
ABSTRACT

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

CITI Technical Report 92–6

Workload Characterization of AFS File Servers

Rajalakshmi Subramanian
rajalak@citi.umich.edu

This paper describes the workload characterization of AFS file servers, based on traces col-
lected by the file servers at CITI over a 2-4 week period. These workload characteristics
have been used to compare the performance of servers running on different hardware.
There are two parts to this paper. In the first part, we describe a server model that will be
used to drive a synthetic workload. In the second part, we build a client model consisting of
the requests made by different user types. We show that the user community can be broken
into distinct types, where all the users of a specific type exhibit similar request patterns.
This clustering information is used in conjunction with the workload characteristics at the
server to predict loads on servers, given the community that needs to be served. Finally,
we give an example to show how this can be done.

November 23, 1992





Center for Information Technology Integration 3

Workload Characterization of
AFS File Servers

Rajalakshmi Subramanian

November 23, 1992

1.  Introduction

Performance evaluation studies of computer systems frequently depend on the presence of a real
or synthetic workload under which the performance indices are measured. For the derived results
to be accurate, the synthetic workload must be representative of the real workload that will run on
the system. The aim of this study is to describe the workload characteristics of the AFS servers at
Center for Information Technology Integration (CITI). The approach we took was to use traces col-
lected continuously at the file servers over a period of 2-4 weeks. The traces contain a record for
every single call made to the file server. Any variations in referencing patterns, due to the time of
the day or the day of the week (such as weekends etc.), can be extracted from the traces.

One advantage of extracting information from traces is that it represents an accurate workload for
the system. It also preserves the correlation effects in the workload. Another advantage of using
traces is that the specific load they are used to generate can be reproduced in future experiments.
The parameters in a synthetic workload that are based on information extracted from the traces can
be easily changed to test scalability or other performance indices. The disadvantage is that the
traces obtained from one environment may not be representative of the behavior patterns of an-
other.

There are two parts to this paper. In the first part, the workload characteristics have been extracted
from traces collected at the file server end, and these have then been generalized. Using these char-
acteristics we have built a model of server usage. We intend to use this model to build a synthetic
workload to drive servers and obtain performance data. It can also be used to drive a simulation.
In the second part, we have built a model of the client behavior based on the user type. This infor-
mation is useful in predicting the load on the server given a user community.

The workload has been characterized on five different servers. The servers under consideration are
named homer, marge, loki, bastion, and babble. Of these, homer and marge run under AIX/370,
loki runs under MVS, bastion is an RS/6000 running AIX 3.0, and babble is an IBM RT running
4.3BSD UNIX. While characterizing the workload, we were also able to collect information on file
server attributes. We used the server characteristics to compare the relative performances of servers
running on different hardware and to help identify bottlenecks and anomalous behavior.

We have also looked at the server usage on a per user basis. The traces generated by each user at
the servers have been used to cluster the workload based on the user type. The current set of user
types includes software developers, students, technical writers, and system administrators. The re-



Center for Information Technology Integration 4

Workload Characterization of AFS File Servers

sults from this clustering of behavior patterns can be used to predict the load on a server, given a
mix of user types. We used this information to build a model of the workload generated by each
user type. This approach should help answer questions, such as the number of AFS servers re-
quired to support a university department that has 10 secretaries, 40 faculty members, and 500 stu-
dents. The traces have also been analyzed on a per client basis to see the distribution of load
generated by the different clients. (A client is defined as a workstation or machine identified by its
IP address. Multiple users may generate requests from a single client.)

Figure 1. Client/Server Distribution in our campus

AFS is different from other distributed file systems in that it was designed to support a very large
set of users [5]. In order to provide this scalability and maintain acceptable performance levels, it
requires the client machines to maintain very large caches. A Cache Manager maintains the cache,
and decides whether a request can be satisfied locally or must be forwarded to the server (using an
RPC). This results in a somewhat different distribution of requests at the server than if the user
were directly making calls to the server. For example, the cache manager will usually be able to sat-
isfy a read request (fetchdata) for a frequently used file from the local cache, but will make a rela-
tively larger number of requests to the server for getting attributes of files (fetchstatus). The larger
number of file status requests occurs as a side effect of the attribute cache being fairly small. The
Cache Manager also makes fetchstatus calls when it needs to ensure that the data in the cache is
valid before it returns it to the user. Figure 1 shows how the clients and servers are connected at
CITI. (Note that the servers and clients are in completely different physical locations.)

