
-- --

CITI Technical Report 93−3

Disconnected Operation for AFS

L.B. Huston
lhuston@citi.umich.edu

P. Honeyman
honey@citi.umich.edu

ABSTRACT

AFS plays a prominent role in our plans for a mobile workstation. The AFS client
manages a cache of the most recently used files and directories. But even when the cache
is hot, access to cached data frequently involves some communication with one or more
file servers to maintain consistency guarantees. Without network access, cached data is
soon rendered unavailable.

We have modified the AFS cache manager to offer optimistic consistency guarantees
when it can not communicate with a file server. When the client re

..
establishes a connec-

tion with the file server, it tries to propagate all file modifications to the server. If
conflicts are detected, the replay agent notifies the user that manual resolution is needed.

Our system brings the benefits of contemporary distributed computing environments to
mobile laptops, offering a fresh look at the potential for nomadic computing.

June 18, 1993

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943



-- --

Disconnected Operation for AFS

L.B. Huston
lhuston@citi.umich.edu

P. Honeyman
honey@citi.umich.edu

1. Introduction

The continuing miniaturization of computer
hardware hath wrought dramatic changes in port-
able computers. In tandem, the ties to wall jacks
and other wiring requirements are being unbound,
which has led to an explosion of interest and
activity in nomadic computing. Yet, operating
system support for mobile computers has not kept
pace, as the research and commercial computing
communities have embraced the distributed com-
puting paradigm, in which network connectivity
forms a fundamental technological underpinning.
To close the gap between these advances in
hardware and software, the Center for Informa-
tion Technology Integration (CITI) has sponsored
the LITTLE WORK project [1], which is investi-
gating the operating system requirements for
nomadic computers.

The goal of the LITTLE WORK project is to build
a mobile computing platform that closely resem-
bles CITI’s desktop computing environment. Our
current prototype is an Intel i386-based laptop
computer running Mach 2.5 from Carnegie Mel-
lon University [2], along with MIT’s X Window
System [3]. When traveling, we use modems and
SLIP [4] to run conventional network-based ser-
vices such as TCP/UDP/IP, NTP [5], Kerberos
[6], and AFS [7].

A key component of our mobile workstation is
the distributed file system. There are numerous
benefits to using a caching distributed file system
instead of a standalone file system on a mobile
machine. In the latter case, a user preparing for a
trip with her laptop must select the files she will
need and manually copy them to the laptop. On
her return, she must copy any modified files back
to permanent storage, usually a file server or the
local disk on her desktop machine.

Compare this to a caching distributed file system.
To prepare for a trip, the user attaches the laptop

to the network and runs the applications that she
intends to use while traveling. This causes the
caching mechanism to copy the latest version of
the referenced data to the local disk if it is not
already there. After heating up the cache, she
disconnects from the network and hits the road.
Upon arriving at a location that supports network
connectivity, possibly her home base, she estab-
lishes a network connection and directs the file
system to propagate her modifications to the file
server.

The first benefit of the distributed file system
approach is that it reduces the potential for human
error. The cache manager logs all file
modifications, so the user need not worry about
forgetting to copy files to and from permanent
storage. Furthermore, the distributed file system
offers the potential to detect conflicts that arise if
shared files are modified by more than one party,
resolves those conflicts that it can, and reports all
others.

Another advantage is that a distributed file system
adapts as a user’s work habits change. Laptops
tend to be constrained in disk space, limiting the
number of applications that can be installed. In a
traditional system, when the user wants to use a
different application, she must manually install a
new program. As part of this installation process
she may need to make space for the new applica-
tion by removing some other files. She may later
regret her selection. In a distributed file system,
applications are installed by system administra-
tors and are accessed from any machine. The
cache manager takes care of copying the neces-
sary files to the local disk, as well as removing
files that haven’t been used for a long time.

