
Performance Modeling of the Distributed Computing Environment

A. M. Khandker

masud@citi.umich.edu

J. A. Rolia

jar@sce.carleton.ca

T. J. Teorey

teorey@eecs.umich.edu

1 Introduction

Distributed application systems are often im-
plemented using services provided by middle-
ware environments. Examples of midware en-
vironments include the Open Software Foun-
dation's Distributed Computing Environment
and the Object Management Group's Com-
mon Object Request Broker Architecture. In
these environments, application processes re-
quest services both from devices (such as pro-
cessors, disks, and networking elements) and
from software servers. Communication in these
environments is complex, and performance is
di�cult to predict.

At the Center for Information Technol-
ogy Integration (CITI), at the University of
Michigan, we run the Open Software Foun-
dation's Distributed Computing Environment
(OSF/DCE) [10], a platform for distributed
computing. DCE is a collection of tools and
services for the development, use, and main-
tenance of transparent distributed application
systems.

The DCE architecture (Figure 1) is layered
bottom-up from the most basic, or suppliers
of services, to the highest-level consumers of
services, the applications. DCE provides run-
time support for distributed applications. This
runtime support hides much of the underlying
complexities of distributed environments. This
support is basically a layer of software that
provides standard interfaces to the upper layer
applications, helping develop portable applica-

Distributed Applications

Operating System

Threads

RPC

DTS DFSDirectory
Services Services

Security

Figure 1. DCE layered architecture. Each layer

relies on the services provided by the lower layers, the

suppliers of services, and provides standard interfaces

to the upper layers, the consumers of services. The

shaded regions show the components of DCE.

tions. The communicationparadigm supported
by DCE is the synchronous Remote Procedure
Call (RPC) [2]. RPC relies on the transport
layer services provided by the operating sys-
tem. The transport layer, in turn, uses the net-
work layer services below. These layers of soft-
ware provide boundaries for decomposing the
system into smaller components, enabling us
to build less complex models of those individ-
ual components. The problem, then, becomes
how to integrate these individual models to ob-
tain the overall performance of the system. In
this paper, we focus our attention on the DCE
RPC, but the methodology we describe is ap-
plicable to any distributed system with similar
architecture, e.g., Sun's ONC.

Figure 2 shows the decomposition of a DCE



Khandker/Rolia/Teorey

RPC MODEL
RPC Layer RPC Layer

UDP Layer UDP Layer

IP LayerIP Layer

UDP MODEL

SERVER MODELUSER MODEL

Client Application Server Application

Physical Layer

NETWORK MODEL

Data Link Layer Data Link Layer

Figure 2. Protocol layering. Shows decomposition

of client/server communications along the communi-

cations protocol boundaries. Models include one or

more protocol layers.

application along the protocol layer boundaries
and �ve di�erent models that include one or
more protocol layers. Queueing delays may
arise at any of these layers when the layer is
implemented as a software server. In such a
case, that layer is to be reected as a server in
our predictive performance model.

For simplicity, we don't include the highest
level of DCE services, i.e., the directory, secu-
rity, time, and �le service, in the model. DCE
RPC can run both on TCP and UDP; we con-
sider RPCs that run on UDP only. The UDP
and IP layers are merged together (i.e., the ser-
vice demand for the IP layer is included in the
UDP layer service demand) and a single model
called the UDP model is built. The bottom
two layers are modeled with NetMod [1], a net-
work modeling tool. For the rest of the paper,
we call the model for the lowest two layers the
network model. (This is not to be confused
with the ISO network layer.)

Fundamental to the overall performance of
DCE is the round trip time, also known as la-
tency or response time, of its RPC mechanism
{ the time elapsed between when an RPC is
invoked and when a response is returned. The
round trip time includes the overhead associ-
ated with the RPC layer as well as delays at
the layers below (Figure 2). In this paper, we

focus on the round trip time of DCE RPC.

Because our primary focus for this paper is
not the DCE client or server applications, we
don't model them. We use synthetic applica-
tions so simple that their presence can sim-
ply be ignored during model validations. The
RPC and UDP layers in a single machine con-
tend for the same CPU and thereby add to the
queueing delay. We develop a Layered Queue-
ing Model (LQM) [8] for the RPC and UDP
layers that takes care of such situations. The
Method of Layers (MOL) [8] is used to analyze
the LQM. The network model is analyzed by
a network modeling tool called NetMod. The
performance of UDP and RPC depends on the
delay at the network. So the network layer de-
lay must be an input to the LQM. Again, the
delay at the network is dependent on the packet
throughput. Packet throughput depends on
the UDP and RPC layer delay and must be
given as an input to NetMod. For that reason,
we need to solve these two models iteratively
until the round trip time converges.

