol-
ogy, but supporting software has not kept pace: the predominant operating system on
such machines is MS-DOS, absent integrated support for distributed computing. With
the LITTLE WORK project, I propose to close this gap in the information technology
environment.

The LITTLE WORK prototype will be a notebook computer well-endowed with memory
and local disk. It will run the Mach operating system and an AFS cache manager, operat-
ing predominantly in a dataless mode. The network interface will be the serial port,
attached to a fixed or cellular phone attached to a high-speed modem.

To economize on limited network bandwidth and substantial cellular phone charges, AFS
will be engineered to support compressed headers and to operate in a disconnected mode.
Other technical challenges abound, such as congestion avoidance and control for AFS,
application-level support for network reconfiguration, dynamic IP address assignment, X
windows over VGA, operating system support for battery power management, etc .

The underlying thesis of the LITTLE WORK project is that mobile computers are capable
of supporting the kind of distributed computing environments common in academia and
industry. The LITTLE WORK prototype will make a powerful statement in what is
achievable today. Furthermore, it positions CITI and its partners to take advantage of
further enhancements in computing technology: faster notebook computers, better
screens, denser memory and disks, digital cellular communications, etc.

August 28, 1991

-- --

Taking a LITTLE WORK Along

Peter Honeyman
honey@citi.umich.edu

COMPUTING ENVIRONMENTS TODAY

Most computer scientists work with two vastly
different computing environments: the computers
on their desks at work and the remote setups for
access from home. The work computer may be a
fully-functioning workstation, say a 10+ million
instructions per second (MIPS) computer running
the UNIX† operating system, an IBM PC (or
clone), an IBM PS/2, or a fast Macintosh II.

The work machine is a full-fledged member of a
larger distributed computing environment, with
support for distributed filing, printing, and elec-
tronic mail, as well as transparent access to
highly-capable compute servers. These distri-
buted services are provided through a suite of net-
work protocols, typically layered on top of the
Internet Protocol (IP) suite. Data communication
is usually provided by Ethernet, offering 10 mil-
lion bits per second (Mbps) of bandwidth.

In contrast, access to the computing environment
from home sets a much lower standard, relying on
a modem over a voice-grade line. This limits
communication to something between 1.2 and
14.4 Kbps, with 2.4 Kbps most common these
days. The conventional wisdom holds that even
14.4 Kbps is inadequate for full-functioning net-
work access to the office computing environment.
So the scientist is relegated to a home environ-
ment based on a dumb terminal, or a terminal
emulator running on a workstation of some sort,
with serial-line access to the ‘‘real’’ computing
environment. The vast disparity between the
home and office environments makes location
transparency an impossible dream.

MY HOME COMPUTING ENVIRONMENT

Since January 1990, I have had nearly identical
home and work computing environments. The
hhhhhhhhhhhhhhhhhh
† UNIX is a Trademark of AT&T Bell Labora-
tories.

principal components of these computers are an
IBM RT/115, a three MIPS computer with 12M of
memory and a 70M disk, running Berkeley UNIX;
the X Window System [1]; and Transarc’s AFS
(formerly, Carnegie-Mellon University’s Andrew
File System) [2]. The computers are ‘‘dataless,’’
i.e. , the only files stored permanently on the local
disk are those necessary for bootstrapping when
the machine is turned on and some administrative
applications.

From work, network access is provided by an
Ethernet connection. From home, the network is
a serial line IP (SLIP) connection over a pair of
modems running the V.32 protocol at 9.6 Kbps.
These modems use an ordinary phone line, which
costs me about $13 per month.

Local Disk Caching

AFS plays a critical role in supporting remote
access to the file system: without local disk cach-
ing, access to files would be prohibitively slow,
around 850 bytes per second after accounting for
protocol overhead. For illustration, a typical
UNIX file is 11K bytes [3], which translates into a
dozen seconds or so over SLIP. If file accesses
were forced to wade through the communications
network on every read or write, the delays that
ensued would be unbearable. It would be incon-
ceivable to rely on NFS [4] over a slow link.
Thanks to AFS, though, most read and execute
accesses are satisfied from the local disk cache,
vastly reducing the pain of the slow SLIP line.

