
ABSTRACT

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

CITI Technical Report 92–4

Intermediate File Servers in a Distributed File
System Environment

James Howe
James.Howe@umich.edu

A component of the Institutional File System (IFS), the intermediate file server addresses
scaling and interoperability issues on the University of Michigan campus. The IFS is based
on AFS, a distributed file system from Transarc. Intermediate servers provide protocol
translation that enables non-AFS clients to easily access the distributed file system. For ex-
ample, Macintosh users can manipulate UNIX files that reside on a server by moving fold-
ers and icons, just as they would manipulate local Macintosh files. Intermediate servers
also offer other benefits, such as multi-level caching and data preloading, that increase the
capacity of the network by reducing the load on central servers.

June 30, 1992

Center for Information Technology Integration 1

Intermediate File Servers in a
Distributed File System

Environment

James W. Howe

June 30, 1992

The University of Michigan is a large educa-
tional and research institution with over
35,000 students and approximately 24,000
faculty and staff on the Ann Arbor campus.
As with any large organization, the ability to
share and convey information quickly is cru-
cial to its success. Until recently in large orga-
nizations, data was often centralized on
mainframe computers.

However, that computing environment has
changed. Information is now often dispersed
among mainframes, workstations, and net-
work file servers, increasing the computing
power available to end users, but making
sharing and maintaining information diffi-
cult.

As a result of the shift away from centralized
computing to a distributed environment, a
new requirement has emerged at U-M for
simple, secure data sharing across campus.
To address this requirement, CITI staff mem-
bers working on the Institutional File System
(IFS) project [1] have developed and are re-
fining a mainframe-based, heterogeneous,
campus-wide file system. This paper first
presents some background information on
the U-M computing environment and the
underlying file system of the IFS and then fo-
cuses on the intermediate file server, a com-
ponent of the IFS.

The U-M Environment

The University of Michigan has a large in-
vestment in mainframes, workstations, and
personal computers. The University cur-
rently has approximately 18,000 personal
computers and workstations, three IBM
mainframe data centers, and widespread net-
working capabilities.

The data centers use two IBM ES/9000-720s,
and an ES/9000-580 computer. Workstations
available on campus include Apple Macin-
toshes, IBM PS/2s and PCs, PC clones, Apol-
los, Suns, Digital DECstations, and IBM RS/
6000s among others.

The workstations on campus have tradition-
ally been connected to various file servers
running Suns Network File System (NFS),
Apples AppleTalk Filing Protocol (AFP), No-
vells Netware, and Banyans VINES. The
workstations themselves run a variety of op-
erating systems including DOS, MacOS, OS/2
and UNIX. The IFS enables users across cam-
pus and across platforms to easily access data
and applications in this diverse environment.

The File System Base of IFS

Because of the nature of the University cam-
pus, the IFS needed to address problems re-
lated to scale, such as degraded server
performance and complicated administra-
tion and operation. Developing a file system

Center for Information T echnology Integration 2

Intermediate File Servers in a Distributed File System Environment

from scratch was not feasible, so the IFS team
based their work on previous efforts. The
early designers of the IFS chose Transarc’s
AFS [2] for the IFS file system base. (AFS was
first developed at Carnegie Mellon Univer-
sity as the Andrew File System.)

Although NFS was considered as the basis
for the IFS, it was not considered viable for
several reasons. The AFS protocol is better
suited to long-haul networks, NFS validity
checks degrade performance, and the AFS lo-
cal disk caching model provides high perfor-
mance. By pushing CPU-intensive tasks to
workstations, AFS allows higher client-to-
server ratios than NFS.

Transarc’ s AFS

AFS provides the amenities of a shared file
system to workstation-based users. AFS of-
fers a homogeneous, location-independent
file name space to all clients, which are gen-
erally UNIX-based.

AFS uses the client/server model to distrib-
ute the workload between the server and the
client, and organizes the file system into vol-
umes, which are units of management that
ease the operations effort for support staff. In
AFS, client workstations play an active role in
the operation of the file system. Each client
manages a local disk cache that fills as files
are requested from central file servers. As
long as a file is not changed by another user,
AFS satisfies additional client requests for the
same file locally, with no network access re-
quired.