Section 2 provides information on what is contained in the traces. Section 3 describes the factors
affecting performance. Section 4 details the server characteristics, as well as the analysis of data,

AFS FILE SERVER

CAMPUS BACKBONE

Tanslators
(just in front of
backbone routers)AFS

Clients

AFS

NFS

NFS DOS

SNAP AFP

Mac



Center for Information Technology Integration 5

Workload Characterization of AFS File Servers

and the model based on the analysis. Section 5 illustrates the clustering of request types based on
the user type, while Section 6 describes how this property can be used for server prediction. Section
7 presents conclusions.

2.  Information Contained in the Traces

All the information was recorded at the server end only. The file server can handle 30 different
types of service calls. These arrive from individual client workstations in the form of RPCs. To de-
velop the model, we have, in some cases, further subdivided the types of requests into calls relevant
to directories, calls relevant to files, and general calls such as gettime and getvolumeinfo.

The information in the traces include: RPC type, start time, response time, IP address of the client
issuing the call, CPU usage information, user id (in some cases), number of disk reads/writes, and
file access information such as position and length of request. Refer to [8] to obtain details on what
information is logged for each RPC type. The logging was done continuously to allow us to observe
the variation in request and response patterns at the server.

3.  Workload Characteristics

The main criterion of server performance is response time. This can depend on a number of factors
such as the number of disk I/Os, the number of active clients, the interarrival times of the messages,
and server cache hits. Other factors that can affect the performance are the frequency distribution
of requests, the size distribution of read/write requests, and the number of requests being pro-
cessed by the file server simultaneously. In this study, we ignore the effects of the load on the sys-
tem under which the file server is running.

To characterize the workload at the server, the following values were computed:

1. Mean interarrival times and mean response times.

2. Response time as a function of the request type.

3. Frequency distribution of requests at the server and the mean response time for each request type.

4. Analysis based on the fact that the file server can be modeled by an M/M/1 queue or a G/M/1 queue.

The following results were computed to understand the behavior patterns of users and client ma-
chines

1. Percentage of requests related to files (as opposed to directories) per user type.

2. Read/write size distribution per user type.



Center for Information Technology Integration 6

Workload Characterization of AFS File Servers

4.  Model Development

Table 1 shows the mean interarrival and response times (in seconds), median, variance, and coeffi-
cient of variation for the different servers. All the values were obtained from traces collected for a
period of approximately one week. The interarrival times at homer and marge have a hyperexpo-
nential distribution [3]. These have been divided into their component exponential distributions.1

The interarrival times at loki have an exponential distribution. (We identified the component ex-
ponential distributions and then verified them using the Kolmogorov-Smirnov test.2) Bastion and
Babble do not display exponential distributions for interarrival times. The division is based on the
type of requests made. For example, on homer the short interarrival times occur when a series of
requests were made that had a short response time, such as a fetchstatus request, while the longer
interarrival times were seen between successive fetchdata requests. The presence of a very large
cache at the client end reduces the traffic at the server resulting in fewer requests for large volumes
of data. However, the Cache Manager [5] needs to make a large number of status requests to get
attributes for files, to ensure that the data in the cache is valid. This makes up a large part of the first
distribution consisting of short interarrival times. The second distribution is composed of request
types that take longer to process at the server. The fetchstatus requests that appear in the second

1. A function that has a shape similar to a negative exponential distribution, but with greater variability, is called a hyper-
exponential function. In a queueing model, a hyperexponential distribution can be approximated by a weighted sum of
exponential distributions.

2.  The Kolmogorov-Smirnov (K-S) test is used to test if a sample of n observations is from a specified continuous distri-
bution. In this case, we are checking to see if the observations fall into an exponential distribution.

Table 1: Interarrival and response times in seconds on Homer , Marge , and Loki , grouped by
component exponential distributions.

Loki
Interarrival

Time

Loki
Response

Time

Homer
Interarrival

Time

Homer
Response

Time

Marge
Interarrival

Time

Marge
Response

Time

Total number of calls
Median

2069110
0.064809

2069110
0.002188

1917755
0.114078

1917755
0.000736

2211434
0.026644

2211434
 0.000686

Mean
Std Deviation
Coeff of Variation
% of calls

0.078961
0.075067

0.9506
92.06

 0. 002003
0.000425

0.2089
78.79

 0.118443
0.109847

0.9274
51.8

0.000550
 0.000212

 0.3859
57.41

0.027249
 0.025156

 0.9232
 85.82

 0.000562
 0.000260

 0.4624
86.45

Mean
Std Deviation
Coeff of Variation
% of calls

0.00645
0.006063

0.9399
18.16

0.131517
0.127828

0.9719
39.01

 0.154703
0.130568

 0.8439
41.76

0.384603
 0.356991

0.9257
4.05

 0.098743
0.096793

0.9802
13.42

Mean
Std Deviation
Coeff of Variation
% of calls

0.099611
 0.087624

0.8796
 2.84

% Discarded
Dates collected

 7.9
 04/23-04/29

0.2
04/23-04/29

9.7
04/26-05/03

0
04/26-05/03

9.7
04/26-05/03

 2.9
04/26-05/03



Center for Information Technology Integration 7

Workload Characterization of AFS File Servers

distribution are often interspersed with fetchdata requests. Refer to Table 10 for the mean response
times of each request type.3