In addition, I have eased into patterns of use that
avoid local cache misses and other network
expenses:

g Instead of opening XTERM1 windows on
remote machines that ‘‘call back’’ to my
home machine, I open XTERM windows
locally and TELNET2 to the remote machines.

hhhhhhhhhhhhhhhh
1 XTERM is the character terminal emulator pro-
vided with the MIT X distribution.
2 TELNET is a virtual terminal protocol in the IP

- 1 -

-- --

Honeyman

This keeps X events (mouse selections, win-
dow exposures) local.

To appreciate the importance of this, consider
a single character typed through a TELNET
session. This produces one byte of TCP data
sent to the remote host and one byte returned
as the echo.3 With a remote XTERM, though,
the keystroke turns into a 32 byte message
sent to the XTERM client, followed by 60
bytes of image data returned to the X server
for the character echo. Remote XTERM is
vastly more expensive in network resources
than the TELNET connection!

g I don’t compile kernels on the home com-
puter, since this would store several mega-
bytes of object code. Instead, I TELNET to
the work machine and build there.

g I run a window-based editor called sam [5],
which has an option that is very useful for my
home environment. Sam runs in two
processes: a file manager, and a display
manager. These pieces do not have to run on
the same host. Furthermore, sam was
designed with a slow connection between the
two pieces in mind. So I run the display
manager on my home computer, and the file
manager on my work computer.

Sam is really great: the display manager
requests only the portion of the file that it
wants to show, and caches it to boot! Once
the display cache is warmed up, moving
around in the file is very fast. And because
the file manager runs remotely, saving the file
is equally fast. (This paper was written at
home with sam.)

TCP header compression [6] goes a long way
toward making TELNET over SLIP bearable;
without header compression, each keystroke
becomes a pair of 41 byte messages: 20 bytes
each for TCP and IP, and one byte of TCP data.
With header compression, the headers shrink to
three or four bytes.

Macintosh Support

My home computing environment also includes a
Macintosh, handy for some applications not avail-
able on UNIX (EXCEL, POWER POINT, and
hhhhhhhhhhhhhhhh
suite.
3 There is additional overhead for the TCP and IP
headers, as well as an occasional acknowledge-
ment packet, but these costs are about equal for the
XTERM and TELNET cases.

WORD). The Macintosh is also a playground for
my children.

To integrate the Macintosh into the larger com-
puting environment, I rely on some software
developed at the University. Wes Craig, in the
Research Systems group, added the AppleTalk
[7] address family to the Berkeley UNIX kernel,
supporting network and transport layers. Wes
and Mark Smith, also in Research Systems,
developed AppleTalk Filing Protocol (AFP) and
AppleTalk Printer Access Protocol (PAP) dae-
mons, which communicate through sockets in the
AppleTalk domain.

I run these tools on my home UNIX box, so from
my home Macintosh, I am able to ‘‘mount’’ an
AppleShare volume stored in the UNIX file sys-
tem. Of course, the volume I mount is in my
home directory, which is itself in AFS. This
gives me access to the same files from home and
from work, from UNIX and from the Macintosh.
Once again, thanks to AFS caching, access times
for reading are very fast, comparable to a local
disk.

To support printing, the PAP daemon lets me
spool print requests from the Macintosh to the
UNIX machine and print them on any PostScript
printer accessible to the Berkeley UNIX line
printer software. Ordinarily, the printer I use is
an IBM Personal PagePrinter (with PostScript)
attached to the home RT. However, the PAP dae-
mon is configured to advertise several remote
printers, and I can select one of these with the
Macintosh Chooser.

The UNIX AppleTalk stack does not yet route
across SLIP, so I am not connected to the larger
campus AppleTalk network. Nonetheless, access
to distributed filing and printing services through
the AFP and PAP daemons satisfies most of my
remote service needs, and provides tight integra-
tion of two widely disparate network protocol
stacks.

IP Routing

My home IP routing scheme, depicted in Figure
1, is some jerry-rigged to some extent. Campus
network services are provided by the University’s
UMNET organization. It owns the IP routers, is
responsible for maintaining the routes and the IP
address space, and manages the gateways to the
Internet.

