
CITI Technical Report 95−5

Partially Connected Operation

L.B. Huston
lhuston@citi.umich.edu

P. Honeyman
honey@citi.umich.edu

Center for Information Technology Integration
University of Michigan

Ann Arbor

ABSTRACT

RPC latencies and other network-related delays can frustrate mobile users of a distributed
file system. Disconnected operation helps, but fails to use networking opportunities to
their full advantage. In this paper we describe partially connected operation, an exten-
sion of disconnected operation that resolves cache misses and preserves client cache con-
sistency, but does not incur the write latencies of a fully connected client. Benchmarks
of partially connected mode over a slow network indicate overall system performance
comparable to fully connected operation over Ethernet.

May 25, 1995

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943



Partially Connected Operation

L.B. Huston
lhuston@citi.umich.edu

P. Honeyman
honey@citi.umich.edu

Center for Information Technology Integration
University of Michigan

Ann Arbor

1. Introduction

An important advantage of a distributed comput-
ing environment is on-demand access to distri-
buted data. Disconnected operation [7, 11], a
form of optimistic replication that allows access
to cached data when file servers are unavailable,
has proved successful at providing this access to
mobile users. Disconnected operation is espe-
cially successful at hiding network deficiencies by
deferring and logging all mutating operations,
replaying them later.

Distributed systems tend to be designed to work
in environments that provide high data rates and
low latencies, but these assumptions are generally
invalid in a mobile environment. Here, discon-
nected operation has broad applicability, but is
something of a blunt instrument: by treating net-
works as either available or unavailable, discon-
nected operation does not account for the varying
degrees of network quality encountered by
mobile users.

For example, even though AFS [6] caches aggres-
sively and has good support for low-speed net-
working in the transport protocol [1], the network
latency that accompanies many operations can
make AFS over a low-speed network a trying
experience. This affects user satisfaction when
interactive response time is increased beyond that
which a user is willing to tolerate.

One option is to use disconnected operation when
only a low bandwidth network is available, using
the network solely to satisfy cache misses. This
approach does not support the AFS cache coher-
ence mechanisms, so a user may unwittingly use
hhhhhhhhhhhhhhhhhh
This paper appears as pp. 91−97 in Proc. of the Second
USENIX Symposium on Mobile and Location-
Independent Computing, Ann Arbor (April 1995).

stale data at a time when it is possible to obtain
the most recent version. Furthermore, mutating
operations are not propagated immediately,
increasing the chance that two users might con-
currently update the same file.

Lying between connected and disconnected
operation is a mode of operation that allows us to
hide many of the network latencies, yet to con-
tinue to use the network to maintain a relaxed
form of cache consistency. In the remainder of
this paper, we give an overview of our approach
and some implementation details, and present
some benchmarks that illustrate the effectiveness
of the technique.

2. Background

The work presented in this paper is based on a
version of the AFS client that supports discon-
nected operation [7]. The client cache manager
supports three modes of operation; connected,
disconnected, and fetch-only. In connected mode
the cache manager is an ordinary AFS client,
using callback promises to preserve cache coher-
ence [10]. In disconnected mode the cache
manger treats the network as unavailable, and
allows cached data to be used even though cache
consistency can not be guaranteed. File and
directory modifications are also handled optimist-
ically: updates are reflected in the disconnected
cache and logged for later propagation to the file
server when the decision is made to return to con-
nected operation. Conflict due to overlapping
updates while disconnected is possible, but rare.

Fetch-only mode is similar to disconnected mode,
but differs in that it processes cache misses by
requesting the needed data from the server. We
use fetch-only mode frequently, both at home and
when traveling, to bring missing files to a client
without the cost of a full replay.

- 1 -



Huston/Honeyman

When a network is available, the user may choose
to return to connected operation. The cache
manger replays the log of deferred operations by
iterating through the operations and propagating
the modifications to the server. Before any opera-
tion is replayed, the cache manager examines
server state to make sure someone else’s newly
created data is not destroyed. Manual error
recovery is invoked if such a conflict occurs.

3. Related work

Our work with disconnected operation is inspired
by the CODA project, which introduced the con-
cept of disconnected operation and identified its
usefulness for mobility [11]. CODA researchers
are working on support for low bandwidth net-
works, such as predictive caching to obviate net-
work demands caused by cache misses, and
trickle discharging, which shares our goal of
using network connectivity opportunistically
without interfering with other traffic [3].