The response time distributions at all the servers is hyperexponential and has been broken up in-
tothe component exponential distributions in the table. (Loki has three component exponential dis-
tributions while all the others have two.) Each set of data (mean, standard deviation, and coefficient
of variation) corresponds to one exponential distribution. The first set of values for the interarrival
times, and the first set of values for the response times were taken from the same data set. This
holds true for the each succeeding set as well. The values from a corresponding pair of interarrival
and response times for a particular server are used in the computation of utilization in Section 4.1.
The percentage of data that was discarded as outliers is also given in the table.

Table 3 shows the mean number of clients that generated at least one RPC per hour on each of the
servers. This is seen to have very little variation throughout the week (as seen from the very low
coefficient of variation). This, therefore, is no longer a factor that can contribute to the variation in
response times. We also found that the number of cases where requests overlapped in time (i.e.,
more than one thread was active) was <1% of the total number of RPCs directed at a server. Hence,
we have ignored the effect of having more than one request being processed simultaneously at the
server.

3. The set of traces with short interarrival times on homer had the following request distribution: fetchstatus 81.17%,
gettime 8.58%, getvolumestatus 3.18%, getstatistics 1.98%, giveupcallbacks 4.92%. The second set of traces had the
following request distribution: fetchdata 15.709%, fetchstatus 26.46%, storedata 18.71%, storestatus 16.14%, createfile
8.86%, removefile 6.29%, rename 2.27%, gettime 3.14%. On loki, the set of traces with short interarrival times had the
following request distribution: fetchstatus 89.82%, gettime 4.41%, getstatistics 1.87%, getvolumestatus 2.76%. The sec-
ond set of traces had the following request distribution: fetchdata 32.11%, fetchstatus 30.28%, giveupcallbacks 18.43%,
storedata 6.4%, gettime 4.03%, createfile 4%, removefile 3.14%. Only request types that constituted> 1% of the traces
have been listed.

Table 2: Interarrival and response times in seconds for bastion and babble. The
interarrival times dont have an exponential distribution, hence only the mean
values are shown. The response times are grouped by component
hyperexponential distributions.

Bastion
 Interarrival

Time

Bastion
Response

Time

Babble
Interarrival

Time

Babble
Response Time

Total number of calls
Median

206626
0.408191

206626
0.000788

397353
0.028048

397353
0.004144

Mean
Std Deviation
Coeff of Variation
% of calls

2.92768

 38.13

0.000497
0.000114

0.2298
38.13

1.57912

81.87

0.000388
0.001313

0.3378
81.87

Mean
Std Deviation
Coeff of Variation
% of calls

2.92768

61.86

 0.003893
0.003331

 0.8556
58.94

 1.57912

18.12

 0.057600
 0.054008

 0.937
17.74

% Discarded
Dates collected

0
04/26-05/03

2.9
04/26-05/03

0
04/24-05/01

0.37
04/24-05/01

Table 3: Number of active clients per hour.

Loki Homer Marge Bastion Babble

Mean
Std Deviation
Coeff of Variation

97.455
5.723
0.058

 110.818
18.279
0.164

94.175
19.319
0.205

 58.39
8.07

0.138

17.801
 4.741
0.266



Center for Information Technology Integration 8

Workload Characterization of AFS File Servers

Figure 2. Homer: Utilization on a per hour basis

4.1  Analysis of Data

From Tables 1 and 2 one can see that most of the interarrival and response times can be modeled
by exponential distributions. Hence, the servers can be assumed to be M/M/1 or G/M/1 queues,
and analyzed based on the formulae given below. Ui represents the utilization at the server. Since
the number of times more than one thread is active in the server is less than 1%, we assume i = 1.