For our distributed file system we use AFS from
Transarc. While AFS works well in a desktop
environment, it fails completely in a partitioned
network. The difficulty is that AFS consistency

- 1 -



-- --

Huston/Honeyman

guarantees require the client cache manager to
maintain network connectivity with the servers
responsible for data in the client cache. When a
server gives some data to a client, the server also
issues a ‘‘callback.’’ This callback is a promise
that the server will notify the client if the cached
file is modified. The client uses possession of this
callback to ensure that the cached version of the
data is the most recent. If a network partition dis-
rupts communication between the client and the
file server, the cache manager can not be sure that
the server has not tried to revoke any callbacks.
The cache manager assumes the worst case: all
cached data becomes invalid. At this point, the
cache manager refuses to allow access to any of
its cached data, even though the preponderance of
the data is valid.

Mobile computers enjoy only sporadic network
connectivity, and require AFS to be more resilient
to network partitioning. The cache manager must
allow access to cached copies of files and direc-
tories, performing the necessary consistency
checks only when a network connection is esta-
blished with the file server.

2. Related Work

Previous work on disconnected access to a distri-
buted file system includes the Coda project at
Carnegie Mellon University [8, 9, 10]. Coda is a
distributed file system similar to AFS, with addi-
tional support for server replication. Voluntary
disconnection by a client is treated as a special
case of network partitioning. A disconnected
client can continue working by using any data is
has in its cache. When the client reconnects to a
network, it gives the collection of updates made
while disconnected to an agent that reintegrates
the updates into the file system using methods
similar to those used to resolve updates across
replicated servers. Because Coda enlists support
from the file server in reintegrating client updates,
it can offer strict transactional guarantees on the
entire collection of updates.

UCLA’s Ficus replicated file system [11] also
supports a form of disconnected access. Ficus
uses peer-to-peer operations on replicated files
instead of second-class replication (i.e., caching)
by clients of a centralized file server. As a repli-
cated server, a mobile Ficus workstation can
achieve many of the goals of disconnected opera-
tion.

Although Coda and Ficus provide for service
while disconnected, we have elected to go our

own way with AFS, for several reasons. Most
importantly, AFS is where our files are; it would
not make sense to use a file system that we don’t
use every day. We have been satisfied AFS users
for many years, and we understand its behavior,
so our choice is to adapt AFS for disconnected
operation. A related reason to stay with AFS is
that there are currently over 75 different cells1

accessible from our workstations. If we switched
to another file system, we would lose the ability
to use these cells while disconnected. In short,
were we to go with another file system, we would
lose access to our own and CITI’s resources and
the home directories of our colleagues.

3. Design

Before modifying AFS, we developed some basic
design criteria. First, we prohibit any changes to
the AFS servers, restricting our effort to the client
cache manager. If our modifications included any
changes to the file servers, we would lose the
ability to access other AFS cells. The decision to
make the client solely responsible for discon-
nected operation is significantly different from the
approach taken by Ficus and Coda. We feel that
the benefit of continued access to AFS outweighs
potential problems.

Our second design rule is that we are concerned
only with disconnected operation. Coda and
Ficus provide a high degree of availability by
replicating servers, as well as allowing systems to
use local data when a file server is not reachable.
But disconnected clients exist in a network parti-
tion containing a single machine; replicated
servers do not provide an advantage for nomadic
computing.

This leaves as the primary issue how to modify
the cache manager. AFS tries to provide strict
consistency guarantees, to wit, AFS guarantees
that a client opening a file sees the data stored
when the the most recent writer closed the file.
This guarantee is hard to honor in a partitioned
network. The main difficulty arises because AFS
is pessimistic. In the absence of firm evidence to
the contrary, the cache manager assumes that
cached data is invalid. Our approach is to modify
the cache manager to be more optimistic, allow-
ing access to cached files. This needs to be done
hhhhhhhhhhhhhhhhhh
1 A cell is an AFS administrative boundary, com-
parable to a Kerberos realm. Some examples of
cells are umich.edu, citi.umich.edu,
alw.nih.gov, and cern.ch.

- 2 -



-- --

Disconnected AFS

with care. While it is acceptable to create an
inconsistent view of the file system in the cache
of the mobile machine, we don’t want to store any
data back to the file server that will violate the
AFS consistency guarantees.