To secure the campus network, UMNET
configures its routers to ignore route updates from
routers beyond its control. At my request,

- 2 -

-- --

LITTLE WORK

Work

UNIXTB Internet
141.211.168

Home

UNIXTB
g

printer

141.211.129

141.211.170

Figure 1

UMNET configured their routers to show a static
route from my office computer to a SLIP subnet
(141.211.170). I then added hosts on this
subnet: one for the office machine, and one for
the UNIX box at home. I also installed a home
Ethernet so that I could get to distributed services
from my home Macintosh; this also required
coordination with UMNET.

My reliance on static addresses and routes is not
entirely satisfactory. When I have some time, I
plan to explore the CSNET software that nego-
tiates things like IP address assignment. Some-
day I will run the Point-to-Point Protocol (PPP)
[8], which supports dynamic address assignment.

THE LITTLE WORK PROJECT

I am occasionally confronted with week-long
business trips. To stay in touch with my students
and colleagues, I lug along a portable Macintosh
and a 2.4 Kbps modem. Each evening, I dial into
my home computer to keep up with my electronic
mail. Even though I use fairly modern software
that supports a multiple window environment, it
pales when compared to the style of computing to
which I am accustomed. I am stunned by the
realization that this is the standard home comput-
ing environment for most of my colleagues.

Outstanding as my home computer has proven to
be, it suffers a major inconvenience: all those
wires. I want to hang up the phone, turn off the
juice, grab the box, and hit the road! For this, the
system must be self-contained and portable, and
the network connection must be wireless.

In a few years, high-powered, networked, port-
able computers will be commonplace. But why
wait? Whether traveling across town, across the

state, or across the country, it should be possible
to take a LITTLE WORK along. I don’t say this
standing on a visionary’s soapbox, referencing
Vannevar Bush [9] or Alan Kay [10]. I want the
LITTLE WORK machine now, or at least this
year. And I don’t want it to do much beyond
what I do now, principally system building, docu-
ment preparation, and electronic correspondence.

The LITTLE WORK machine should make no
compromises except where required by space,
mass, and power considerations, e.g. , while a 19
inch screen (or more) is de rigueur on the desk-
top, it is impractical for a portable machine. Typ-
ical off-the-shelf components in today’s market-
place in fixed and portable computers are shown
in the following table.

Fixed Portableiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MIPS 20 − 50 2 − 10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Display 1000 × 1000 640 × 480iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Disk 100 − 500 MB 20 − 100 MBiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Memory 8 − 32 MB 1 − 16 MBiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OS UNIX MS-DOSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Comm 10 Mbps < 2 Mbpsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

With these constraints in mind, I will next
describe related work, and then outline the com-
ponents of the prototype LITTLE WORK machine.

Student Electronic Notebook

The Student Electronic Notebook project [11, 12]
is a joint Columbia University/IBM project. The
goal is to produce a portable device that can serve
students’ needs for textbooks, class notes, han-
douts, etc. , as well as offering access to the
University’s information technology infrastruc-
ture. In many respects, the SEN project is similar
to LITTLE WORK, with the major differences in
communications technology and file system.

The SEN aims for a high-bandwidth network con-
nection and employs spread-spectrum technology
in the 902 to 928 Mhz band. This offers data
rates between 230 Kbps and 2 Mbps. However,
the wireless network has a restricted range, about
150 feet. This can be extended to about six miles
with line-of-sight between a pair of antennae.

The SEN is diskless, so all filing and paging is
network-based. Early reports suggest that the
data rates supported by SEN are adequate. The
file system protocol being developed for SEN
does not support caching [13].

- 3 -

-- --

Honeyman

Coda

Coda [14] is a distributed file system that
addresses data unavailability owing to server
failure or network partition. Coda uses AFS,
Mach, and Camelot as a base. The principal
approach used by Coda is server replication, but
more interesting, from our perspective, is its use
of an optimistic strategy to accommodate discon-
nected operation.

A portable client out of touch with the network is
viewed as an instance of voluntary network parti-
tion. Here, Coda allows the client to operate on
its cached files without requiring server approval.
LITTLE WORK is precisely the kind of platform
for which Coda was devised.