The Echo distributed file system is similar to ours
in its use of write behind to reduce the latencies
of operations and improve performance [14]. We
depart from the Echo approach in two important
ways. The first is failure semantics. We log syn-
chronously, so when an operation completes, its
changes are committed to the log and will eventu-
ally be replayed. Echo applications must either
call fsync or a special operation that guarantees
the order in which operations are committed to
the server.

Echo enforces single system UNIX semantics by
demanding delayed updates from client machines.
In the mobile environment this requirement might
be expensive or impossible to honor and can pro-
ject the bandwidth latencies of mobile networks
onto users of a high speed network.

4. Partially connected operation

We now describe partially connected operation, a
technique for mobile systems that lies between
connected and disconnected operation. As in
disconnected operation, all file system writes are
performed locally and logged. The main differ-
ences from disconnected operation are in the way
it maintains client cache coherence and processes
cache misses.

In partially connected mode, as in disconnected
operation, vnode operations that cause file
modifications are processed by modifying the file
cache to reflect the update and creating a log
entry. In some cases the ordinary AFS cache

manager delegates error checking to the server,
but we need to fail invalid operations as they
occur, so we modified the cache manager to per-
form the necessary checks locally.

In disconnected mode, the cache manager
behaves as though the network were unavailable
and optimistically assumes that all cached data is
valid. In contrast, partially connected mode
assumes the availability of some communication
between the client and file servers. This lets us
use AFS callbacks to offer regular AFS con-
sistency guarantees to the partially connected
client: such a client opening a file is guaranteed to
see the data stored when the latest (connected)
writer closed the file [10]. Of course, all AFS
clients, including partially connected ones, see
their local modifications before the file is closed
and propagated to the server.

Directories can be tricky. A partially connected
user may insert a file in a directory, while another
user inserts another entry into the directory. If
the cached version of the directory is used
(because it has local modifications not yet pro-
pagated to the server), the entry inserted by the
other user will not be seen, so we have to fetch a
fresh copy of the directory and merge in our
update. We plan to address this problem in the
future.

On low bandwidth networks, the user may not
always want the most recent version of files. For
example if any files under /usr/X11/bin/ are
modified, the user may wish to continue using the
cached versions instead of incurring the cost of
fetching the most recent version.† We are investi-
gating methods of providing an interface to allow
this form of selective consistency.

5. Background replay

In disconnected operation, file modifications are
not propagated immediately, making it difficult to
share data consistently and increasing the likeli-
hood of a conflict during replay [12]. For par-
tially connected operation, we want to take
advantage of network availability no matter what
the quality if it lets us achieve timely propagation
of updates, so we implemented a background dae-
mon to replay the log whenever opportunities
arise or at the user’s discretion.

Two significant issues arise when replaying
hhhhhhhhhhhhhhhh
† At some point the current version should be brought
into the cache, but this can be deferred to a background
task that runs when the system is otherwise quiescent.

- 2 -



Partially Connected Operation

operations in the background. The first issue is
rational management of network resources, so
that the response times for interactive and other
traffic do not suffer. The second issue is the
effect on optimization: we and our CODA coun-
terparts have observed that optimization of large
logs can be considerable [8, 17], vastly reducing
the amount of network traffic necessary for
replay. Aggressive background replay may deny
us this savings.

5.1. Priority queuing

The network is a primary resource in the mobile
environment, so it is vital to keep replay traffic
from interfering with a user’s other work. Com-
petition among various types of network traffic
can increase interactive response time by causing
interactive traffic to be queued behind replay
traffic. Studies have shown that interactive
response time is important to a user’s satisfaction
[18].

Similarly, replay traffic might compete with an
AFS fetch, which is undesirable if a user is
waiting for the completion of the associated read
request. No user process blocks awaiting replay,
so replay operations should be secondary to all
other network requests.

One solution is to replay operations when the net-
work is otherwise idle. In practice this solution is
hard to implement; it is difficult to tell when a
network (or other resource) is idle [4]. Further-
more, some operations, such as store requests,
may take several minutes to complete. To avoid
interference with interactive traffic, the replay
daemon would need to predict a user’s future
behavior.