The archetypal conflict occurs when an object
modified by a connected client is also modified by
a disconnected client. If the disconnected client
blindly stores data back to the file server, then the
other client’s modifications will be overwritten.
In practice these types of conflicts are rare; for
example, Ousterhout et al., showed that under
work loads similar to ours, write sharing rarely
occurs [12], and later studies agree that in such
environments, write sharing remains rare [9, 13].
Our optimism has also been validated by running
simulations using traces gathered from file servers
that we access on a daily basis [14].

4. Running Disconnected

To make disconnected AFS work, we made
several changes to the cache manager. One
change is to make the cache manager optimistic
about cache consistency. We elected to make
these modifications at the vnode layer [15].
There are several reasons for this decision. First,
it is easier to determine the ‘‘correct’’ behavior
because we have access to all the cache
manager’s information.

In contrast, consider the option of masquerading
as a file server at the remote procedure call (RPC)
layer. The response to an RPC depends on the
the current contents of the cache, as well as other
data structures maintained by the cache manager.
For example, suppose a user is trying to access a
file for which the cache manager no longer has a
callback. Normally the cache manager would
issue a getstatus RPC to the file server,
which returns a callback and the current version
number of the file. While disconnected, it is not
possible to issue this RPC, so we would like the
cache manager to assume (optimistically) that its
cached data are valid. From the RPC layer, this is
difficult because the response must be based on
the current contents of the cache. If the cache
manager doesn’t have a cached copy of the file’s
status, then the request must fail. But if the file’s
status is cached, then the getstatus request
should return the cached information. In either
case the RPC layer needs to have knowledge that
is easily accessible at the vnode layer.

Another reason to make the modifications at the
vnode layer is to aid in propagating file

modifications back to the file server. Operations
to AFS files consist of a pair of vnode operations:
local ones, or ufs_vnodeops, and remote ones,
or afs_vnodeops. When an operation is
applied to an AFS file, the appropriate vnode
operations are called. The afs_vnodeop
checks cache validity, fetches current versions of
the files, stores any modifications back to the file
server, etc . Communication with file servers is
through the RPC layer.

AFS

UFS

RPC

AFS vnode architecture. The AFS
vnode operations use the RPC layer to
communicate with the file server, then
call the underlying UFS vnode opera-
tions to access the data in the local disk
cache.

After the AFS portion of the vnode operation is
completed, ufs_vnodeops are called on to
manipulate the cached data. Consider a read
operation: the AFS vnode operation ensures that
the cached copy of the data is valid, whereupon
the UFS vnode operation, ufs_read, is called
on to return the data out of the local cache.

When the cache manager is disconnected,
ufs_vnodeops are performed while
afs_vnodeops are logged and deferred. When
a network connection is established, the cache
manager iterates through the log of deferred
afs_vnodeops and tries to replay the opera-
tions to the file server. By logging at the vnode
layer, we are assured that after replaying the log,
all of the ufs_vnodeops and
afs_vnodeops have been performed. In the
absence of any conflicts, we will see the same
final state that would have resulted had the opera-
tions been performed while connected.

This creates a good basis for the replay algorithm,

- 3 -



-- --

Huston/Honeyman

but we need to modify the algorithm to account
for operations that might violate the AFS con-
sistency guarantees. This issue is discussed in the
next section.

To put the cache manager into disconnected
mode, the user issues a disconnect command.
Thereafter, every successful vnode operation on a
file generates a corresponding log entry; opera-
tions that fail are not logged. Along with the type
of operation, enough extra information is logged
to allow the replay agent to execute the same
operation when reconnecting with the file server.
The extra information depends on the type of
operation, but is typically such data structures as
file name, AFS’ internal file identifier, and current
data version number. If the operation is one that
modifies the state of the file system, the files in
the local cache are modified to reflect the change.

The principal difference in the cache manager’s
behavior when running disconnected is the way it
enforces consistency. Ordinarily, before the
cache manager references an object, it assures
that it has a callback for that object; if not, then
the cache manager issues a getstatus RPC to
the server to get a callback. When the cache
manager is disconnected, it can not perform this
or any other RPC. Instead it marks the object as
having a callback issued by the local host. (Nor-
mally a callback is marked with the IP address of
the server responsible for the object.) The locally
issued callback is used until AFS is reconnected.