The following sections describe related work,
how DCE RPC works, the modeling and anal-
ysis technique used (layered queueing models,
method of layers, and NetMod), and the model
integration. The remaining sections discuss
validation of the model and future work.

2 Related Work

Rolia et al. studied the performance behavior
of an application server executing within DCE
on an AS/400 communicating with other pro-
cesses using RPC [9]. They developed a layered
queueing model that reects the contention for
the AS/400's processor and contention for the
TCP/IP, listener, and executor processes on
the AS/400. A signi�cant amount of measured
information, including the number of resends
and TPC/IP time per packet, were used to cre-
ate the analytic model. Their model allowed
them to vary those values and to estimate the
impact on performance of DCE implementation
alternatives. Our model is geared to character-
izing RPC round trip times in general environ-
ments.

-2-



Performance Modeling of the Distributed Computing Environment

3 Background on DCE

RPC

In DCE, a potential server exports a descrip-
tion of the service it provides into the cell di-
rectory service (CDS), via the name service in-
terface (NSI). Before issuing an RPC, a client
obtains descriptive information (e.g., by im-
porting from the CDS) and chooses a server
from a set of compatible ones. This process is
known as binding. At this point, the client is
said to be partially bound because it knows only
the network address (e.g., IP address) of the
server machine but does not know the trans-
port layer address (e.g., TCP/UDP port num-
ber) of the server within that machine. The
transport layer address is obtained by commu-
nicating with the server's endpoint mapper at
the beginning of the �rst RPC. Once this is
done, the binding information is complete and
the client is said to be fully bound.
The end product of the binding process is a

binding handle, which is a reference to binding
information stored in the RPC runtime.1 The
client caches the binding handle for making fu-
ture calls to the same remote interface.
Creating a binding handle has a one time

cost incurred before and during the �rst call
to a remote interface. Subsequent RPCs to the
same interface by the same client do not involve
that overhead. We ignore that overhead in our
performance model.
RPCs can be implemented on any trans-

port layer protocol, such as TCP or UDP. We
con�ne our model to RPCs over UDP only.
When an RPC is made over the UDP layer,
ow is controlled by the RPC runtime. We
assume that Jacobson's method of congestion
control [4], which maintains windows for trans-
mission, is used for ow control. The round trip
times in our model assume no retransmission.
Any amount of data can be sent with an

RPC. This data is referred to as the request
data. Similarly, any amount of data can be re-
ceived back from the call. This is known as the
reply data.
DCE supports user level threads for achiev-

ing better concurrency. When threads are em-

1RPC runtime is a layer of software on top of the
transport protocol, which provides general support for
RPC operations.

ployed, a single client process can issue one
RPC per thread. As a result, in a multi-
threaded process more than one RPC can be
in progress at any instant.
When a client application calls a procedure

in a remote interface, control is transferred to
the stub module for that interface in the caller's
address space. The client machine then per-
forms the following steps:

C1 : Creates a call handle from the binding
handle and obtains the negotiated trans-
fer syntax.

C2 : Marshals the arguments using the transfer
syntax from step 1.

C3 : Copies the request data into the call
packet(s). If the data size is greater than
the current window size, copies a portion
of it into the call packet(s).

C4 : Hands call packets to the UDP layer for
transmission. Note that one call packet
may generate more than one network
packet.

C5 : Handles interrupts generated by the Eth-
ernet controller for transmitting each net-
work packet. If more data needs to be
sent, marshals the next window of data
and copies into the call packet(s). Sets
the wakeup timers (in case retransmission
is warranted) and waits for the acknowl-
edgement or reply.

C6 : As the packets containing the acknowl-
edgement or the reply comes in, handles
interrupts for the arrival of each network
packet. Lets the IP and UDP layers ex-
tract the RPC packet and resumes the
client process waiting for the packet.

C7 : Copies the received data into the caller's
address space. If the data marks the end
of the RPC, returns the call to the caller;
otherwise, waits for more data. If an ac-
knowledgement is received, and more data
needs to be sent, goes to step 4 to send
more data.

A DCE server performs the following steps:

-3-



Khandker/Rolia/Teorey

S1 : Handles the interrupts generated by the
Ethernet controller upon arrival of each
network packet.

S2 : Extracts the RPC packet and transfers
control to the listener thread of the server
process waiting for the RPC.

S3 : The listener thread wakes up one of the ex-
ecutor threads from a pool of threads wait-
ing to provide service. The listener thread,
then, waits for more incoming packets.
The executor thread, after some initial set-
ups, unmarshals the arguments.