Our solution is to augment the priority queuing in
our network driver. Our approach is an extension
of Jacobson’s compressed SLIP [9] implementa-
tion, which uses two levels of queuing in the
SLIP driver: one for interactive traffic, and one
for all other traffic. When the driver receives a
packet for transmission, it examines the destina-
tion port to determine which queue to use. When
ready to transmit a packet, it first transmits any
packets on the interactive queue. The low prior-
ity queue is drained only when the interactive
queue is empty.

We extend this approach by using three levels of
queuing: interactive traffic, other network traffic,
and replay traffic. AFS fetch requests are put
on the second queue because a user is likely to be
waiting for the completion of a read request.

When determining which packet to transmit we
depart from Jacobson. In his SLIP implementa-
tion, the packet with the highest priority is always
sent first, which for our purposes might lead to
starvation of the low priority queue(s). For exam-
ple, suppose the replay daemon is storing a file in
the background and the user starts a large FTP
PUT. FTP packets takes precedence over replay
traffic, so no replay traffic will be transmitted dur-
ing the duration of the FTP transfer. If the FTP
transfer lasts long enough, the AFS connection
will time out, and lose any progress it has made
on the operation being replayed.

To prioritize the queues without causing starva-
tion, we need a sophisticated scheduler that
guarantees a minimum level of service to all
traffic types. We use lottery scheduling, which
offers probabilistic guarantees of fairness and ser-
vice [19].

Lottery scheduling works by giving a number of
lottery tickets to each item that wants to access a
shared resource. When it is time to choose which
item gets use of the resource, a drawing is held.
The item holding the winning ticket gets access to
the resource. This gives a probabilistic division
of the access to the resource based on the number
of tickets that each item holds.

In our driver, we assign a number of tickets to
each of the queues, according to the level of ser-
vice deemed appropriate. When it is time to
transmit a packet we hold a drawing to determine
which queue to transmit from. Ticket allocation
is a flexible way to configure the system and pro-
vides an easy-to-understand ‘‘knob’’ to turn for
system tuning.

For the measurements described in this paper, we
gave eight tickets to the interactive queue, three
to the demand network traffic queue, and one to
the replay queue. In future work, we plan to
measure the effect of varying these static assign-
ments. Under some circumstances, we may elect
to vary them dynamically.

5.2. Delayed writes

Effective crash recovery is critical whenever
delaying writes. We commit all file and metadata
modifications to the log as quickly as possible, so
that we don’t have any dirty data in the buffer
cache in a crash. Log replay works after a client
crash — in our prototypes, we rely on it often
(sadly).

Distinct connected clients that sequentially write
a shared file don’t experience a conflict, but

- 3 -



Huston/Honeyman

delaying one of the updates can produce a con-
current write sharing conflict when replaying the
log, so it is to our advantage to replay the log
without much delay. In addition, delaying update
for too long hampers the timeliness and potential
usefulness of shared data; there is good reason to
propagate logged operations aggressively.

On the other hand, delaying replay offers an
opportunity for optimizing the log. Ousterhout
reported that most UNIX files have a lifetime
under three minutes and that 30−40% of modified
file data is overwritten within three minutes [16].
Using our optimizer [8], we find it typical for
70% of the operations in a large log to be elim-
inated. It is clear that delaying log replay can
significantly reduce the amount of data pro-
pagated to the server.

We may wish to enforce a minimum delay before
replaying an operation, especially on networks
with a per-packet cost, so that optimization could
have an effect. On the other hand, if the network
is available and idle and costs nothing to use, then
there is nothing to be saved. On our dialups or
our Ethernet, we propagate changes aggressively,
whenever surplus network bandwidth is available.
We run the optimizer only when changing from
disconnected to connected or partially connected
operation. In the future, we plan to experiment
with different approaches to configuring the delay
according to the varying network characteristics.

6. Results

To see how well partially connected operation
performs in the low-speed and intermittent net-
works that interest us, we measure running times
for several benchmarks. We start with hot data
and attribute caches, so that comparisons between
Ethernet and low-speed networks are meaningful.
Later we examine the effect of a cold attribute
cache.