In disconnected mode, the occasional cache miss
is an inevitable fact of life. Under normal cir-
cumstances, the cache manager asks a file server
for the missing information. As a disconnected
cache manager can not get this information, it
returns an appropriate error (ENETDOWN) to the
calling program.

In our travels with a LITTLE WORK along, we
occasionally find that we are missing an impor-
tant file, yet we are not willing to pay the price of
replaying a substantial log, so we have added a
‘‘fetch-only’’ mode of disconnected operation. In
fetch-only mode, the cache manager issues
afs_vnodeop RPCs for non-mutating opera-
tions, and logs mutating afs_vnodeops.

Although early versions of AFS cached whole
files, the current version breaks large files into 64
KB chunks. This chunking lets an AFS client
work with files larger than the local disk. This
has scant advantage for a mobile computer, and
poses potential problems should we discover that
an essential file, say /usr/X11/bin/X386, is

only partially resident in the cache. Our inclina-
tion is to revert to whole-file caching; as an
expedient (read hack), we set the chunk size on
our mobile clients to be one megabyte.

Another problem we have encountered is applica-
tions that unnecessarily demand more information
than the disconnected cache manager can pro-
vide. A potent example is the UNIX file removal
program, rm. In this code fragment, taken from
the Berkeley UNIX rm.c, the program obtains
status information about the target to be removed,
so that it can complain about a request to remove
a directory or a protected file.

if (lstat(arg, &buf)) {
if (!fflg) {

fprintf(stderr, ...);
errcode++;

}
return (0); /* error */

}

If we try to remove a file for which we don’t have
status information cached, rm fails. (Observe
that the −f flag does nothing more than make rm
fail silently, in this case.) Yet the underlying
vnode operations are capable of performing the
operations required to remove the file, although
there are complications on replay. We have
modified our copy of rm.c, but we’re not happy
about it.

5. Replaying the Log

After running disconnected for a while, a network
connection must be established to propagate
modifications back to the file server. Once a con-
nection is established, the user issues the recon-
nect command. This command iterates through
the log of deferred afs_vnodeops and
attempts to perform all the delayed operations.

A problem arises when the same file is modified
by a connected client and a disconnected client.
Before replaying an operation that changes the
state of the file server, say a storedata RPC,
the replay agent checks to see whether the data
has been modified by another client. If so, we
consider the case to be an instance of concurrent
write sharing.2 We don’t have tools to resolve
such a conflict, so the replay agent is left with the
hhhhhhhhhhhhhhhh
2 We don’t assume strictly synchronized clocks, so
we can not use file modification timestamps to
discriminate sequential write conflicts from con-
current ones. Otherwise, we might consider the
traditional UNIX approach: ‘‘last writer wins.’’

- 4 -



-- --

Disconnected AFS

responsibility for preserving both the modified
data on the file server and the modified data in its
cache. Our solution is to store the locally
modified data on the file server in a renamed
object, so that both versions are stored on the file
server. The replay agent also lets the user know a
conflict has occurred, and encourages her to
resolve the problem by hand.

AFS vnode operations can be divided into two
classes. The first class is the non-mutating opera-
tions: these operations do not cause any changes
to file server state. An example of this type of
operation is afs_read. Non-mutating opera-
tions can not be involved in write conflicts, and
don’t require information transfer to the file
server at replay. Nonetheless, we log these
operations because some useful information can
be determined from them, e.g. , we can detect
when stale data may have been used.

The second class of operations are the mutating
ones, those that modify the file server’s state. An
example of a mutating operation is
afs_create. Mutating operations pose the
most concern, as they have the potential to be
involved in write conflicts.

In the next sections, vnode operations of both
classes are listed along with the appropriate
methods for performing the replay and detecting
conflict. Resolving data conflicts is left to the
user, but in many cases, the replay manager can
resolve directory conflicts on its own.

5.1. Non-mutating operations

Non-mutating operations are logged to help deter-
mine if stale data was used. Non-mutating opera-
tions do not cause any changes on the file servers,
and can not be involved in write conflicts. How-
ever, it is possible for non-mutating operations to
be performed on stale data. The goal in replaying
non-mutating operations is to detect any stale data
usage so that the user can be warned appropri-
ately.