S4 : The executor thread calls the actual RPC
(i.e. the service procedure).

S5 : Sends the result packet(s).

S6 : Handles interrupts generated by the Eth-
ernet controller for transmitting reply
packets. The listener thread checks for
more incoming packets. If nothing can
be done at this point, sets some wakeup
timers, blocks itself, and waits for the next
RPC.

Note that both the client step C5 and the
server step S6 are performed in parallel with
other devices servicing the RPC. Also, the in-
terrupt handlings are asynchronous and are
overlapped with the network transmission time.
In a typical distributed environment, these
steps do not (directly) contribute to the round
trip time of the RPC. However, processing
these steps consumes resources, and adds to
the queueing delay. The model must account
for these overlapping services.

4 Modeling and Analysis

Techniques

In this section, we introduce the modeling and
analysis techniques that we use later to model
DCE. We discuss the Layered Queueing Model
(LQM), a technique for modeling hierarchi-
cal software systems, the Method of Layers
(MOL), a method for analyzing an LQM, and
NetMod, a tool for network performance mod-
eling.

4.1 The Layered Queueing Model

In hierarchical software systems that contain
one or more layers of software servers, a pro-
cess can act as both customer and server, so it is
possible for one process to visit another. While
one process is acting as a server to another pro-
cess, it is possible that they are competing for
a single hardware device, e.g. the CPU. This
type of situation can be modeled by the Lay-
ered Queueing Model (LQM) described by Ro-
lia [8]. In an LQM, processes having statisti-
cally identical behavior form a group or class.
Groups use devices but can also request ser-
vices from and provide services to other groups.

4.1.1 Model Parameters

The input parameters for an LQM are a super-
set of those required for closed separable queue-
ing network models. They are:

G;K Set of groups and
devices

L The number of soft-
ware levels in the
LQM hierarchy

Gn 8n�1 � �L The set of groups at
level n of hierarchy

Ng 8g�G Population of group g
Vg;h 8g; h�G The average number

of visits from group g
to group h

Vg;k 8g�G8k�K The average number
of visits from group g
to device k

Sg;k 8g�G8k�K The average service
time of a visit from
group g to device k

Zg 8g�G The think time of
group g

 j 8j�G [K The queueing disci-
pline of group or de-
vice j

For serving groups, the think time input pa-
rameter, Zg, is assumed to be zero.

4.2 The Method of Layers

The Method of Layers (MOL), also proposed
by Rolia [8], provides performance estimates

-4-



Performance Modeling of the Distributed Computing Environment

for LQMs. The MOL divides an LQM into
two types of models. The software contention
model describes the software relationships in
the process architecture. The device contention
model describes each group's device usage. The
two models are solved alternately, with the so-
lution of one helping to determine some of the
parameters of the other.

The MOL requires groups of processes in
a software contention model to be associated
with levels in a hierarchy. A process that re-
quests service from another is one level up in
the hierarchy. Requests for service that span
more than one level can be mapped onto LQM,
but require some special techniques. It is also
necessary that requests be acyclic, i.e. there
may be no cycles in the graph. The MOL de-
composes the software contention model into
several two-level models and treats each of
them as a closed Queueing Network Model
(QNM). The device contention model can have
only two layers; all groups belonging to the top
level and all devices to the bottom one. The
MOL treats this con�guration as a closed QNM
as well.

As mentioned earlier, the MOL alternates
between the software contention model and the
device contention model for solution. The ini-
tial values are obtained assuming no device
and software contention. Then the software
model is considered { beginning with the top
two layers, treating them as a closed QNM. A
variation of approximate Mean Value Analysis
(MVA) called linearizer [3] is used to solve the
QNM. Values obtained from the top two layers
are used in the solution of the second two lay-
ers and so on. Several iterations are required
among all two-layer models within the software
contention model before the response times of
the processes at the top layer converge to a
�xed value. Then the device contention model
is considered using the results from the software
contention model as inputs. Once again the
linearizer is used to solve the model. Results
are then fed back to the software contention
model. Several iterations are also required be-
tween these two models before the �nal results
can be obtained.

Di�erent servers may have di�erent schedul-
ing disciplines and service time distributions.
Linearizer uses di�erent residence time expres-

sions for di�erent kinds of servers. This resi-
dence time expression is valid only for servers
that satisfy certain assumptions of schedul-
ing discipline and service time distribution.
Among the allowable combinations of schedul-
ing disciplines and service time distributions for
hardware devices, DELAY and FCFS are of in-
terest. A service center with DELAY schedul-
ing discipline behaves like one with an in�nite
number of servers, so the customers never need
to wait for service. A �rst come �rst served
(FCFS) service center with only deterministic
service time distribution is used in this paper.
The residence time for such a server is given by
Reiser [7].