BEHEMOTH

The BEHEMOTH4 project is rather difficult to
describe, but fun. At its heart is a custom-built,
eight-foot recumbent bicycle pulling a four-foot
trailer, also hand-crafted. Included in the 350
pounds of gear are 80+ watts of solar panels
charging 30 amp-hours of lead-acid batteries.
These drive a Macintosh Portable, a 16 Mhz
PC/AT clone, a Toshiba T1000, a Sun IPC
SPARCstation, and dozens of embedded
microprocessors.

For communications, BEHEMOTH relies princi-
pally on a 12 inch diameter, 7 inch tall, 14 GHz
radome that tracks a communications satellite in
geosynchronous orbit. This provides a data rate
in the low hundreds of bps. While this is cer-
tainly inadequate for dataless computing,
BEHEMOTH offers the ultimate in mobility!

For more information on BEHEMOTH, send mail
to wordy@bikelab.sun.com.

THE LITTLE WORK PROTOTYPE

The remainder of this paper describes joint work
by the author and his colleagues: Jim Rees, senior
systems programmer at the Center for Informa-
tion Technology Integration (CITI); Larry Hus-
ton, a graduate student in the Electrical Engineer-
ing and Computer Science department and a
member of staff at CITI; and Dave Bachmann, a
doctoral candidate in EECS and a CITI staff
member.

The prototype LITTLE WORK machine will be
hhhhhhhhhhhhhhhh
4 Big Electronic Human-Energized Machine...
Only Too Heavy

built from conventional, off-the-shelf hardware.
The software base is also pretty ordinary, consist-
ing of the sort of components people use to build
today’s distributed systems.

Computer

The RT/115 weighs a ton and consumes 7.5 amps
of AC power; it is far from a portable machine.
Its replacement will be a battery-powered laptop
or notebook computer.

An attractive mobile system is the IBM PS/2
Model L40, based on a 20 Mhz 80386SX, about
four MIPS. It has a 640×480 VGA screen, just
(barely) enough resolution to run X, and can hold
up to 18 Mbytes of RAM, more than we need.
The disk, 60 Mbytes, is big enough (again,
barely!) to accommodate a healthy swap space
(necessary for X!) and a 20M cache.

We are looking at other portable platforms, but
this is a place where some compromises will have
to be made. For example, while the SONY
NEWS machine has a dynamite screen, it requires
AC power and uses the MIPS R3000 CPU, with
which we have little experience at CITI. Recent
SPARC-based portable systems are also strong
players, but are not part of our plan for the near-
term.

Communications

Mobile network technologies range from wireless
communications to satellite uplinks. Wireless
communication offers high bandwidth, up to a
few megabytes per second, but suffers from low
mobility, with about 150 foot range. On the other
hand, a satellite uplink provides world-wide
mobility, but can sustain only a few hundred bps.
Nestled between these is the option of connecting
a modem to the serial port and communicating
over a cellular phone; this will be LITTLE
WORK’s data lifeline.

Word has it that V.32 does not survive over cellu-
lar, but we plan to experiment with it anyway.
When we’ve had enough, we will run PEP,
Telebit’s half-duplex protocol, over a cellular
line. PEP simulates a full-duplex line by chang-
ing the direction of data flow every so often. In
data-streaming mode, PEP can sustain upwards of
10 Kbps, comparable to current throughput to my
home computer. However, without a fair amount
of engineering, PEP’s ‘‘ping-pong’’-ing can
severely hamper good throughput.

PEP wants packets ‘‘against the flow’’ (princi-
pally acknowledgement packets) to be short and

- 4 -

-- --

LITTLE WORK

infrequent. The forward traffic wants to be big
enough to fill a window of ‘‘long’’ packets. After
the window is transmitted, PEP requires that the
line turn around briefly. In the turnaround inter-
val, one or two ‘‘micro-packets’’ can be sent
back without diminishing the forward data flow.
Thus, to maximize PEP throughput, we must
squeeze the acknowledgement packets into a
micro-packet and send them infrequently.
Accordingly, Larry Huston is developing
compression techniques for Rx [15], the RPC
package used by AFS.