Some of the algorithms below use timestamping
to compare the modification times of files with
the time that the operation was performed. This
can be troublesome because a disconnected client
has no means of running a time synchronization
protocol. Consequently we need to rely on the
laptop clock not drifting too far. To help account
for drift we consider changes within a time win-
dow instead of a single instance in time.

5.1.1. afs_open

To determine if a file was stale when it was
opened, the replay agent fetches the current ver-
sion number of the file from the server and com-
pares it to the version number of the file when it
was cached. If the version numbers are identical,
the file was valid when used locally. If they
differ, stale data may have been used; this
depends on whether the open preceded the
modification of the file.

Because an AFS server increments file version
numbers by one each time a file is modified, the
replay agent can tell how many times the file was
modified on the server. If the file was modified
more than once, it is impossible to know the earli-
est modification time, as only the latest
modification time is stored. If the file was
modified exactly once, a comparison of the
modification time with the local open time deter-
mines whether stale data was used. If the file was
modified more than once, and the local open time
does not precede the modification time, it is possi-
ble that stale data was used, but we can’t know.

Using these rules, the replay agent reports to the
user whether stale data was used or may have
been used.

5.1.2. afs_read

The rules for determining the use of stale data are
applied at the time the file is opened, not when it
is read, so no warnings are issued here.

5.1.3. afs_lookup

It is possible to use the same algorithm used by
afs_open to determine whether stale data was
used during a lookup. However, this information
may not provide any useful information to users,
and because of their high frequency, logging
potential lookup conflicts might generate so much
output that it would obscure important messages
from the replay agent. Therefore, we do not
report stale lookups, but we do record them for
our own analysis.

5.1.4. afs_getattr

Attribute modification times are not exported via
AFS, so the replay agent can not know when the
attributes were changed. As a heuristic to deter-
mine whether afs_getattr used stale data,
the replay agent compares the current attributes
with the attributes of the cached file. If the attri-
butes have changed since the last time they were
cached, the replay agent informs the user that

- 5 -



-- --

Huston/Honeyman

stale attributes may have been used.

5.1.5. afs_readlink, afs_access,
afs_readdir

The issues for these vnode operations are similar
to afs_lookup. It is possible to determine if
stale data was used, but this does not seem to pro-
vide any useful information for the user. There-
fore, we treat these operations as we do
afs_lookup.

5.2. Mutating operations

The mutating vnode operations offer the most
challenge. These operations modify server data,
so they have the potential to be involved in write
conflicts and violations of AFS guarantees.

Most conflicts are resolved by creating a new
instance of the object, and dumping the contents
of the disconnected version into the newly created
object. To construct a new name for an object,
the replay agent modifies the original name by
repeatedly appending a suffix until the new name
is unique in its directory. To provide the user
with a hint about the origin of the new file, the
suffix reflects the type of operation being per-
formed. The replay agent keeps track of such
renaming, so that later operations on the same
object are directed to the right file name. For
example, if the replay agent is forced to store
changes to foo in the new file foo.ren, later
attribute changes to foo are applied to
foo.ren.

Sometimes it is not possible to replay the opera-
tions as they were performed while disconnected.
For example, if a file and its parent directory are
removed from the file server, modifications to that
file by a disconnected client will have no place to
be stored. Yet preservation of data is a key goal
of our replay algorithm. To handle these prob-
lems we provide a centralized location called the
‘‘orphanage’’ to store such files.

5.2.1. afs_create

If the parent directory no longer exists, then the
replay agent creates the file in the orphanage. If
the parent exists and the file already exists, then
the replay agent iteratively appends ".creat"
to the name enough times to assure uniqueness,
and creates a file with the name that results. If
there is no conflict, then the cache manager
creates a file in the normal manner.

5.2.2. afs_write

Although afs_write operations modify the
client cache, writes are not propagated to the file
server until the file is closed. This means that we
can ignore afs_writes during replay and be
assured that the right thing will happen when the
file is closed.