Studies of local UNIX file systems show that
the ratio of reads-to-writes is approximately
4 reads to 1 write. Caching files on the local
disk substantially reduces network load and
improves file access times. After a client
cache is filled, over 80% of the file requests
made by the user can be satisfied by retriev-
ing the file from the cache [3].

Data consistency is maintained through a
callback mechanism. When the client re-

ceives a file from the server it receives a
promise, in the form of a callback, that the
server will notify the AFS client if the file is
modified by another client. The use of call-
backs obviates validity checks and their asso-
ciated performance problems [4].

Whenever a file is modified and subse-
quently closed on a client, the updates are
sent to the central server, ensuring that the
central server has the most recent version of
the file. The callback mechanism ensures that
files contained in client caches are consistent
with the files maintained by the server.

AFS provides a secure environment through
the use of user authentication and file protec-
tion. User authentication in AFS is based on
Kerberos [5] from the Massachusetts Insti-
tute of Technology (MIT). Kerberos uses the
concept of mutual authentication using a
shared secret [6]. Users can be sure that they
are talking to valid AFS servers, and the serv-
ers can be sure that they are giving files to
valid users.

The file protection mechanism in AFS, Ac-
cess Control Lists (ACLs), are assigned to di-
rectories rather than files. Available ACLs
include Read, Write, Lookup, Insert, Delete,
Lock, and Administer. Permissions may be
granted to groups and individuals.

Currently, the IFS uses AFS 3 for its distributed
file system base. All references to AFS in this doc-
ument refer to AFS 3. The next step is to move to
DFS, the distributed file system component of the
Distributed Computing Environment (DCE) of-
fered by the Open System Foundation (OSF).
DFS is described briefly in the “Futures” section
of this paper.

Intermediate Servers

In a standard AFS environment, clients com-
municate directly with one or more central
file servers. As the number of clients access-
ing a particular server grows, performance of
the server declines. To address the scaling is-
sues that occur in very large networks, the

Center for Information Technology Integration 3

Intermediate File Servers in a Distributed File System Environment

IFS uses an innovation developed at U-M, in-
termediate file servers.

Instead of file servers directly servicing many
clients, servers service a number of interme-
diate servers, which in turn service many clients
(Figure 1). To the server, an intermediate file
server looks like an ordinary client machine.
To the client, the intermediate server looks
like a central server.

Figure 1. IFS Intermediate Configuration

The intermediate server provides several
benefits over the standard AFS environment,
including:

• Multi-level caching

• Data preloading

• Protocol translation

Central
Server

Central
Server

Multi-Level Caching

One of the benefits of using an intermediate
server is a mid-level file cache. Intermediate
servers are typically machines with large
disk capacities (1 gigabyte minimum at U-M)
that are well suited to the task of caching
files. As the client requests files, those files
are stored in the intermediate cache, as well
as the client workstation cache (if a native
AFS client).

The workstation cache will likely be much
smaller than the intermediate cache. For
some clients, particularly those accessing
AFS through NFS and AFP, the cache on the
workstation will be minimal to non-existent.
As a result, the intermediate may have files in
its cache that were once in the workstation
cache, if one existed, but are no longer stored
there because of space restrictions. The inter-
mediate will also have files in its cache that
have been accessed by the other workstations
serviced by the intermediate.

As the number of clients increases, more in-
termediates can be added to the network.
Adding this level of indirection dramatically
increases the number of clients the central file
server can service efficiently. CITI staff are
currently analyzing the performance charac-
teristics of a distributed file system using in-
termediate servers and comparing that
performance with an identical system that
does not utilize an intermediate server [7].

Data Preloading

As mentioned earlier, an intermediate server
provides a large cache that is shared by the
clients serviced by the intermediate. Under
normal conditions, this cache is populated
with files requested by the clients over a pe-
riod of time. A single client could request
files that will be used by members of a work
group.

At UM, the Population Studies Center rou-
tinely extracts and works with specific sub-
sets of census data. These extracted files often
include gigabytes of data, which can be in-
stalled in the cache during off hours when

Center for Information Technology Integration 4

Intermediate File Servers in a Distributed File System Environment

there is less network traffic and the servers
are less burdened. Once in the cache, workers
can reference this data without further bur-
dening the main file server or the backbone
network.