We ran the benchmarks over Ethernet, over SLIP
in connected mode (C-SLIP), and over SLIP in
partially connected mode (P-SLIP). Measure-
ments were made on a 33 Mhz Intel 486 client
running Mach 2.5. We used SLIP on a 57.6 Kbps
null modem connection to avoid the variability in
network transfer time due to modem latencies and
compression.

6.1. nhfsstone benchmark

To measure the fine-grained effect of partially
connected operation on individual operations, we
ran the nhfsstone benchmark [13], modified to
remove NFS dependencies. The results in Table
1 show that P-SLIP runs substantially faster than
C-SLIP, as we would expect.

Operation Ethernet C-SLIP P-SLIPiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
setattr 21 516 33iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
write 255 3,517 123iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
create 218 2,036 99iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
remove 62 629 41iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
rename 23 294 41iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
link 36 319 40iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
symlink 125 383 47iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
mkdir 129 635 73iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
rmdir 132 351 40iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1. Comparison of mutating operation
completion times. This table compares the time to
perform various vnode operations in three cases:
over an Ethernet, over SLIP in connected mode,
and over SLIP in partially connected mode. The
measurements were made using a version of
nhfsstone. All times are in milliseconds.

Operations that run slowly over Ethernet run fas-
ter in P-SLIP, which has the advantage of defer-
ring network requests. Because all P-SLIP opera-
tions involve synchronous logging, there is a
lower bound to the running time for any particular
operation.

6.2. Andrew benchmark

We ran the Andrew benchmark [5], a synthetic
workload that copies a file hierarchy, examines
the copied files, and compiles source files. This
benchmark, summarized in Table 2, shows that
partially connected operation dramatically
improves the running time of the Andrew bench-
mark: partially connected mode over SLIP is
much faster than its connected counterpart.
Because many network delays are removed from
the critical path, the benchmark runs only a little
slower on P-SLIP than over Ethernet.

These examples show that partially connected
mode improves the response time for file system
operations. With a hot cache, a remote user can
expect tasks to run almost as fast as in the office
environment.

- 4 -



Partially Connected Operation

Phase Ethernet C-SLIP P-SLIPiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MakeDir 4 29 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Copy 31 191 23iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ScanDir 18 26 45iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ReadAll 28 30 40iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Make 117 507 116iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Total 200 783 218iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table 2. Andrew benchmark results. This table
shows the running time of the Andrew benchmark
over Ethernet in connected mode, and over SLIP in
connected and partially connected mode. Both
SLIP measurements started with hot data and attri-
bute caches. All times are in seconds. Integer
roundoff accounts for differences between column
entries and column totals.

6.3. Replay time

We measured the log replay time for the Andrew
benchmark over partially connected SLIP. Figure
1 shows the size of the log as the Andrew bench-
mark runs through its phases. The solid horizon-
tal line along the bottom of the graph shows the
running times of the MakeDir, Copy, and Make
phases of the benchmark. (The ScanDir and
ReadAll phases are read-only.) The dashed hor-
izontal line shows the time at which the
corresponding parts of the log were replayed.

length of the replay log

0

50

100

0 sec 100 200 300 400

run time

Figure 1. Length of replay log. This figure shows
the number of operations in the replay log while
running the Andrew benchmark over partially con-
nected SLIP. The solid horizontal line show the
running time of the MakeDir, Copy, and Make
phases of the benchmark. The ScanDir and
ReadAll phases are not shown, as they issue no net-
work requests. The dashed horizontal line shows
the times at which the operations logged by these
three phases are run.

A total of 222 operations are logged, with no
more than 99 operations pending at any time.
Table 3 shows that logged operations are delayed
over a minute on average, and up to four minutes
in the extreme.

average maximumiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cold cache 62 207iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
hot cache 87 249iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c

c
c
c

c
c
c

c
c
c

Table 3. Delay time in the replay log. This table
shows the average and maximum time that opera-
tions await replay while running the Andrew
benchmark. When running with a cold attribute
cache, the benchmark is frequently stalled, giving
the replay daemon more opportunities to work on
the log, resulting in shorter average and maximum
delays. The total time to run the benchmark and
exhaust the log is about the same in both cases. All
times are in seconds.

6.4. Replay interference

The running times of the Andrew benchmark vary
according to whether the data and attribute caches
are hot or cold, as well as whether the replay dae-
mon is running or idle. Table 4 shows the effect
of controlling some of these variables.