5.2.3. afs_close

We can safely ignore any afs_close opera-
tions performed on files opened only for reading.
If the file was open for writing, modifications to
the file must be propagated back to the file server.
We compare the version number of the cached
file to the server’s version number for the file. If
they are the same, then the file has not changed
since we cached it, so we store our changes.

If the version number of the file has changed,
then we do not overwrite the copy on the file
server, not even if we are convinced that the local
user is the ‘‘last writer.’’ Instead, the replay
agent creates a new file with a unique name and
copies the data from the cache into this new file
and notifies the user.

If the parent directory was removed while we
were disconnected, a new version of the file is
created in the orphanage, and the cached data is
copied into this new file.

5.2.4. afs_mkdir

The afs_mkdir call is similar to
afs_create: the replay agent must ensure that
no entry in the parent directory has the same
name as the directory being created. If there is no
conflict, then the afs_mkdir can proceed nor-
mally.

If there is a conflict, then a unique name is gen-
erated and a directory is created with this new
name. If the parent directory no longer exists,
then the new directory is created in the
orphanage.

5.2.5. afs_remove

To replay afs_remove, the replay agent com-
pares its version number of the file being removed
with that on the server. If they are the same, the
file is removed. If they differ, the file has been
modified. We must not remove it as this would
destroy someone else’s fresh data.

To allow files to be removed without having
corresponding attribute information in the cache,
we invent an invalid version number as the

- 6 -



-- --

Disconnected AFS

cached version number. In this case, remove
fails on replay, forcing the user to reissue the rm
command.

5.2.6. afs_rmdir

Because only successful operations are logged,
the locally cached copy of the target directory
must have been empty at the time the rmdir
operation was issued. Therefore, the replay agent
can simply issue the afs_rmdir operation,
assured that the operation will succeed or fail on
the server appropriately. If the operation fails,
the failure status is reported to the user.

5.2.7. afs_link

Like afs_create and afs_mkdir, if the tar-
get does not yet exist, then afs_link proceeds
normally. Otherwise, we generate a unique name
and create the link with this new name.

5.2.8. afs_symlink

This is the same as afs_link, except a sym-
bolic link is being created instead of a hard link.
The replay agent needs to ensure that the name is
unique, then create the symbolic link.

5.2.9. afs_fsync

This operation forces modified data to be stored
on the file server. The replay agent must perform
the same consistency checks as for afs_close.

5.2.10. afs_setattr

In replaying afs_setattr, the replay agent
needs to make sure that no other changes to the
attributes are lost. It needs to compare the current
attribute information with the cached attribute
information. If there are no differences the replay
agent assumes there is no conflict and proceeds
with the setattr.

If there are differences between the current ver-
sion and the cached version, the setattr is
aborted and the user is informed of the conflict. It
would be possible to merge the two versions of
the new attributes if they do not conflict, but this
might lead to some unpredictable side effects.
Instead, we abort the attempt and alert the user.

5.2.11. afs_rename

The afs_rename operation deletes the target if
it already exists; the cache manager logs whether
this was the case when the afs_rename opera-
tion was initially issued. If the target did not

exist, and if a fresh target does not exist on the
server when the replay agent runs, then the
afs_rename operation is issued to the server.
If the target does exist on the server, then its
name is modified to make it unique, and the
afs_rename operation is run with the new tar-
get name.

As with afs_remove, the disconnected cache
manager allows a rename if a destination entry
exists but no information for this entry is cached.
In this case, the destination version number is
marked as invalid so replay will fail to destroy
this file.

6. Data Persistence

One problem encountered in our AFS
modifications is the amount of state that the cache
manager builds while talking to the servers. The
cache manager stores each object in two com-
ponents: the vcache, which holds status and
callback information associated with the object;
and the dcache, which holds the information
needed to translate AFS’ internal name for a file
into a name in the local cache.3

AFS needs a dcache for every file in the cache.
There are too many to hold in kernel memory, so
the cache manager stores most dcaches on disk
and moves them into a memory cache as needed.
vcaches are not as critical, so the cache
manager keeps a large cache of them in kernel
memory. AFS was designed to run on high-speed
networks, so the expense of fetching vcaches
from the file server has traditionally been negligi-
ble. But in a disconnected environment, it is not
possible for the cache manager to ask the file
server for the current vcaches, so we store
vcaches on disk just as we do dcaches, and
move them into memory when they are refer-
enced. This also allows vcache information to
survive reboots.