Unlike hardware devices, software processes
may interact with each other in complex ways.
Rolia discusses the residence time expres-
sions for FCFS, Rendezvous, Multiple-Entry,
Multi-Server, SYNC, and DELAY software
servers [8]. Among them the Rendezvous and
DELAY servers are of interest. The Ren-
dezvous server is a FCFS process with two
phases of service. A caller is released after the
�rst phase, but the server cannot begin to pro-
vide service again until it completes the second
phase.
In addition to the metrics provided by MVA,

MOL computes the average response time of a
group.

4.3 NetMod

NetMod is an easy to use capacity planning
tool that helps engineers and managers plan-
ning and designing large-scale complex com-
puter networks. NetMod users can quickly
evaluate numerous complex LAN/WAN con�g-
urations.

The inputs to NetMod are the topology pa-
rameter, the workload characteristics, and the
characteristics for the device/transmission me-
dia. NetMod uses a graphical interface with
icons representing networks and their compo-
nents. A NetMod user starts with a blank
window and speci�es a network topology by
clicking the mouse on icons, selecting compo-
nents from icon menus, and drawing arrows be-
tween the components. NetMod supports pop-
ular LAN technologies { token ring and Ether-
net and some of their variations { as well as

-5-



Khandker/Rolia/Teorey

special network components such as routers,
bridges, gateways, and adapter cards. The
workload parameter is speci�ed by the packet
arrival rate and packet size. NetMod has a
built-in user workload model that can suggest
these parameters, given the user pro�le. Net-
Mod provides the default values for the de-
vice/transmission media characteristics, which
the user can change easily. NetMod's out-
put includes component utilization, through-
put, and packet delays which it calculates from
mathematical models that use closed-form an-
alytical techniques.

To use the full capability of NetMod together
with MOL, some integration is required. Ide-
ally we would like to have a single graphical
interface to describe both the LQM and the
Network topology so that NetMod models can
be invoked with the right topology during the
analysis. This integration is part of our fu-
ture work. In this paper, we modeled a simple
Ethernet environment and just used the Ether-
net model from NetMod. NetMod uses Lam's
equation [6] to �nd the Ethernet delay.

5 The DCE Model

We model a distributed application where a
DCE client application, running on one ma-
chine, communicates with a DCE server appli-
cation, running on a di�erent machine, using
RPC over the connectionless datagram proto-
col (UDP). The two machines are connected
with a 10 Mbps Ethernet. The client is multi-
threaded. Each client thread issues an RPC,
sleeps for a while (including zero time) after
the RPC completes, and then issues another
one. The server, also multithreaded, has a sin-
gle listener thread, and one executor thread per
RPC in progress. The actual service procedure
for an RPC (server step S4 in section 3), called
by the executor thread, does no work (i.e., sim-
ply returns.)

Note that the above model does not depict
a real computing environment. In reality, the
client thread may do some application process-
ing between makingRPCs (as opposed to sleep-
ing), which demands CPU time. Also, at the
server end, the service procedure usually in-
volves real work { therefore demands server

CPU time and adds to the queueing delay.
However, the focus of this paper is the perfor-
mance of DCE, which is a�ected by the perfor-
mance of the RPC layer and all layers below.
For this reason, we keep the service demand of
the client and the server application minimal,
so that they can be ignored during the analysis
of the model.
We consider three primary factors a�ecting

RPC performance. First, the amount of data
sent with the RPC, representing various kinds
of RPCs that might be present in the real
world. Second, the number of client threads,
which represents the level of concurrency in a
system. Third, the time between RPCs, which
plays a signi�cant role in the workload. We de-
sign experiments using various levels for these
factors and measure the round trip time for
each of these cases. The levels for the factors
in our experiments are as follows. We con-
sider RPCs with 0, 1392, 2872, 4016, 8032,
and 16064 byte request data and only with 0
byte reply data. (RPCs with non-zero byte
reply data can be modeled easily by includ-
ing the additional service demands for such re-
ply packet(s).) The levels for the number of
client threads are 1, 3, 6, and 9. The time be-
tween RPCs is assumed to be an exponentially
distributed random variable with mean varied
from 0 to 72 milliseconds depending upon the
round trip time of the RPC.

5.1 RPC and UDP model

Figure 3 shows the layered queueing model for
the RPC and UDP layer. Groups of processes
are shown as rectangles, devices as circles and
requests for services, also known as visits, as
directed arcs. The RPC model in Figure 2 is
represented by two process groups { RPCc on
the client machine, and RPCs on the server
machine. Similarly, UDPc and UDPs repre-
sents the client and server portion of the UDP
model. A hypothetical communication process
group, COM , accounts for the network layer
delay. RPCc and UDPc contend for the CPU
in the client machine. Similarly, RPCs and
UDPs contend for the server CPU. The COM
process requests services from the controller de-
vice CONT and the network NET .