Utilization Ui = XiSi where

Xi = throughput = arrival rate = exit rate

Si = service time

90 - percentile of the response time = pi = 2.3 * mean response time

(this means that 90% of the measures response times will be below pi)

We calculate the values for each of the servers based on the above formulae from Tables 1 and 2.
The two adjacent columns for a server have the interarrival time (from which the arrival rate can
be computed), and the response time (which is the same as the service time here). Loki has only one
distribution for interarrival times. The values from this distribution are used with the three re-
sponse time distributions to get U11, U12, and U13. For the other servers, the values from correspond-
ing sets are used to compute U1j. All time values are measured in seconds. Utilization is a
dimensionless value, while 90 percentile response time is in seconds. The utilizations for the differ-
ent interarrival distributions on the various servers are given below. The values in parentheses in-
dicate the percentage of the traces recorded on that server which fall into this category. Note that
the utilization values are taken over the entire trace and at any time are randomly fluctuating be-
tween high and low values. (Figure 2 is an example plot derived from data for homer, to show these
fluctuations on a per hour basis.) The high values for homer occur when external users (people out-
side CITI) appear to be accessing directories or files. During the time the traces were collected, at
least 32% of the calls made to homer were from clients outside the umich cell. Another 20% of the
calls were made by the AFP4 -AFS translator.

4. AppleTalk Filing Protocol

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120 140 160 180

U
t
i
l
i
z
a
t
i
o
n

# hours

Homer: Hour of day vs. utilization

Mon Tue Wed Thur Fri Sat Sun

util



Center for Information Technology Integration 9

Workload Characterization of AFS File Servers

Bastion and babble do not display an exponential interarrival time distribution. They do, however,
show an exponential service time distribution. Hence, they can be modeled by a G/M/1 queue.
Bastion5 and babble6 are far less utilized than the other three servers, and typically have long gaps
between requests.

For a G/M/1 queue,

Utilization Ui = 1/(E[τ] µ) where

E[τ] = mean interarrival time (in seconds)

µ = service rate in jobs per second

5. Bastion is used for the most part as a Volume Location DataBase (VLDB) server. It also serves some read-only vol-
umes.

6. Babble is a file server for a small set of users

U11
0.025 78.79%( ) U12

0.0816 18.16%( ) U13
1.26 2.84%( )=;=;=

LOKI:

p11
0.0046 78.79%( ) p12

0.0148 18.16%( ) p13
0.2291 2.84%( )=;=;=

HOMER:
U11

0.0046 57.41%( ) U12
1.17 41.76%( )=;=

p11
0.00126 57.41%( ) p12

0.35581 41.76%( )=;=

MARGE:
U11

0.0206 86.45%( ) U12
0.2567 13.42%( )=;=

p11
0.00129 86.45%( ) p12

0.2271 13.42%( )=;=

U11
0.00017 38.13%( ) U12

0.00133 58.94%( )=;=
BASTION:

p11
0.0011451 38.13%( ) p12

0.0089559… 58.94%( )=;=

BABBLE:
U11

0.00246 81.87%( ) U12
; 0.036476 17.74%( )= =

p11
0.008944 81.87%( ) p12

; 0.13248 17.74%( )= =



Center for Information Technology Integration 10

Workload Characterization of AFS File Servers

Most of the servers seem to have fairly low utilization.

4.2  Server Workload Model

The purpose of using a workload model is to be able to generate a typical load on a server to mea-
sure performance indices. The synthetic workload should be representative [1] of the real workload
on the server for accurate results. It is not necessary for the synthetic workload to do exactly the
same things as a real workload as long is it generates the same type of load on the server. Thus,
instead of using the exact mix of requests, it is possible to split them into requests with short re-
sponse times (e.g., fetchstatus and gettime), requests with medium response times (e.g., fetchdata
and setvolumestatus), and requests with long response times (e.g., removefile and storedata).

The server is modeled as an M/M/1 server with the mean for x < 32K, the exponential interarrival
times and response times obtained from Tables 1 and 2. The type of request generated is based on
the frequency distribution of short, medium, or long response requests, obtained from the informa-
tion in Table 11.

The read/write size distribution for files is bimodal with an exponential distribution for x < 32K
and a mode at 64K (the chunk size configured in the clients at CITI. This is the basic size of transfer
of data between the cache manager on the client and the server). The read distribution for directo-
ries is exponential. Graphs 3 - 5 in Appendix A show the read/write size distributions for files and
directories at all the servers.

5.  Clustering Based on User Type

In order to see patterns in referencing behavior based on user types, we chose a small number of
each type of user and did the analysis based on the traces generated by the selected subset of users.
Clustering was observed for file referencing patterns and read/write size distributions. We also
show in the example in Section 6 that on homer the number of disk I/Os, mean response times, and
mean percent of calls that require disk I/O for each of the user types tend to form clusters.

It is possible to determine the sample size required to obtain statistically significant results by using
the mean and standard deviation obtained from a small subset of the population [6]. Section 5.1
shows how to do this given the mean and standard deviation for certain parameters obtained from
five technical writers, eight developers, four students, and five system administrators. We use the
method in the following section to obtain valid sample sizes from which we obtain the means and
standard deviations for different parameters in Section 5.2.