Protocol Translation

Another benefit of using an intermediate file
server is the ability of the intermediate to pro-
vide translation between AFS and other file
system protocols via a protocol translator.
Protocol translators convert file server re-
quests from one file server type to another.
This conversion allows other systems which
normally wouldn’t be able to access AFS files
to be included in the distributed file system.

For the IFS, this means translating file server
requests from Sun Microsystems Network
File System (NFS), AppleTalk Filing Protocol
(AFP), and others to AFS file requests. For ex-
ample, a Macintosh can talk to an intermedi-
ate server using AFP requests. The
intermediate translates these requests into
appropriate AFS requests, receives and
caches the file returned by the server, and re-
turns the file to the requesting client using
the AFP (Figure 2).

Protocol translators enable non-UNIX clients
to access files that reside in the large scale,
distributed file system. Because the campus
includes several thousand machines that do
not run UNIX but still have a need to share
files with other users, this ability is critical.

Another advantage comes from reduced file
maintenance requirements. Because the us-
ers’ data and application files are stored on
the central server, system administrators
need only be concerned with a minimal set of
system files located on each workstation. Sys-
tem administrators can perform backups of
user data, for example, without having to go
to each workstation. Because the files reside
on the central server, they can be backed up
easily from the central server.

Figure 2. AFP/AFS Protocol Translator

It should be noted that an intermediate file
server is not required to provide protocol
translators. Protocol translators could be run
on the central server. However, running
translators on intermediates provides advan-
tages over running the translators on central
servers.

One advantage is that the server is not bur-
dened with protocol conversions. In an envi-
ronment where a central server may be
expected to interact with NFS, AFP, and
other clients, individual intermediate servers
are assigned the task of talking only one pro-
tocol. For example, one or more intermedi-
ates may be assigned the task of providing
services to all AFP clients. Other intermedi-
ates may provide services to NFS clients. Us-
ers of AFP are not impacted by NFS protocol
conversion performance and vice versa.

Center for Information Technology Integration 5

Intermediate File Servers in a Distributed File System Environment

Another advantage of running the translator
on an intermediate is that the intermediate
server can provide a cache to machines that
may not have the ability to cache files. A Mac-
intosh, for example, cannot run the AFS
Cache Manager. As a result, every request for
a file must go to the server. If the server is an
intermediate, the file can be retrieved from
the cache instead of going all the way to the
central server. Because the client and inter-
mediate are likely to be physically closer than
the client and server, the time to retrieve a file
across the network will normally be faster
than if the client had to retrieve the file di-
rectly from the central server. Additionally,
the central server will not be bothered by
continual requests from noncaching ma-
chines, reducing the load on the central file
server.

Finally, the responsibility for writing file
changes back to the central server resides
with the protocol translator. The client need
not be concerned with the central server. Be-
cause the intermediate maintains the file
cache, writebacks can occur in the back-
ground without affecting client resources.

Building Translators

Many issues must be resolved and tradeoffs
examined when implementing a protocol
translator for an intermediate server. Some of
these issues include:

• User authentication

• Permission mapping (ACLs)

• File naming

• Semantic content of files

• Navigation

• Availability of AFS commands

• Migration

Authentication

One of the most important features of a large
scale file system is its privacy. User data must
be kept secure at all times. In the standard
AFS implementation, Kerberos handles au-
thentication issues. The issue of authentica-
tion becomes problematic, however, for
clients that can’t or don’t support Kerberos.

Permission Mapping

Another issue related to security is file per-
mission mapping. AFS uses access control
lists (ACLs) attached to directories, and al-
lows a user to specify the following permis-
sions: Read, Write, Lookup, Insert, Delete,
Lock, and Administer. The permissions
Read, Write, and Lock apply to files in the di-
rectory. Lookup, Insert, Delete, and Adminis-
ter apply to the directory itself.

In most cases, the file server protocol being
exported, for example AFP, does not have
permissions that map to ACLs on a one-to-
one basis. When you write a protocol transla-
tor, you must decide how to handle ACL
mappings.

File Naming

A third issue concerns the naming of files.
Certain characteristics of filenames may dif-
fer between the client and AFS. Some of the
problems encountered in file names include
maximum length, allowable characters, and
directory separators. When differences occur
between what the client allows for a file name
and what the server allows, some adapta-
tions must be made to correct for the differ-
ences.