Figure 3 describes the set of groups and de-

-6-



Performance Modeling of the Distributed Computing Environment

client machine server machine

CONTNET CPU

RPCUDPCOM

CPU

RPC UDP

UDP COM UDP RPCRPC

CLIENT

C C S S

C C SS

C S

Software Contention Model 

Device Contention Model 

Figure 3. The layered queueing network model

for DCE. It is divided into the software and device

contention models. Groups of processes are shown

as rectangles, devices as circles, and requests for ser-

vices as directed arcs. The subscript c and s indicate

whether a process or device belongs to the client or

server machine.

vices, the number of software levels, and the
set of groups at any level { i.e., G, K, L, and
Gn input parameters described in section 4.1.1.
In all cases, the average number of visits (pa-
rameter Vg;h and Vg;k) is 1, when such visits
are shown by the directed arcs, otherwise the
number of visits is zero.

The client and the server CPU are Ren-
dezvous service centers with constant service
times. We extend the MOL to allow Ren-
dezvous hardware devices. (Originally, only
groups were allowed to have such a service dis-
cipline.) In the extended MOL, every device
can have two phases of service. The combined
service time of these two phases are used to
calculate the queueing delay at the device but
only the service time of the �rst phase is in-
cluded in calculating the time needed to obtain
the service. The controllers at the client and
the server machines are represented by a single
DELAY server whose service time is the sum
of all controller delays.

We also introduce a queueing discipline
called MODEL. The MODEL is a DELAY
server or device whose parameters are initially
unknown but become known as the analysis
progresses. The device NET in Figure 3 is of

type MODEL.
Although we decompose DCE in layers of

software, these layers do not correspond to lay-
ers of software servers. (A single client thread
of execution cuts across the RPC, UDP, and IP
layer and there is no software queueing delay at
these layers.) The layered queueing modeling
technique, which has been developed primarily
for software with layers of servers, allows us to
model this kind of situation by considering all
these layers as DELAY servers. The population
of DELAY servers is equal to the population of
the process that requires service from them.
In our model, we consider all service provid-

ing groups, i.e., RPCc, UDPc, COM , UDPs,
and RPCs, as DELAY servers.
All other input parameters, i.e., Ng , Sg;k,

and Zg are considered to be factors in our ex-
perimental design and their values are case de-
pendent. The service demand of processes at
various devices depends on the RPC type. In
earlier work we measured the time it takes, on
average, to perform various steps of a single
inter-machine RPC [5]. In this paper, we re-
gard the time allocated to a particular step of
an RPC as the service demand for the hard-
ware device associated to that step. The ser-
vice demands of all steps pertaining to a layer
are combined to obtain the service demand of
that layer.
Table 1 shows the service demands of di�er-

ent layers at various devices for all RPC types
considered in our experiment. The populations
of CLIENT and RPCc are equal to the num-
ber of client threads. A DCE server spawns
one thread for each RPC up to a maximum of
ten threads. For our experiments, where the
maximumnumber of client threads is nine, the
population of RPCs is therefore also equal to
the number of client threads. The populations
of UDPc, UDPs, and COM are set to 1.

5.2 Network model

The network topology is simple { two ma-
chines connected by a 10 Mbps Ethernet.
The workload parameters, i.e., the packet ar-
rival rate and mean packet size are obtained
from the LQM. The default values for the
device/transmission media characteristics sup-
plied by NetMod are used.

-7-



Khandker/Rolia/Teorey

RPC Service Demand (millisecond)
type RPCc ! CPUc UDPc ! CPUc COM ! CONT COM ! NET RPCs ! CPUs UDPs ! CPUs

NULL 1.44 (0.73) 1.53 (0.26) 1.17 0.20 1.04 (0.64) 1.10 (0.28)
1 packet 1.49 (0.73) 1.70 (0.26) 1.53 1.31 1.06 (0.64) 1.29 (0.28)
2 packet 1.56 (0.73) 1.88 (0.63) 1.53 2.54 1.06 (0.64) 1.38 (0.73)
3 packet 1.60 (0.73) 2.05 (1.00) 1.53 3.58 1.06 (0.64) 1.47 (1.17)
6 packet 2.93 (1.40) 4.10 (1.99) 3.07 7.15 1.78 (1.04) 2.94 (2.34)
12 packet 4.26 (2.82) 6.85 (5.08) 4.60 10.72 (3.57) 2.51 (2.86) 5.73 (4.17)

Table 1. Service demand on hardware devices. Left of the arrows are the processes and right

of the arrows are the devices. Subscript c and s represent the client and the server machines.