I II III IViiiiiiiiiiiiiiiiiiiiiiiii
replay off replay oniiiiiiiiiiiiiiiiiiiiiiiiicc

Phase hot cold cache hotiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MakeDir 3 3 2 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Copy 19 26 47 23iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ScanDir 14 15 48 45iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ReadAll 25 25 40 40iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Make 94 96 106 116iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Total 155 165 249 218iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Table 4. Cold cache Andrew benchmark results.
This table shows the effect of running the Andrew
benchmark with a hot or cold attribute cache, and
with the replay daemon running or disabled. All
times are in seconds. Integer roundoff accounts for
differences between column entries and column to-
tals.

A cold attribute cache slows the pace of the
benchmark, giving the replay daemon more
opportunities to whittle away at the log in the ear-
lier phases, so that the average and maximum
delay of logged operations is decreased, as shown
in Table 3. The replay daemon itself causes the
benchmark to slow down by 40−50% overall.
This may be due in part to network contention,
but even the ScanDir and ReadAll phases, which
hit hot caches and don’t use the network at all,
run slower when background replay is active.
This points the finger at contention for local
resources; we suspect competition for locks in the
AFS cache manager to be a contributor.

There is one mysterious entry in Table 4: the run
time of the Copy phase for cold cache + active

- 5 -



Huston/Honeyman

replay daemon (case III, 47 sec.). This is the hard
case, where background replay has the most
opportunities to interfere with interactive opera-
tions. Still, the penalty is higher than we
expected, and we suspect a bug in our code.

To isolate the effect of network interference
caused by running the replay daemon, we ran the
Andrew benchmark in fetch-only mode with the
replay daemon turned on and off. The run times
should be comparable to the corresponding hot-
cache trials in Table 4, but in fact the benchmark
runs quite a bit faster in fetch-only mode, as
shown in Table 5.

I ′ IV ′ localiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
replay off replay on hhhhh

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

Phase hot cache hhhhh
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MakeDir 2 2 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Copy 18 23 13iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ScanDir 14 16 13iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ReadAll 24 42 23iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Make 93 104 88iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Total 152 197 139iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Table 5. Andrew benchmark results for fetch-
only mode and local disk. This table shows the
effect of running the Andrew benchmark in fetch-
only mode with a hot attribute cache, and with the
replay daemon running or disabled. All times are
in seconds. Integer roundoff accounts for differ-
ences between column entries and column totals.
For comparison, local disk times are also shown
here.

The difference in run-times caused by enabling
the replay daemon in fetch-only mode is a little
more than 10%; we believe that we will be able to
debug and tune our implementation to achieve
these differences in partially connected mode as
well. With replay disabled, hot cache run times
do not differ much for partially connected mode,
fetch-only mode, and disconnected mode (not
shown).

7. Discussion

Partially connected operation promises to
improve response time and reliability, while
interfering only slightly with AFS cache con-
sistency guarantees. AFS guarantees that a client
opening a file sees the data stored when the most
recent writer closed the file. Because a partially
connected client does not immediately propagate
changes, other users can not see modified data.
Furthermore, conflicts may occur if partially con-
nected users modify the same file. In our experi-
ence, these conflicts are rare; a substantial body

of research concurs by showing that this kind of
file sharing is rare [2, 11, 16].

If stronger guarantees are needed, they might be
provided by server enhancements. For example,
an enhanced consistency protocol might inform
servers that dirty data is cached at a client; when
another client requests the data, the server can
demand the dirty data, as is done in Sprite [15]
and Echo.

We choose not to implement this mechanism for
several reasons. First, it assumes that the server
is able to contact the client on demand, an
assumption that may not always be true. Addi-
tionally, demand fetching can place a severe
strain on a client’s network connection. Because
of the limited bandwidth, one user may see her
effective bandwidth drastically reduced because
another user is reading a file that she has
modified; this may not be acceptable to all users.
Finally, such a change would require changing all
of the AFS servers in the world to support the
new protocol; practically speaking, this is out of
the question.

References

1. D. Bachmann, P. Honeyman, and L.B. Hus-
ton, ‘‘The Rx Hex,’’ in Proc. of the First Intl.
Workshop on Services in Distributed and
Networked Environments, Prague (June
1994).