Semantic Content of Files

A fourth issue concerns the semantic content
of a file. DOS text files, for example, use a car-
riage-return/line-feed combination to end
each line, whereas UNIX does not. This dif-
ference makes editing the same file on the
two different systems problematic. Also, AFS
stores files as a byte stream with no support
for record orientation. This can cause prob-
lems if the client operating system assumes

Center for Information Technology Integration 6

Intermediate File Servers in a Distributed File System Environment

some form of record-oriented support. For
example, some applications may assume that
the ability to lock records exists. How is this
handled if the file system doesn’t support
records?

Navigation

A fifth issue concerns file system navigation.
How does the user access various files? The
navigation methods should match those of
the native client interface. A Macintosh user
should be able to manipulate folders, and an
NFS user should be able to use file and path
names.

Availability of AFS Commands

A sixth issue concerns the availability of AFS
commands to the end user. AFS provides
several commands that allow a user to view
various characteristics of the file system. For
example, commands exist that indicate the
status of the available file servers. Another
command returns file space usage informa-
tion.

It may be possible to integrate some of this in-
formation into the client environment with-
out the need for special commands (or even
the user’s knowledge), but most commands
have specific meaning only for AFS files and
have no meaning in other cases. The question
becomes how many of the AFS-specific com-
mands to make available, and in what man-
ner.

Migration

Finally, there is the issue of migration. How
do users who are currently not using the dis-
tributed file system migrate to the new file
system? How are their databases and indi-
vidual files moved to the new system with-
out disrupting their work?

Tradeoffs

When confronted with the issues described
above it is necessary to examine the tradeoffs
to achieve a high degree of compatibility be-
tween AFS and the client protocol. The big-
gest area for tradeoffs concerns modifications

of the client. Modifications fall into one of
three types:

• No modifications to the client are necessary.

• Client requires modifications that aren’t visi-
ble to the user.

• Client requires user-visible modifications.

Client modifications can range from adding
and requiring the use of new programs to ac-
tually changing the operating system itself.
The goal is to create a seamless appearance
for the user.

The following sections describe three proto-
col translators that are currently in use. These
translators support AFS, AFP, and NFS.

AFS/AFS

At first glance, an AFS protocol translator
may seem redundant. However, an AFS to
AFS translator provides an intermediate
level that may be useful in improving the
throughput of the file system. The AFS/AFS
translator simply takes AFS requests from a
client and either processes them itself from
its own cache, or passes the requests on to the
central file server for processing. From the
user’s point of view, he/she is talking to an
AFS server; from the server’s point of view, it
is talking to another client.

Authentication is handled identically to the
standard AFS environment. All file naming
and navigation commands are identical and
all AFS commands are available.

AFP/AFS

The AFP to AFS protocol translator is cur-
rently implemented in the kernel of an inter-
mediate server. The protocol translator looks
like an AFP server to a Macintosh client. No
changes were made to the AFP protocol or to
existing software running on the client.
However, some additional software was in-
stalled on the client.

Center for Information Technology Integration 7

Intermediate File Servers in a Distributed File System Environment

Accessing an AppleShare volume stored in
AFS is no different than accessing a normal
AppleShare volume. The user opens the
Chooser dialog box and selects the file server
he/she wishes to access. After the user selects
a file server, he/she is prompted for authenti-
cation information. After authentication, the
user is presented with a list of volumes avail-
able from the file server. Selecting one or more
volumes results in those volumes appearing
on the desktop. Users manipulate these vol-
umes as they would any other AppleShare
volume.

An AppleShare volume1 exported by an AFS
server is simply a portion of the AFS tree.
Usually a user has a choice between mount-
ing the entire AFS tree and mounting just the
user’s home directory. A user can create a
configuration file in his/her AFS home direc-
tory, called AppleVolumes, which will let the
user define the volumes from which he/she
wishes to select. The configuration file maps
from a volume name to the corresponding
portion of the AFS file tree.

Authentication

Authentication occurs through a new Macin-
tosh program module that works in conjunc-
tion with the Chooser dialog. The new module
implements the Kerberos authentication mech-
anism. To make use of this module, the user
simply stores a copy of the program in the
folder called the AppleShare folder, found in
the system folder. After that, whenever the user
selects an AFS file server from the Chooser, he/
she is given the option of using either the stan-
dard AFP authentication method or the Ker-
beros authentication method.

