

ABSTRACT

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

CITI Technical Report 95Ð8

The Lightweight Directory Access Protocol:
X.500 Lite

Timothy A. Howes

tim@umich.edu

This paper describes the Lightweight Directory Access Protocol (LDAP), which provides
low-overhead access to the X.500 directory. LDAP includes a subset of full X.500 func-
tionality. It runs directly over TCP and uses a simplified data representation for many
protocol elements. These simplifications make LDAP clients smaller, faster, and easier to
implement than full X.500 clients. Our freely available implementation of the protocol is
also described. It includes an LDAP server and a client library that makes writing LDAP
programs much easier.

July 27, 1995

Center for Information Technology Integration 1

The Lightweight Directory

Access Protocol: X.500 Lite

Timothy A. Howes

July 27, 1995

1. Introduction

X.500, the OSI directory standard [1], defines
a comprehensive directory service, includ-
ing an information model, a namespace, a
functional model, and an authentication
framework. X.500 also defines the Directory
Access Protocol (DAP) used by clients to
access the directory. DAP is a full OSI proto-
col that contains extensive functionality,
much of which is not used by most applica-
tions.

DAP is significantly more complicated than
the more prevalent TCP/IP stack implemen-
tations and requires more code and comput-
ing horsepower to run. The size and
complexity of DAP make it difficult to run
on smaller machines such as the PC and
Macintosh where TCP/IP functionality often
comes bundled with the machine. When the
DAP stack implementations are used, they
typically require an involved customization
process, which has limited the acceptance of
X.500.

The Lightweight Directory Access Protocol
(LDAP) was designed to remove some of
the burden of X.500 access from directory
clients, making the directory available to a
wider variety of machines and applications.
Building on similar ideas in the DAS [7] and
DIXIE [4] protocols, LDAP runs directly
over TCP/IP or other reliable transport. As
we shall see, it simplifies many X.500 opera-
tions, leaving out little-used features and

emulating some operations with others.
LDAP uses simple string encodings for most
attributes. The result is a low-overhead
access method for the X.500 directory, suit-
able for use on virtually any platform.

Section 2 of this paper gives a quick intro-
duction to X.500. Section 3 gives an
overview of LDAP, describing the simplifi-
cations it makes to X.500. Section 4 summa-
rizes the key advantages of the LDAP
protocol. Section 5 briefly describes our
implementation of LDAP, including our
server and client library. Section 6 compares
the performance of DAP and LDAP. Finally,
Section 7 describes some work we are doing
that builds on LDAP.

2. Overview of X.500

X.500 is the OSI directory service. X.500
defines the following components:

•

An information modelÑdetermines the
form and character of information in the
directory.

•

A namespaceÑallows the information to
be referenced and organized.

•

A functional modelÑdetermines what
operations can be performed on the infor-
mation.

•

An authentication frameworkÑallows
information in the directory to be secured.

Center for Information Technology Integration

2

Howes

•

A distributed operation modelÑdeter-
mines how data is distributed and how
operations are carried out.

The information model is centered around

entries

, which are composed of

attributes

.
Each attribute has a

type

 and one or more

values

. The type determines the attributeÕs

syntax

, which defines what kind of informa-
tion is allowed in the values.

Which attributes are required and allowed
in an entry are controlled by a special

objectClass

 attribute in every entry. The val-
ues of this attribute identify the type of
entry (e.g., person, organization, etc.). The
type of entry determines which attributes
are required, and which are optional. For
example, the object class

person

 requires the

surname

 and

commonName

 attributes, but

description

,

seeAlso

, and others are optional.

Entries are arranged in a tree structure and
divided among servers in a geographical
and organizational distribution. Entries are
named according to their position in this
hierarchy by a distinguished name (DN).
Each component of the DN is called a rela-
tive distinguished name (RDN).

Alias

entries, which point to other entries, are
allowed, circumventing the hierarchy. Fig-
ure 1 depicts the relationship between
entries, attributes, and values and shows
how entries are arranged into a tree.

Figure 1. X.500 information model.

 The X.500 model
is centered around entries composed of
attributes that have a type and one or more
values. Entries are organized in a tree struc-
ture. Alias entries can be used to build non-
hierarchical relationships.

Functionally, X.500 defines operations in
three areas: search and read, modify, and

alias
entry

object
entry

Attr Attr …

Type Value Value …

authenticate. In the first category, the

read

operation retrieves the attributes of an entry
whose name is known. The

list

 operation
enumerates the children of a given entry.
The

search

 operation selects entries from a
defined area of the tree based on some selec-
tion criteria known as a search filter. For
each matching entry, a requested set of attri-
butes (with or without values) is returned.
The searched entries can span a single entry,
an entryÕs children, or an entire subtree.
Alias entries can be followed automatically
during a search, even if they cross server
boundaries.

In the second category, X.500 defines four
operations for modifying the directory. The

modify

 operation is used to change existing
entries. It allows attributes and values to be
added and deleted. The

add

 and

delete

 oper-
ations are used to insert and remove entries
from the directory. The

modify RDN

 opera-
tion is used to change the name of an entry.

The final category defines a

bind

 operation,
allowing a client to initiate a session and
prove its identity to the directory. Several
authentication methods are supported, from
simple clear-text password to public key-
based authentication. The

unbind

 operation
is used to terminate a directory session. An

abandon

 operation is also defined, allowing
an operation in progress to be canceled.

Each X.500 operation and result can be

signed

 to ensure its integrity. Signing is done
using the originating clientÕs or serverÕs
public key. The signed request or result is
carried end-to-end in the protocol, allowing
integrity to be checked at every step. This
guards against connection hijacking or mod-
ification by intermediate servers.