In addition to the vcache and dcache entries,
the cache manager keeps other important infor-
mation in volatile memory. The AFS namespace
is constructed from subtree components called
volumes [16], which are mounted together to
form AFS’ hierarchical name space. To cross a
hhhhhhhhhhhhhhhh
3 This internal name, called a FID, is a data struc-
ture consisting of a cell identifier, a volume name,
a vnode number, and a version number, e.g. ,
<8DD3A818, 200024A1, 1C8A, 12>. The
local file name looks like
/usr/vice/cache/V1001.

- 7 -



-- --

Huston/Honeyman

mount point, the client must obtain a mapping
from a volume name to a directory identifier and
a server name. Ordinarily, this mapping is
obtained from a volume location database server.
Once a mount point has been crossed, the client
caches the mapping to speed subsequent lookups.
However, this information is kept in volatile
memory, so it does not survive a reboot.

The cache manager needs these volume mappings
and other memory based data structures to access
cached files. For mobile clients to continue work-
ing across reboots, we had to make these data
structures persistent, again using disk files as
backing stores for these data structures. These
data structures are loaded into memory from the
disk files as part of the AFS start up procedure.

7. Current Status

We are running disconnected AFS on our laptop
machines and use it on a daily basis. We have
most of the bugs worked out and are experiment-
ing with disconnected operation to help determine
what features need to be added. Disconnected
AFS was used in writing portions of this paper.

8. FUTURE WORK

There are several areas that we plan to address in
the near term. One issue is callback management.
We would like to add support to the cache
manager so that when it is connected it tries to
keep the most up-to-date version of the files in
our cache. This will help reduce potential replay
conflicts, because we won’t start by using stale
data.

Another issue that needs to be addressed is the
cache replacement policy. AFS currently uses a
least-recently-used (LRU) policy to determine
which items in the cache should be replaced. We
will use our nomadic experiences to determine if
this works well enough for our needs. We may
need to be able to ‘‘pin’’ certain files in the cache,
e.g. , system binaries used to set up a network.

We also plan to provide tools to help users
resolve conflicts. It is sometimes possible to
determine an effective heuristic behavior for a
specific application. For example, we make
heavy use of the MH mailer, which stores each
mail message in a sequentially numbered file. If
messages are inserted simultaneously by a con-
nected client and a disconnected client, we might
end up with a message file called 1234.creat.
Yet we know how to fix matters: rename the file
to an unused number. We plan to write scripts to

address this and other application-specific
scenarios that we encounter.

Another area that needs work is management of
the log file. When running disconnected, many
operations are overruled by later operations. For
instance, if we create a file while disconnected
and remove it before we reconnect, there is no
point in storing the file during the replay. We
plan to write a program that examines the log and
removes this and other extraneous operations.
This will have multiple benefits. First, it will
reduce the disk space needed by the log. Second,
it can reduce the time necessary for replay, and
might make replay more palatable over slow or
expensive data links.

Another problem we face is how to react to the
use of stale data. Ideally, we would like to be
able to identify all the files and processes that
depended on this stale data, so that the user may
be able take some corrective action, such as
rerunning the processes on fresh files. To provide
this functionality, we would need support for
transactions, which could provide us with the
information necessary to detect these read-write
conflicts.

9. Conclusions

Disconnected operation vastly increases the
benefits of nomadic computing. Currently, to use
a LITTLE WORK machine, a user needs only to
use the laptop on a network for a LITTLE WHILE
and the machine is ready to roll. If she performs
work similar to what she intends to do on the
road, the cache will contain all the files necessary
to support her needs. At this point she may tell
AFS to run disconnected.

While traveling, the user can use the laptop as if
she were sitting at her desk. Files and directories
are all in their usual places. When arriving back
home or in a hotel room, the user can establish a
network connection and tell the cache manager to
reconnect, whereupon all changes are propagated
back to stable storage. As a result, the nomadic
computing environment closely mimics the con-
ventional one, vastly extending the range and
scope of mobile computing.