To connect to the AFS server, the user must
select Kerberos authentication. From that
point on, authentication looks identical to the
user. A dialog asks for the user’s ID and pass-
word. Assuming the ID and password are ac-

1. An AppleShare volume repre-
sents a collection of files and folders.
In AFS, the internal management of
data is done in units called volumes.

ceptable to Kerberos, the user is presented
with a list of available AFS volumes.

The toughest part of authentication is provid-
ing a mechanism in which the intermediate is
allowed to operate as if it were the user. Be-
cause the intermediate makes file requests of
the central server, the intermediate must pos-
sess the credentials necessary to access files
desired by the user. In the Macintosh envi-
ronment, the requests are approved through
a moderately complicated series of conversa-
tions between the client, intermediate, and
authentication servers.

The intermediate runs an additional service
that mediates a Kerberos authentication con-
versation. (Kerberos avoids passing pass-
words over campus data networks.) The
conversation is managed so the intermediate
obtains usable credentials, while still provid-
ing the same level of security as if the inter-
mediate were not involved [8].

Permission Mapping (ACLs)

Macintosh users of AFS files cannot modify
ACL settings using standard Macintosh soft-
ware. Users of AFS receive a Desk Accessory
(DA) that enables the user to manipulate per-
missions for folders (directories) contained
on an AFS volume.

File Naming

Most allowable characters in Mac OS are sup-
ported by AFS and vice-versa. The excep-
tions are “:” and “?”. File name length
presents a problem. The Macintosh Finder
imposes a maximum name length of 31 char-
acters. File names in AFS that are longer than
31 characters are displayed on the Macintosh
with characters truncated starting at the 32nd
character. Most Finder operations and appli-
cations are unable to process these files. Long
file names that map to the same truncated
name will display with the same name, but
with different icons. The Macintosh file sys-
tem provides for a file tree through the use of
folders. In general, users have no need to
think of folder separator characters when
manipulating folders via the Finder.

Center for Information Technology Integration 8

Intermediate File Servers in a Distributed File System Environment

Occasionally, however, users do want to re-
fer to a complete path name when accessing
a file. On the Macintosh, the character used to
delimit folder names is a “:”. The AFS/AFP
translator simply translates this character
into the AFS equivalent (“/”). Unfortunately,
AFS files that contain a “:” in the filename it-
self cannot be processed by most Finder op-
erations or application programs.

Navigation

After an AFS volume is mounted, an icon
representing that volume appears on the us-
er’s desktop. Double-clicking on the volume
causes the volume to open. Inside the vol-
ume, files appear exactly as the user would
expect. The user manipulates the directory
hierarchy by opening and closing folders.
Applications are started by double-clicking
on the application, or a data file that is associ-
ated with the application. In other words, the
user manipulates AFS files in exactly the
same manner as regular Macintosh files.

Availability of AFS Commands

In the Macintosh environment, only authen-
tication and ACL manipulation commands
are currently available. The user does not use
the AFS command itself, but a Macintosh
program that fits the Macintosh paradigm
and presents an equivalent capability. In-
stead of issuing a UNIX style command, the
user makes choices and fills in values on a di-
alog box.

NFS/AFS

The NFS/AFS translator runs in the kernel of
the intermediate file server. The IFS project
developed an NFS/AFS translator because
no other translator was available. An NFS
translator was subsequently developed by
Transarc with minor performance and au-
thentication differences [9]. The end-client re-
quires no changes; the intermediate appears
to the user as a standard NFS server. Addi-
tional programs are installed in the interme-
diate kernel, which manage authentication

and file access control. Access to the server is
via the NFS command, mount.

Note: We are referring to a UNIX-based NFS
environment.

Authentication

Authentication in the NFS environment re-
quires the addition of a program called ilog.
Users who wish to access AFS files via NFS,
must first authenticate using the ilog com-
mand. The command functions in a manner
similar to the Kerberos klog command. The
intermediate runs an additional service that
takes end-client identifiers and performs au-
thentication mapping. Performing authenti-
cation in this manner creates a shared secret
between the client and the NFS translator.
This mechanism allows the translator to act
on behalf of the client without the need for
the translator to have a copy of the user’s
password.

Permission Mapping (ACLs)

Permissions are handled via the AFS fs com-
mand, just as they would be in a standard
AFS environment.