The portion of the service demand that is not included in the RPC round trip time is shown

in parentheses.

Throughput
RPC data size

Mean packet size

The layered queueing model

Network model

Converter

Delay per packet
Packet arrival rate

RPC residence time

Figure 4. Integration of the layered queueing net-

work model with NetMod. The procedure is itera-

tive. Output from the layered queueing model is used

as input to NetMod (the network model) and vice

versa. Some conversion is required before outputs of

one model can be fed into the other.

The network is assumed to be dedicated to
the two machines. The experimental measure-
ment was done at night when the outside tra�c
on the Ethernet was negligible.

5.3 Integration

Figure 4 shows the integration of the layered
queueing model of RPC and UDP with the net-
work model.
The performance of the LQM depends on the

network delay. In particular, LQM needs an in-
put value for the service demand for the device
called NET shown in Figure 3. On the other
hand, we cannot get the network layer delay
unless we know the RPC throughput; other-
wise we cannot specify the packet arrival rate,
which is an input to the network model. So
we solve these two models iteratively using the

intermediate result from one model as input to
the other.

First, we assume a zero network delay and
solve the LQM. Then the throughput from
the LQM is used as input to NetMod. How-
ever, the output parameters from the LQM
gives the throughput of the RPCs. These RPC
throughputs need to be converted to the packet
throughput and size of the packets for NetMod.
(One RPC may generate a number of network
packets depending on the request or reply data
sizes.) This is shown by the converter box in
Figure 4. Therefore, we need the following ad-
ditional information for the converter. NULL
RPCs generate two 108-byte Ethernet packets,
one for the request and one for the reply. RPCs
with 0, 1392, 2872, 4016, 8032, and 16064 byte
request data generate 1, 2, 3, 6, and 12 Ether-
net request packets with a mean packet size of
approximately 1400 bytes and 1, 1, 1, 2, and
4 reply packets with a mean packet size of 108
bytes.

Once the network delay is calculated using
the network model, the packet delay is con-
verted back to the RPC delay by the converter.
That delay is now given as an input to the MOL
for the subsequent iteration and used as the res-
idence time at the NET . The iteration goes on
until the round trip time from the LQM con-
verges.

5.4 Validation

Ideally, we would like to validate the model
described above by comparing the round trip
times obtained from the model with the ex-

-8-



Performance Modeling of the Distributed Computing Environment

perimentally measured round trip times. Un-
fortunately, the measured round trip times of
RPCs in our environment are counter-intuitive
in many cases. This RPC round trip time
anomaly is discussed further in section 5.5. For
that reason, we couldn't compare our model
predicted round trip time to the measured
round trip time. So, we wrote a simulator and
used the simulated round trip time to compare
with the results of the analytic model. The sim-
ulated round trip times closely match the ex-
perimentally measured round trip time in those
cases when the latter does not show any anoma-
lous behavior.

Table 2 compares the model estimated round
trip time with the simulated ones for di�erent
levels of the factors. The error is calculated as:

% Error =
(Simulated value�Model predicted value)�100

Simulated value .

5.5 Round trip time anomaly

In this section, we describe measured round
trip times that defy intuition.

Figure 5 shows the round trip times ob-
tained from actual measurements for NULL,
1-packet, 2-packet, 3-packet, 6-packet, and 12-
packet RPCs with 3 client threads. For ex-
ample, the average measured round trip time,
of making back-to-back (i.e., with zero inter-
RPC time) RPCs with 3-packet request data,
is 14982 microseconds. Now the introduction of
delays between RPCs should, intuitively, lessen
the load on the system and decrease the round
trip time. But the measurement shows that
the time actually goes up �rst and then goes
down gradually as we increase the time between
RPCs. This anomalous behavior is observed
for 1, 2, 3, and 6 packet RPCs but not for
the NULL and 12-packet RPCs shown in Fig-
ure 5. The behavior is similar with 6 or 9 client
threads (see Table 2).

At this time, we don't know why such is the
case, but are continuing to investigate.

-

6

0 9 18 36 72

0

10

20

30

40

50

60

Time between RPCs (millisecond)

R
o
u
n
d
tr
ip
ti
m
e
(m
il
li
se
co
n
d
)

� � � � �

�

�
�

�
�

�

�

�
�

�
�

�

�

�

�

�

�

�

� �

�

�

+

+
+

+

+ : 12-packet � : 6-packet

� : 3-packet � : 2-packet

� : 1-packet � : NULL

Figure 5. Measured round trip time of RPCs with

3 client threads. Intuitively, the round trip time

should never go up when the delay between RPCs is

increased. Actually, the time goes up as soon as some

delay is introduced and then goes down gradually as

the delay is increased.