There is a (rumored) product called Outback,
which has a battery operated cellular phone and a
PEP modem, in a package comparable in size and
weight to a notebook computer. While this latter
fact is unfortunate — we would prefer something
on a card that plugs into LITTLE WORK — it
represents today’s state of the art and achieves
our mobility objectives. In the future, we hope
that digital cellular offers some interesting
options.

Naturally, there will be many occasions when
fixed physical networks are available, e.g. , at
home (dial-up) or on campus (Ethernet or possi-
bly wireless), and they will be employed in
preference to the cellular connection whenever
possible.

File System

A distributed file system (DFS) is essential for a
machine with limited permanent storage. In addi-
tion, a DFS allows system administration to be
centralized, so that the contents of disks on DFS
clients don’t require backup. As mentioned ear-
lier, anticipated limitations in network bandwidth
mandate local disk caching for good overall per-
formance. This rules out NFS, but AFS fits the
bill quite well.

Coda is an obvious candidate, but is not yet pub-
licly available. We have a lot of experience with
AFS, both as users and as developers, so we plan
to stick with that. We intend to add support for
disconnected operation to AFS, using lessons
learned from the Coda project as a guide.

A serious problem with AFS is the inability of Rx
to handle congested networks — placing a 9.6
Kbps link into an otherwise high-speed network
is a sure prescription for congestion. This is
another area where we are developing the means
to make Rx better match the PEP environment:
Dave Bachmann is enhancing Rx, principally by
following Van Jacobson’s prescription for

congestion avoidance and control [16] and the
recent recommendations for establishing the
packet frame length [17].

Operating System

It’s a good bet that we’ll be running an Intel
80386 CPU, possibly among others. The ’386
can run any of a number of operating systems:
AIX, OS/2, BSD, Mach, etc . Most of the work
we’ve done so far carries over easily to either
BSD or Mach, but BSD doesn’t support AFS or
Coda, while Mach supports both, so Mach is the
clear choice here.

LITTLE WORK PILOT PROJECT

Over the next six months, we will acquire the
necessary components and build a prototype LIT-
TLE WORK machine. Jim Rees, Larry Huston,
and I are hard at work developing the software
for the prototype. Here is a list of tasks we have
planned for the project and their status at this
writing.

g Mach/AFS/X on stock 386

We have Mach 2.5 and AFS 3.0 running on a
Zenith ’386 clone, and are working on
upgrading to AFS 3.1. Work on the X server
will begin soon.

g Mach/AFS/X on notebook

Two IBM L/40 notebooks are on order. As
soon as they arrive, we will move our
software to them.

g PEP modifications to Rx

Telebit has provided us with several Trail-
blazer modems, a Netblazer router, and access
to their technical staff for consultation. We
have built a PEP workbench for testing our
Rx modifications. Our focus is on Rx header
compression; so far, we have managed to
squeeze 56 byte Rx/UDP/IP headers down to
seven bytes. We have begin working on an
Rx acknowledgement strategy appropriate for
PEP communications.

g Congestion control for Rx

Dave Bachmann has modified the retransmis-
sion algorithms in Rx according to Jacobson’s
recommendations, and has incorporated
Karn’s algorithm [18]. We have installed
support for MTU discovery in our kernels,
and are looking at slow-start strategies.

- 5 -

-- --

Honeyman

g Disconnected operation for AFS

We plan to begin working on this in a few
months.

g Dynamic IP address assignment, PPP

This task is on the back-burner, while we
focus on building the LITTLE WORK proto-
type.

g Managing network interfaces

To economize on cellular phone charges and
to support network reconfiguration, we plan to
develop some applications that give the user
fine-grained control over connection estab-
lishment and frequency. We plan to build in
Tk [19] for its ease of programming and
snappy look-and-feel. This work will begin
after we get a better feel for the degree of
control needed to manage the network.

In summary, we have a vision firmly in our grasp
and are making progress toward making it possi-
ble to take a LITTLE WORK with us wherever we
go.

ACKNOWLEDGEMENTS

I thank Telebit for donating data communications
equipment to CITI. This work was partially sup-
ported by IBM.