2. Mary G. Baker, John H. Hartman, Michael D.
Kupfer, Ken W. Shirriff, and John K.
Ousterhout, ‘‘Measurements of a Distributed
File System,’’ in Proc. of the 13th ACM
Symp. on Operating Systems Principles, Asi-
lomar (October 1991).

3. Maria R. Ebling, Lily B. Mummert, and
David C. Steere, ‘‘Overcoming the Network
Bottleneck in Mobile Computing,’’ in Proc.
of the IEEE Workshop on Mobile Computing
Systems and Applications, Santa Cruz
(December 1994).

4. Richard Golding, Peter Bosch, Carl Staelin,
Tim Sullivan, and John Wilkes, ‘‘Idleness is
Not Sloth,’’ pp. 201−212 in Proc. of the
USENIX Conf., New Orleans (January 1995).

5. J.H. Howard, M.L. Kazar, S.G. Menees, D.A.
Nichols, M. Satyanarayanan, R.N. Sidebot-
ham, and M.J. West, ‘‘Scale and Performance
in a Distributed File System,’’ ACM Transac-
tions on Computer Systems 6(1) (February,
1988).

- 6 -



Partially Connected Operation

6. John H. Howard, ‘‘An Overview of the
Andrew File System,’’ pp. 23−26 in Proc. of
the Winter USENIX Conf., Dallas (January
1988).

7. L.B. Huston and P. Honeyman, ‘‘Discon-
nected Operation for AFS,’’ in Proc. of the
1993 Symp. on Mobile and Location-
Independent Computing, Cambridge (August
1993).

8. L.B. Huston and P. Honeyman, ‘‘Peephole
Log Optimization,’’ in Proc. of the IEEE
Workshop on Mobile Computing Systems and
Applications, Santa Cruz (December 1994).

9. V. Jacobson, ‘‘Compressing TCP/IP Headers
for Low-Speed Serial Links,’’ RFC 1145,
Network Information Center, SRI Interna-
tional, Menlo Park (February 1990).

10. Michael Leon Kazar, ‘‘Synchronization and
Caching Issues in the Andrew File System,’’
in Proc. of the Winter USENIX Conf. (Febru-
ary 1988).

11. J.J. Kistler and M. Satyanarayanan, ‘‘Discon-
nected Operation in the Coda File System,’’
ACM Transactions of Computer Systems
10(1) (February 1992).

12. James J. Kistler, ‘‘Disconnected Operation in
a Distributed File System,’’ Ph.D. Thesis,
Carnegie Mellon University (May 1993).

13. Legato Systems, Inc., NHFSSTONE, July,
1989.

14. T. Mann, A. Birrell, A. Hisgen, C. Jerian, and
G. Swart, ‘‘A Coherent Distributed File
Cache with Directory Write-behind,’’ SRC
Research Report #103, Digital Equipment
Corporation (June 1993).

15. M. Nelson, B. Welch, and J. Ousterhout,
‘‘Caching in the Sprite Network File Sys-
tem,’’ IEEE Transactions on Computers 6(1)
(February 1988).

16. J. Ousterhout, H.L. DaCosta, D. Harrison, J.
Kunze, M. Kupfer, and J. Thompson, ‘‘A
Trace-Driven Analysis of the Unix 4.2 BSD
File System,’’ in Proc. of the 10th ACM
Symp. on Operating Systems Principles,
Orcas Island, WA (December 1985).

17. M. Satyanarayanan, James J. Kistler, Lily B.
Mummert, Maria R. Ebling, Pumeet Kumar,
and Qi Lu, ‘‘Experience with Disconnected
Operation in a Mobile Computing Environ-
ment,’’ in Proc. of the 1993 Symp. on Mobile
and Location-Independent Computing,

Cambridge (August 1993).

18. B. Shneiderman, Designing the User Inter-
face, Addison-Wesley (1987).

19. Carl A. Waldspurger and William E. Weihl,
‘‘Lottery scheduling: flexible proportional-
share resource management,’’ pp. 1−11 in
Proc. First Symp. on Op. Sys. Design and
Impl. (OSDI), Monterey (Nov. 1994).

Availability

Researchers with an armful of source licenses
may contact info@citi.umich.edu to
request access to our AFS modifications.

- 7 -