6 Conclusion and Future

Work

Modeling distributed systems based on
client/server architecture by decomposing the
system along the communication protocol
layers, modeling individual components sepa-
rately, and �nally integrating them is a feasible
option. Over 90% of the model predicted
round trip times have less than 10% di�erence
from the corresponding simulated round trip
times.

In this paper, we combined features from a
network performance modeling tool and a soft-
ware performance modeling tool. An integra-
tion of these two to make a single tool for dis-
tributed application systems is our future work.

Although both models we considered in this
paper are analytic, they could easily be a sim-
ulation or measurement model. The same in-
tegration technique will work as long as the
input to and the output from the model are
the same and consistent convergence criteria

-9-



Khandker/Rolia/Teorey

Round trip time (microsecond)
RPC type # of client Think Measured Simulation Model % Error

threads time(ms) avg (std) predicted predicted
NULL 1 0 6081 (243) 6465 8262 -27.80

3 6152 (229) 6465 8044 -24.42
3 0 9496 (346) 11168 11856 -6.16

3 8827 (1473) 8829 10830 -22.66
6 8359 (1506) 7895 10127 -28.27
9 7866 (1455) 7523 9637 -28.10
18 7191 (1310) 7095 8825 -24.38

6 0 19117 (576) 22325 19005 14.87
9 13143 (3171) 13517 13779 -1.94
18 10125 (2698) 10103 11290 -11.75
27 8975 (2715) 8027 10089 -25.69

9 0 28662 (724) 33483 27786 17.01
18 15567 (4280) 16356 15219 6.95
27 12795 (4629) 11720 12568 -7.24
36 10283 (3753) 10005 11148 -11.42

1-pack 1 0 8290 (152) 8363 9177 -9.73
3 8431 (317) 8363 8946 -6.97

3 0 10585 (432) 11896 12928 -8.68
3 16220 (6437) 10247 11912 -16.25
9 13995 (5120) 9375 10682 -13.94
18 12781 (4949) 9100 9806 -7.76
36 11234 (4114) 8774 9124 -3.99
72 9900 (2972) 8602 8735 -1.55

6 0 21122 (622) 23768 20347 14.39
3 21964 (8806) 20814 18247 12.33
9 23230 (10091) 15545 15158 2.49
18 20256 (9190) 11328 12562 -10.89

9 0 31680 (810) 35644 29403 17.51
3 35272 (12377) 32635 26685 18.23
9 33138 (13127) 26646 21907 17.79
18 28782 (12924) 18476 16877 8.65

2-pack 1 0 9950 (246) 9989 10696 -7.08
6 10150 (328) 9989 10353 -3.64

3 0 12858 (570) 13843 14938 -7.91
3 19870 (7576) 12449 13930 -11.90
9 17808 (7085) 11667 12651 -8.43
18 15511 (6411) 11053 11674 -5.62
36 13518 (5098) 10518 10866 -3.31
72 12303 (4208) 10372 10372 0.00

6 0 25806 (887) 27627 23489 14.98
3 26044 (9953) 24401 21365 12.44
9 28709 (12761) 18301 18128 0.95
18 27938 (12642) 14481 15232 -5.19
36 22578 (10691) 11987 12721 -6.12
72 15414 (6446) 11012 11255 -2.21

9 0 38725 (1269) 41431 33618 18.86
3 43783 (14768) 38387 30969 19.32
9 42550 (16597) 33046 24110 27.04
18 40422 (17132) 23444 20726 11.59
36 33014 (16284) 15735 15442 1.86

3-pack 1 0 11440 (361) 11326 11981 -5.78
6 11454 (276) 11326 11649 -2.85

3 0 14982 (492) 15510 16800 -8.32
9 25120 (12970) 13625 14392 -5.63
18 21244 (11544) 12903 13297 -3.05
36 18867 (10213) 12277 12354 -0.63
72 16024 (8594) 11847 11755 0.78

6 0 30013 (1233) 30924 27098 12.37
9 42369 (23405) 22832 21174 7.26
18 42402 (23165) 17488 17819 -1.89
36 34519 (19956) 14376 14756 -2.64
72 25410 (16107) 12810 12898 -0.69

9 0 40256 (2121) 46370 40421 12.83
18 56798 (30829) 28436 24992 12.11
36 49893 (28609) 18794 18474 1.70
72 36751 (24712) 14094 14407 -2.22