Table 4: Read/Write percentage distribution at the servers

Reads/Writes Loki Homer Marge Bastion Babble

File Reads
< 4K
4K<size < 12K
12k < size < 64K

36.6994
15.9017
47.3989

45.6667
9.86528
44.468

53.1334
8.63044
38.2362

88.5699
 0.0521921

11.3779

71.798
12.841
15.360

Dir. Reads
< 4K
4K<size < 12K
12k < size < 64K

97.8325
1.8606

0.292621

96.3048
 3.31426
0.349759

98.4666
1.33355
0.19283

100
0
0

90.113
8.68173
1.03578

File Writes
< 4K
4K<size < 12K
12k < size < 64K

56.3605
14.5703
29.0692

66.7036
10.802

22.4974

50.5933
8.6565

40.7502

100
0
0

54.8088
6.21089
38.9803



Center for Information Technology Integration 11

Workload Characterization of AFS File Servers

In Section 5.2, data has been gathered based on the assumption that each separate login session is
the same statistically as having a new user of a given type. In order to validate this assumption, we
need to prove two things. First, a user can be uniquely identified as belonging to a certain user type.
In other words, not only do members of a cluster have similar characteristics, but they also have
distinctly different characteristics from members of different clusters. Second, using different login
sessions of the same user does not have a significant impact on the mean values computed for a
given user type.

To prove that a user belongs to a distinct user group, we computed confidence intervals for the
mean values.7 The confidence intervals were non-overlapping at 90% confidence levels, which
shows that the users can be distinctly identified based on their mean values to fall into a particular
class of users.

To show that using different login sessions of the same user does not have a significant impact on
the mean values computed for a given user type, we performed a two-factor, full factorial experi-
ment. The first factor was the mean values from login sessions of the same user. The second factor
was mean values from login sessions of different users. These mean values were used to obtain the
allocation of variation to the two factors, and to unexplained factors or errors. The F-ratio8 was
compared against a table of quantiles of F-variates to determine the significance of the two factors.
The results showed that at a 95% confidence level, both factors did not have a significate impact on
the mean values.

5.1  Determining Sample Size

The minimum sample size for a user type to accurately determine mean values can be obtained us-
ing:

n = sample size, z = normal variate of the desired confidence level, r = accuracy (implies confidence
level), x = mean, and s = standard deviation. These values are obtained from a small subset of the
user type.

Based on the measurements from five technical writers, the mean percentage of total file related
(not general, directory, or volume related) calls by a user is:

From the formula:

7. A confidence interval for a mean at confidence level 100 * (1 -α) states that the population mean will fall in that inter-
val with a probability of 1 -α.

8. FA = F ratio to test the significance of factor A is the ratio of (variation due to factor A/ number of degrees of freedom
of A) to (variation due to unexplained errors/number of degrees of freedom of errors).

n
100sz( ) 2

rx
where:=

x 82.063443=
s 19.895978=

r = 4.878 (for accuracy within four calls in every 82.06 calls)
z = 1.96 (from standard tables for a 95% confidence interval)

ntech_ wr 94.898=



Center for Information Technology Integration 12

Workload Characterization of AFS File Servers

Using the same reasoning, the minimum sample sizes required for other user types are:

We have assumed separate login sessions as a new user of the given type, as we do not have the
required number of each user type in our department. We have observed that the variation in usage
between separate login sessions by the same user is as high or as low as the variation between dif-
ferent users of the same type. Based on this assumption, the actual values for the sample sizes we
have used are Ntech_wr = 100, Nstudents = 204, Nsysadmins = 164, Ndev = 353. A new login session is
assumed to have started if there is more than a one hour gap between RPCs generated by an indi-
vidual.

5.2  Clustering Analysis

In order to see if a cluster emerges, we determine the mean (µ) and standard deviation (σ) for the
parameter of interest from the data in each login session. The coefficient of variation (σ/µ) tells us
how closely the values are clustered (low values imply the presence of clusters).

Table 5 shows the average number of calls made per hour by each user type. These values have
been collected only over active hours (number of calls > 0). The coefficient of variation is very high
for these numbers, particularly for developers. This implies that no pattern emerges for number of
calls made per user type per hour.

Table 6 shows the percentage of requests that were related to files (as opposed to directories or
volumes) per active login session. The coefficient of variation is low in all cases, which indicates
these numbers are a good representation of the clustering effect based on user type.