REFERENCES

1. R.W. Scheifler and J. Gettys, ‘‘The X Win-
dow System,’’ ACM Transactions on Graph-
ics 5(2), pp. 79−109 (April, 1987).

2. J.H. Howard, ‘‘An Overview of the Andrew
File System,’’ pp. 23−26 in Winter 1988
USENIX Conf. Proc., Dallas (February, 1988).

3. J. Ousterhout, H.L. DaCosta, D. Harrison, J.
Kunze, M. Kupfer, and J. Thompson, ‘‘A
Trace-Driven Analysis of the Unix 4.2 BSD
File System,’’ Proc. of the 10th ACM Symp.
on Operating System Principles, Orcas Island
(December, 1985).

4. Sun Microsystems, Inc., ‘‘NFS: Network File
System Protocol Specification,’’ RFC 1094,
Network Information Center, SRI Interna-
tional, Menlo Park, CA (March 1989).

5. Rob Pike, ‘‘The Text Editor sam,’’ Software
— Practice and Experience 17(11),
pp. 813−845 (1982).

6. V. Jacobson, ‘‘Compressing TCP/IP Headers

for Low-Speed Serial Links,’’ Internet
Request for Comments, Menlo Park,
CA(1145), Network Information Center, SRI
International (February 1990).

7. G.S. Sidhu, R.F. Andrews, and A.B.
Oppenheimer, Inside AppleTalk, Addison-
Wesley, Reading (1989).

8. D. Perkins, ‘‘The Point-to-Point Protocol for
the Transmission of Multi-Protocol
Datagrams Over Point-to-Point Links,’’ RFC
1171, Network Information Center, SRI
International, Menlo Park, CA (July 1990).

9. Vannevar Bush, ‘‘As We May Think,’’ The
Atlantic Monthly, pp. 101−108 (July, 1945).

10. Alan Kay and Adele Goldberg, ‘‘Personal
Dynamic Media,’’ IEEE Computer 10(3),
pp. 31−41 (March, 1977).

11. John Ioannidis and Gerald Q. Maguire Jr.,
‘‘PIP-1: A Personal Information Portal with
Wireless Access to an Information Infrastruc-
ture,’’ Tech. Report CUCS-055-90, Colum-
bia University (1990).

12. John Ioannidis, Gerald Q. Maguire Jr., Israel
Ben-Shaul, Marios Levedopoulos, and Micky
Liu, ‘‘Porting AIX onto the Student Elec-
tronic Notebook,’’ Tech. Report CUCS-042-
90, Columbia University (December, 1990).

13. John Ioannidis and Gerald Q. Maguire Jr.,
‘‘The Coherent Trivial File Transfer Proto-
col,’’ Tech. Report CUCS-043-90, Columbia
University (1990).

14. Mahadev Satyanarayanan, James J. Kistler,
Puneet Kumar, Maria E. Okasaki, Ellen H.
Siegel, and David C. Steere, ‘‘Coda: A Highly
Available File System for a Distributed
Workstation Environment,’’ IEEE Transac-
tions on Computers 4(39), pp. 447−459
(April, 1990).

15. ‘‘Rx: Extended Remote Procedure Call,’’
Proc. of the Nationwide File System
Workshop, Pittsburgh, Information Technol-
ogy Center, Carnegie-Mellon University
(August, 1988).

16. V. Jacobson, ‘‘Congestion Avoidance and
Control,’’ Proc. ACM SIGCOMM ’88, Stan-
ford, CA, pp. 314−329 (August 1988).

17. J.C. Mogul and S.E. Deering, ‘‘Path MTU
Discovery,’’ RFC 1191, Network Informa-
tion Center, SRI International, Menlo Park,
CA (November 1990).

18. P. Karn and C. Partridge, ‘‘Improving

- 6 -

-- --

LITTLE WORK

Round-trip Time Estimates in Reliable Tran-
sport Protocols,’’ Proc. ACM SIGCOMM ’87,
Stowe, Vermont, pp. 2−7 (1987).

19. John K. Ousterhout, ‘‘An X11 Toolkit Based
on th Tcl Language,’’ pp. 105−116 in Winter
1991 USENIX Conf. Proc., Dallas (January,
1991).

- 7 -