Acknowledgements

We thank Jim Rees, Mike Stolarchuk, Mary Jane
Northrup, and M. Satyanarayanan and for their
insight and assistance. This work was partially
supported by IBM and Telebit.

- 8 -



-- --

Disconnected AFS

References

1. P. Honeyman, L. Huston, J. Rees, and D.
Bachmann, ‘‘The LITTLE WORK Project,’’
Proceedings of the Third IEEE Workshop on
Workstation Operating Systems, Key Bis-
cayne, FL (April 1992).

2. Mike Accetta, Robert Baron, William Bolo-
sky, David Golub, Richard Rashid, Avadis
Tevanian, and Michael Young, ‘‘Mach: A
New Kernel Foundation for UNIX Develop-
ment,’’ USENIX Conference Proceedings,
Atlanta, GA (Summer 1986).

3. R.W. Scheifler and J. Gettys, ‘‘The X Win-
dow System,’’ ACM Transactions on Graph-
ics 5(2) (April, 1987).

4. J.L. Romkey, ‘‘Nonstandard for transmission
of IP datagrams over serial lines: SLIP,’’ RFC
1055, Network Information Center, SRI
International, Menlo Park, CA (June 1988).

5. D.L. Mills, ‘‘Network Time Protocol (Version
3): Specification, Implementation, and
Analysis,’’ RFC 1305, Network Information
Center, SRI International, Menlo Park, CA
(March 1992).

6. J.G. Steiner, B.C. Neuman, and J.I. Schiller,
‘‘Kerberos: An Authentication Service for
Open Network Systems,’’ USENIX Confer-
ence Proceedings, Dallas, Texas (February,
1988).

7. John H. Howard, ‘‘An Overview of the
Andrew File System,’’ USENIX Conference
Proceedings, Dallas, TX (Winter 1988).

8. M. Satyanarayanan, J.J. Kistler, P. Kumar,
M.E. Okasaki, E.H. Siegel, and D.C. Steere,
‘‘Coda: A Highly Available File System for a
Distributed Workstation Environment,’’ IEEE
Transactions on Computers (April 1990).

9. J.J. Kistler and M. Satyanarayanan, ‘‘Discon-
nected Operation in the Coda File System,’’
ACM Transactions of Computer Systems
10(1) (February 1992).

10. P. Kumar and M. Satyanarayanan, ‘‘Log-
Based Directory Resolution in the Coda File
System,’’ Second International Conference
on Parallel and Distributed Information Sys-
tems, San Diego, CA (January 1993).

11. J.S. Heidemann, T.W. Page, R.G. Guy, and
G.J. Popek, ‘‘Primarily Disconnected Opera-
tion: Experiences with Ficus,’’ Proceedings
of the Second Workshop on the Management
of Replicated Data (November 1992).

12. J. Ousterhout, H.L. DaCosta, D. Harrison, J.
Kunze, M. Kupfer, and J. Thompson, ‘‘A
Trace-Driven Analysis of the Unix 4.2 BSD
File System,’’ Proceedings of the 10th ACM
Symposium on Operating Systems Principles
(December 1985).

13. Mary G. Baker, John H. Hartman, Michael
D. Kupfer, Ken W. Shirriff, and John K.
Ousterhout, ‘‘Measurements of a Distributed
File System,’’ Proceedings of the 13th ACM
Symposium on Operating Systems Principles,
Pacific Grove, CA (October 1991).

14. A.M. Khandker, ‘‘Mobile Computing: Run-
ning AFS over Dial-up Connections,’’ CITI
Tech. Report, University of Michigan (In
preparation).

15. S.R. Kleiman, ‘‘Vnodes: An Architecture for
Multiple File System Types in Sun UNIX,’’
USENIX Conference Proceedings, Atlanta,
GA (Summer 1986).

16. R.N. Sidebotham, ‘‘Volumes: The Andrew
File System Data Structuring Primitive,’’
European Unix User Group Conference
Proceedings (August 1986).

Availability

Researchers with an armful of source licenses
may contact info@citi.umich.edu to
request access to our AFS client modifications.

- 9 -