File Naming

File names are limited to the same character
set used by AFS. File name length and the
directory separator character are also the
same. If the user mounts the root of the AFS
tree (/afs) from the root (/afs), file name
space semantics are identical. If a file resides
in /afs/umich.edu/j/w/jwh/foo, an NFS
user can access the file using the same file
name.

Navigation

Navigation appears identical to that of a
standard AFS environment. Users see file
and path names.

Availability of AFS Commands

Most AFS commands are not directly sup-
ported on the client in the NFS environment.

Center for Information Technology Integration 9

Intermediate File Servers in a Distributed File System Environment

Experiences

CITI staff are currently evaluating the perfor-
mance of intermediate AFS servers. The exact
performance improvement gained by run-
ning an intermediate server when the client is
running standard AFS remains to be deter-
mined.

The NFS environment is usable; however be-
cause most UNIX workstations are able to
run standard AFS clients, very few worksta-
tions are using the NFS translator.

The Macintosh AFP translator is used exten-
sively. Some performance issues exist, partic-
ularly the time it takes to open folders, but
overall the implementation is quite satisfac-
tory. We have also encountered a few prob-
lems with some applications that use byte
range locking. CITI staff are working to both
improve the performance and solve the lock-
ing problem.

Futures

The major task for the future is integrating
PC networking environments such as Ban-
yan VINES, Novell Netware, and Microsoft
LAN Manager into the distributed file sys-
tem. The goal with these implementations, as
with the others outlined above, is a seamless
appearance to the user. The user should
barely know that anything has changed. Inte-
grating PC networks to provide this seamless
capability may present more of a challenge
than has been experienced to date.

Another major task for the future is the migra-
tion from the AFS platform to DFS, the distrib-
uted file system component of OSF/DCE.
Transarc is developing DFS, and it is essen-
tially the next generation of AFS.

Because DFS is derived from AFS, it shares
many of AFS’ characteristics. One difference
concerns ACLs. In AFS 3.x, ACLs are associ-
ated with directories only. In DFS, ACLs are
also associated with files. Another difference
is the ability of DFS files to have property

lists. The availability of property lists may
make supporting foreign file systems easier.
How to best make use of these new features
will be an area of investigation.

In addition to the future tasks outlined
above, other potential tasks include:

• OSF Distributed Management Environment/
SNMP management issues.

• Caching algorithm modifications for different
working environments.

• Performance evaluation and enhancements.

• Improving fault tolerance.

• Using an intermediate as a network router, to
allow the placement of intermediates at
remote sites without the purchase of an addi-
tional box.

The result of this work should be a distrib-
uted file system that meets the performance,
security, and functional requirements needed
to support the computing environment at the
University of Michigan, with applicability in
the commercial world as well.

References

1. T. Hanss, “University of Michigan Institu-
tional File System,”/AIXTRA: The AIX Tech-
nical Review, pp. 25-32 (January 1992).

2. J.H. Howard “An Overview of the Andrew
File System,” pp. 23-26 inWinter 1988
USENIX Conference Proceedings. Dallas,
TX. (February 1988).

3. M. Satyanarayanan, et. al. “The ITC Distrib-
uted File System: Principles and Design,” pp
35-50 inProceedings of the Tenth ACM Sym-
posium on Operating Systems Principles
(December 1985).

4. J.H. Howard, et. al. “Scale and Performance
in a Distributed File System” inACM Trans-
actions on Computer Systems Vol. 6 No. 1,
(February 1988).

5. J. Steiner et. al. “Kerberos: An Authentication
Service for Open Network System” inWinter
1988 USENIX Conference Proceedings. Dal-
las, TX. (February 1988).

Center for Information Technology Integration 10

Intermediate File Servers in a Distributed File System Environment

6. R.M. Needham and M.D. Schroeder, “Using
Encryption for Authentication in Large Net-
works of Computers” inCommunications of
the ACM, Vol. 21, No. 12 (December 1978).

7. D. Muntz and P. Honeyman, “Multi-level
Caching in Distributed File Systems,” CITI
Technical Report 91-3 (August 1991).

8. J. Rees and B. Doster, “Third-Party Authenti-
cation in the Institutional File System,” CITI
Technical Report 92-1 (February 1992).

9. L. Huston, “Comparison of the Transarc NFS/
AFS Translator and the IFS NFS/AFS Trans-
lator,” in preparation.