Table 7 shows the (mean) values for read distribution for files based on user type. The coefficient
of variation is very low for the case < 4K. In the other cases it varies from acceptable (< 1.0) to high
(> 1.0). This pattern follows Ousterhout's [4] statement that most read requests are for < 11K bytes.
The read size distribution for files is bimodal. (It has an exponential distribution up to 32K, and
then another mode at 64K). In most cases, the coefficient of variation is low, implying these are rep-
resentative numbers for each of the user types. The write distribution was found to be multimodal.
These distributions can be modeled by a uniform distribution. If greater accuracy is required, the

Table 5: Number of RPCs generated per hour

Tech Writers Sysadmins Students Developers

Mean
Median
Standard Dev.
Coeff. of Variation

142.55
72

156.166
1.09

237.894
134

 278.4201
1.17

61.019
23

94.735
1.55

990.83
116

3013.6382
 3.041

Table 6: % of rpc’s related to files per active session

Tech Writers Sysadmins Students Developers

Mean
Median
Standard Dev.
Coeff. of Variation

68.98
71.428
19.03
 0.275

 64.21
64.248
13.733
 0.213

51.374
58.333
24.74
0.481

 57.95
61.111
 20.702

0.357

x 80.783 s; 8.0462 r; 2.4757 2calls/ 80.78( ) z;; 196 nsysadmin; 62.18= = = = =
x 79.897 s; 7.484 r; 1.251 (1call/79.89)z;; 1.96 ndev; 215.42= = = = =

x 66.15 s; 24.179 r; 4.535 (4calls/66.15);z; 1.96 nstudent; 140.408= = = = =



Center for Information Technology Integration 13

Workload Characterization of AFS File Servers

distributions can be observed and characterized at the range level (e.g., exponential for size < 12K)
and the sub-distributions can be used in the model [7].

5.3  Incorporating User Related Information into the Workload Model

The presence of clusters in user request patterns allows the incorporation of characteristics of dif-
ferent user types into a client model. To do this, we break the frequency distribution of requests on
a per user-type basis. In section 4.2, we described the aggregate workload characteristics from the
point of view of being able to analyze the performance of the server as it is today. Here, we describe
the workload for each type of user, assign the number of users for each type, and then predict the
performance of the server for the total set of users. As the parameters of a synthetic workload can
be easily changed, we include the number of users of each type as configurable parameters of the
workload model. This will allow us to determine the performance of the server under different con-
figurations.

Table 7: Read size percentage distribution for Files

Tech Writers Sysadmins Students Developers

< 4K
 standard dev.

87.228
3.161

72.629
15.088

55.986
18.008

66.923
21.121

4K<size < 12K
 standard dev.

7.671
3.09

10.184
3.472

12.01
4.617

9.406
6.19

12k < size < 64K
 standard dev.

5.1
2.48

17.186
12.334

32.002
15.978

 23.67
15.951

Table 8: Read size percentage distribution for Directories

Tech Writers Sysadmins Students Developers

< 4K
 standard dev.

91.419
4.822

90.621
7.431

86.942
 13.472

95.89
 4.651

4K<size < 12K
 standard dev.

2.841
4.356

7.912
7.356

10.824
9.972

 2.677
1.857

12k < size < 64K
 standard dev.

5.388
 6.236

 1.466
0.5677

 2.233
3.369

1.415
3.563

> 64K
standard dev.

0.350
 0.784

0
0

0
0

0.021
0.06

Table 9: Write size percentage distribution for Files

Tech Writers Sysadmins Students Developers

< 4K
 standard dev.

 89.667
7.453

65.178
20.606

58.725
12.88

68.677
23.696

4K<size < 12K
 standard dev.

4.738
4.271

9.588
4.67

14.752
8.829

9.719
5.041

12k < size < 64K
 standard dev.

5.594
 6.518

25.233
18.169

26.522
8.538

21.628
19.358



Center for Information Technology Integration 14

Workload Characterization of AFS File Servers

6.  Using Clusters to Predict Server Performance

An interactive system (such as the AFS environment at CITI) can be modeled by a closed queueing
network. To quote Ferrari [2], ̀ `In the terminology of analytic modelling, we can say that interactive
installations are naturally represented by finite-population, closed queueing networks.'' In this sec-
tion, we use the formulae for response time and system throughput obtained using mean value
analysis. We extend the methods used in mean value analysis to solve closed queueing networks,
to use the information we have based on user types, and to predict the mean performance at the
server given ni users of type i.

Using mean value analysis for a closed queueing network, we have:

where M = the number of devices (a server or CPU is considered a device), Rj = response time at
device j, Vj = number of visitations to device j, N = total number of users, and Z= think time in an
interactive system.

In any UNIX-like system, owing to the presence of a buffer cache, all writes do not necessarily in-
duce a disk I/O. It might be the one unlucky writer who causes the buffer cache to fill up that might
bear the brunt of the disk I/Os, all of which may not have been caused by that user. On the other
hand, a read that induces disk I/O is most likely to be performed on behalf of the user.