6-pack 1 0 21969 (386) 22041 23126 -4.92
6 22165 (410) 22041 22771 -3.31

3 0 30445 (952) 30659 32098 -4.69
9 37251 (8968) 27390 29221 -6.68
18 36636 (9100) 26269 27432 -4.43
36 32566 (9191) 24886 25432 -2.19
72 28635 (7333) 23515 23761 -1.05

6 0 57479 (3519) 61201 53110 13.22
9 64805 (14525) 52325 45682 12.70
18 63870 (14739) 43505 40311 7.34
36 53763 (17185) 35004 33724 3.66
72 42196 (16067) 27336 28025 -2.52

9 0 85974 (5438) 91771 81073 11.66
18 92055 (20564) 73536 62153 15.48
36 83282 (21745) 58006 47561 18.01
72 60230 (22896) 37193 34836 6.34

12-pack 1 0 34995 (1276) 35997 40115 -11.44
18 35137 (1383) 35997 39188 -8.86

3 0 60297 (1473) 55438 56450 -1.83
18 55586 (10408) 48143 50612 -5.13
36 52203 (12115) 45787 47240 -3.17
72 46311 (10269) 41410 43677 -5.47
144 40964 (9052) 39478 40892 -3.58

6 0 113127 (7481) 110768 97378 12.09
36 93634 (22884) 77784 69906 10.13
72 76996 (22606) 61402 57535 6.30
144 58394 (21719) 48060 47734 0.68

9 0 165957 (10564) 166135 150149 9.62
36 138312 (68317) 130176 112049 13.92
72 116405 (32535) 98763 81820 17.16
144 96281 (65286) 62937 58817 6.55
216 71002 (56171) 51623 50619 1.94

Table 2. Error in model predicted round trip time with respect to simulation.

-10-



Performance Modeling of the Distributed Computing Environment

are met. Precise input and output parameters
and convergence criterion for component mod-
els need to be speci�ed.

The network was included in the MOL as a
hardware device. MOL needs to be extended
to integrate models of process groups. The two
models we considered do not contend for the
same device (e.g., the NetMod model does not
demand any CPU time). Techniques need to
be devised when two separate models contend
for a single resource { a situation that will be
frequent if process group models are developed
separately and need to be integrated.

We only considered a single class of jobs. The
model needs to be extended for multiclass jobs.
The cause of the anomalous behavior of RPC
round trip time will be investigated.

Acknowledgements

We are greatful to Peter Honeyman for his ad-
vice, criticism, and direction for this work. Spe-
cial thanks to Mary Jane Northrop for editing.

This work was supported by a research part-
nership with IBM.

References

[1] David W. Bachmann, Mark E. Segal,
MandyamM. Srinivasan, and Toby J. Teo-
rey. \NetMod: A Design Tool for Large-
Scale Heterogeneous Campus Networks".
IEEE J. on Selected Areas in Communica-
tions (JSAC), 9(1):15{24, January 1991.

[2] Andrew D. Birrell and Bruce Jay Nelson.
\Implementing Remote Procedure Calls".
ACM Transactions on Computer Systems,
2(1):39{59, February 1984.

[3] K. Mani Chandy and Doug Neuse. \Lin-
earizer: A Heuristic Algorithm for Queue-
ing Network Models of Computing Sys-
tems". Communications of the ACM,
pages 126{134, February 1992.

[4] Van Jacobson. \Congestion Avoidance
and Control". Proceedings, ACM SIG-
COMM'88 Stanford, CA, pages 314{329,
August 1988.

[5] A. Masud Khandker, Peter Honeyman,
and Toby J. Teorey. \Performance of DCE
RPC". To appear in Proceedings, 2nd
International Conference on Services in
Distributed and Networked Environments,
Whistler, British Columbia, July 1995.

[6] S. S. Lam. \A Carrier Sense Multi-
ple Access Protocol for Local Networks".
Computer Networks, 4(1):21{32, February
1980.

[7] Martin Reiser. \A Queueing Network
Analysis of Computer Communication
Networks with Window Flow Control".
IEEE Transaction on Communications,
pages 1199{1209, August 1979.

[8] J. A. Rolia. \Predicting the Performance
of Software Systems". Technical report,
CSRI Technical Report 260, University of
Toronto, Canada, 1992.

[9] J. A. Rolia, M. Starkey, and G. Boersma.
\Modeling RPC Performance". Proceed-
ings, CASCON'93, pages 677{689, Octo-
ber 1993.

[10] Ward Rosenberry, David Kenny, and
Gerry Fisher. Understanding DCE.
O'Reilly and Associates, Inc., 1992.

-11-