Bearing this in mind, we extend the mean value analysis approach to use the clusters we have spot-
ted.

Let M = 2 (server and I/O device)

Ni = number of users of type i

Si = mean service time from server seen by user of type i (base service time without any I/O)

Dri = mean service time per disk read

Vri = number of reads

Qri = probability that user of type i will require disk read

Dwi = mean service time per disk write

Vwi= number of writes

Qwi = probability that user of type i will require disk write

N = ΣNi = total number of users

Z = think time

Ri = mean response time for user of type i = Si + VriDri + QwiVwiDwi

Given that writes by users will not be accurately accounted for in the traces, we use a random num-
ber generator to generate values for Vwi, and then take the mean value. The values for Qwi can be
accurately obtained from the traces, and Dwi is the time taken for a typical disk read/write.

R RjVj

j 1=

M

∑=

X
N

Z R+
=

(6.1)

(6.2)

System response time

System throughput

(6.3)



Center for Information Technology Integration 15

Workload Characterization of AFS File Servers

Using the value for Ri in equation (6.3) we have:

Example
The following example shows how the response time and system throughput is computed, given
the number of users of each distinct type. Consider the server homer that has 4 types of users on it.
Let N1 = number of technical writers = 10, N2 = number of system administrators = 3, N3 = number
of students = 100, N4 = number of software developers = 30.

The mean service times (without I/O) for the four user types are 9:

S1 = 0.001154;  S2 = 0.002367; S3 = 0.005905; S4 = 0.002407

The disk I/O time is the same in all cases, i.e:

Dr[1-4] = Dw[1-4] = 0.02

The number of reads/writes are:

Vr1 = 3; Vr2 = 3; Vr3 = 2; Vr4 = 2

Vw1 = 6; Vw2 = 7; Vw3 = 6; Vw4 = 7

The probability that a read/write will occur is:

Qr1 = 0.7379; Qr2 = 0.5741; Qr3 = 0.5363; Qr4 = 0.5889

Qw1 = 0.6486; Qw2 = 0.3659; Qw3 = 0.2667; Qw4 = 0.3717

Based on equation 6.3 for Ri and using the above values:

R1 = 0.123260; R2 = 0.088039;  R3 = 0.059361; R4 = 0.078001

If the think time Z = 4 seconds, using equations 6.4 and 6.5:

R = System response time = 0.068341 seconds

X = System throughput = 35.149463 users/second

7.  Conclusion

This study was undertaken to develop a model of AFS file servers that would enable us to do a per-
formance evaluation of the file servers at CITI. We developed the model from traces collected over
a period of 2-4 weeks. We also developed a model for users based on what class they fall into. The
study of traces on a per user basis showed that users of a particular user type have some similar
characteristics. The presence of clusters helped us incorporate the effects of different types of users

9. All of the values in this section have been obtained from actual data for user types on homer. In all cases except for
the number of disk reads/writes for students, clustering of values was observed. In other words, the coefficient of varia-
tion was low.

R
NiRi∑
N

=

X
N

Z R+
N2

NZ NiRi∑+
= =

(6.4)

(6.5)

System response time

System throughput



Center for Information Technology Integration 16

Workload Characterization of AFS File Servers

into the workload model. In the future, this model will help us predict the load on file servers used
by a specific set of users, and plan for it accordingly. We intend to create a synthetic workload based
on this model for future performance analysis.

We are continuing to collect traces on a variety of machines. Using the methodology described in
this paper, we should be able to obtain hard numbers for problems such as the one described in the
example in Section 6.

 A. Other Server Information

Tables 10 and 11 show the mean response time and frequency distribution, respectively, of the dif-
ferent request types. Graphs 3 - 5 give the read/write size distribution for files on directories on the
different servers.

 Acknowledgments

Sarr Blumson, Redha Bournas, Edna Brenner, Peter Honeyman, Dan Hyde, Dan Kiskis, and Toby
Teorey provided helpful comments on drafts of this paper.

It was Sarr’s idea originally to try and see if users of a particular type exhibited similar request
patterns.

Table 10: Mean Response Times (in seconds) per Request Type

Request type Loki Homer Marge Bastion Babble

fetchdata 0.088396 0.092157 0.079983 0.022080 0.164412
fetchacl 0.063622 0.097001 0.068517 0.019916 0.110259
fetchstatus 0.002561 0.010486 0.004946 0.002521 0.006708
storedata 0.085543 0.438169 0.355648 0.012908 0.398597
storeacl 0.052195 0.167890 0.155285 0.013305 0.163302
storestatus 0.006774 0.225456 0.169963 0 0.015065
remove�le 0.030992 0.404734 0.383207 0.045296 0.257349
create�le 0.008389 0.365194 0.251659 0.002056 0.114772
rename 0.018879 0.402141 0.425978 0 0.035755
symlink 0.167842 0.387016 0.422286 0.038950 3.351884
link 0.002346 0.260487 0.242612 0 0.025765
makedir 0.024639 0.299366 0.334470 0.001020 0.168624
removedir 0.049200 0.408406 0.402609 0 0.258416
setlock 0.002797 0.181377 0.175139 0 0.011853
extendlock 0.001352 0.248188 0.157246 0 0.015046
releaselock 0.003818 0.180339 0.246670 0 0.006871
getvolumestatus 0.002026 0.001773 0.001344 0.001071 0.005027
setvolumestatus 0.001516 0.147793 0.054623 0.000982 0
gettime 0.009825 0.009672 0.010475 0.005639 0.008052
getstatistics 0.001301 0.001229 0.000590 0.000860 0
giveupcallbacks 0.004007 0.000625 0.000625 0.002349 0.005408
getvolumeinfo 0 16.200396 0 0.012462 0.046279



Center for Information Technology Integration 17

Workload Characterization of AFS File Servers

Table 11: Frequency Distribution of Requests at Server

Request type Loki Homer Marge Bastion Babble

fetchdata 7.039670 6.953260 9.860930 2.776390 3.532970

fetchacl 0.007019 0.017360 0.005057 0.002033 0.019100

fetchstatus 76.823600 57.154100 66.325700 36.763600 69.128600

storedata 1.402120 8.245910 0.917970 0.000451 1.070410

storeacl 0.002244 0.005685 0.001848 0.000677 0.003224

storestatus 0.431460 7.081320 5.816300 0

remove�le 0.692869 2.768400 0.168550 0.000451 0.267910

create�le 0.881642 3.912730 0.468520 0.000677 0.496630

rename 0.164848 1.002280 0.082382 0 0.219539

symlink 0.003104 0.093867 0.008267 0.000225 0.004460

link 0.010123 0.142096 0.020911 0 0.062010

makedir 0.025214 0.305665 0.056705 0.045407 0.008434

removedir 0.006303 0.179561 0.007392 0 0.000496

setlock 0.003104 0.032490 0.214460 0 0.014139

extendlock 0.411930 0.010965 0.547403 0 13.776400

releaselock 0.013657 0.028277 0.151538 0 0.011650

getvolumestatus 2.246750 1.868720 9.113460 0.053314 0.014600

setvolumestatus 0.000286 0.002792 0.000097 0.000451 0

gettime 4.326030 6.182300 2.282300 34.891800 3.038080

getstatistics 1.468880 1.135750 0.426698 8.526630 0

giveupcallbacks 4.020202 2.876327 3.517558 0.000903 1.539400

getvolumeinfo 0 0 0 16.936900 5.894320

T bl 11 F Di ib i f R S

Figure 3: Loki, Homer, Marge, Bastion, Babble: Read Distribution for Files



Center for Information Technology Integration 18

Workload Characterization of AFS File Servers

Figure 4: Loki, Homer, Marge, Bastion, Babble: Read Distribution for Files

Figure 5: Loki, Homer, Marge, Bastion, Babble: Write Distribution for Files



Center for Information Technology Integration 19

Workload Characterization of AFS File Servers

 References

[1] D. Ferrari. Workload characterization and Selection in Computer Performance Measurement.Computer,
5(4):18-24, July/August 1972.

[2] D. Ferrari. A performance-oriented Procedure for Modeling Interactive Workloads.Experimental Com-
puter Performance Evaluation, pages 57-58, June 1980.

[3] D. Ferrari, G. Serazzi, and A. Zeigner.Measurement and Tuning of Computer Systems. Prentice-Hall,
Inc., 1983.

[4] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff, and J.K. Ousterhout. Measurements of a Distrib-
uted File System.Proceedings of the 13th Symposium on Operating System Principle ACM, Oct. 1991.

[5] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satyanarayanan, R.N. Sidebotham, and M.
West. Seals and Performance in Distributed File Systems.ACM Transactions on Computer Systems5(1):
1-8, Jan. 1992.

[6] R. Jain.The art of Computer Systems Performance Analysis. John Wiley & Sons, Inc., 1991.

[7] R. R. Bodnarchuk and R.B. Bunt. A Synthetic Workload Model for a Distributed System File Server.
1991 ACM Sigmetrics, pages 50-59, May 1991.

[8] S. Blumson, P. Honeyman, T.E. Ragland, and M.T. Stolarchuk. AFS Server Logging. 1992.