Service con-
trols

 can be specified that determine
information such as how an operation will
be carried out, whether aliases should be
dereferenced, the maximum number of
entries to return, and the maximum amount
of time to spend on an operation.

In X.500, the directory is distributed among
many servers (called DSAs for Directory

Center for Information Technology Integration 3

The Lightweight Directory Access Protocol: X.500 Lite

System Agent). No matter which server a
client connects to, it sees the same view of
the directory. If a server is unable to answer
a clientÕs request, it can either

chain

 the
request to another server, or

refer

 the client
to the server.

3. Overview of LDAP

LDAP assumes the same information model
and namespace as X.500. It is also client-
server based, with one important difference:
there are no referrals returned in LDAP. An
LDAP server must return only results or
errors to a client. If referrals are involved,
the LDAP server is responsible for chasing
them down. This model is depicted in Fig-
ure 2, though the intermediate server shown
is not required (i.e., an implementation
could choose to have its DSA speak ÒnativeÓ
LDAP).

Figure 2. Relationship between LDAP and X.500.

The LDAP client-server model includes an
LDAP server translating LDAP requests into
X.500 requests, chasing X.500 referrals, and
returning results to the client.

The LDAP functional model is a subset of
the X.500 model. LDAP supports the follow-
ing operations: search, add, delete, modify,
modify RDN, bind, unbind, and abandon.
The search operation is similar to its DAP
counterpart. A base object and scope are
specified, determining which portion of the
tree to search. A filter specifies the entries
within the scope to select. The LDAP search
filter offers the same functionality as the one
in DAP but is encoded in a simpler form.

LDAP
Client

LDAP
Server

X.500
DSA

X.500
DSA

re
ques

t

request

re
fe

rra
l

result

chain

The time and size limit service controls are
included directly in the search request.
(They are not included with the other opera-
tions.) The

searchAliases

 search control and

dereferenceAliases

 service control are com-
bined in a single

derefAliases

 parameter in
the LDAP search. The ASN.1 [11] definition
of the LDAP search request is shown in Fig-
ure 3.

SearchRequest ::= [APPLICATION 3] SEQUENCE {
baseObject LDAPDN,
scope ENUMERATED {
baseObject (0),
singleLevel (1),
wholeSubtree (2)

},
derefAliasesENUMERATED {

neverDerefAliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3)

},
sizeLimit INTEGER (0 .. MaxInt),
timeLimit INTEGER (0 .. MaxInt),
attrsOnly BOOLEAN,
filter Filter,
attributes SEQUENCE OF AttributeType

}
Filter ::= CHOICE {

and [0] SET OF Filter,
or [1] SET OF Filter,
not [2] Filter,
equalityMatch [3] AttributeValueAssertion,
substrings [4] SubstringFilter,
greaterOrEqual [5] AttributeValueAssertion,
lessOrEqual [6] AttributeValueAssertion,
present [7] AttributeType,
approxMatch [8] AttributeValueAssertion

}

Figure 3. ASN.1 for the LDAP search operation.

 The
LDAP search operation offers similar func-
tionality to DAP search. It combines search
parameters and service controls and simpli-
fies the filter encoding.

The

LDAPDN

 and

AttributeType

 components
of the search are encoded as simple charac-
ter strings using the formats defined in RFC
1779 [5] and RFC 1778 [2], respectively,
rather than the highly structured encoding
used by X.500. Similarly, the value in an

AttributeValueAssertion

 is encoded as a prim-
itive OCTETSTRING, not a more structured
ASN.1 type. The structure is reflected in the
syntax of the encoded string, not in the
encoding itself.

The results of an LDAP search are sent back
to the client one at a time, in separate

search-
Entry

 packets. This sequence of entries is ter-
minated by a final

searchResult

 packet that
contains the result of the search (e.g., suc-

Center for Information Technology Integration

4

Howes

cess, a size or time limit was exceeded, etc.).
Having a final terminator packet allows cli-
ents and servers to

stream

 results more eas-
ily, handling one entry at a time. This is
especially useful in memory-constrained
environments where holding the collection
of all entries from a large search is not possi-
ble.

The X.500 list and read operations are not
included in LDAP. Instead, they are emu-
lated with the LDAP search operation. Read
is emulated by a base object search of the
entry to read, with a filter testing for the
existence of the

objectClass

 attribute. Every
entry is required to have an object class and
must match this filter. List is emulated by a
one level search of the entry to list, also with
a filter testing for the existence of the

object-
Class

 attribute. If the ability to distinguish
alias children from other children (a feature
provided by X.500 list) is desired, the

object-
Class

 attribute can be retrieved and exam-
ined for a value of

alias

.

The LDAP modify operation also differs
slightly from its DAP counterpart. In DAP,
four kinds of changes can be made: entire
attributes can be added or deleted; individ-
ual values can be added or deleted. These
capabilities require a client to read an entry
before attempting a modify (e.g., when add-
ing a value, to discover whether an

add
attribute

 or

add value

 is required).

In LDAP, we simplified the semantics of
modify by supporting three operations: add
values; delete values; and replace values. If a
request is made to add values to an attribute
that does not exist in the entry, the attribute
is created automatically. If a request is made
to delete the last value of an attribute, the
entire attribute is deleted. An attribute can
also be deleted by specifying a

delete values

operation without specifying any values.
Finally, the

replace values

 construct is used to
make an attribute contain the given values
after the modify. The LDAP server takes
care of translating the replace request into
the necessary sequence of modify, add, and
delete operations required by X.500.

The LDAP bind operation supports a subset
of X.500 bind functionality. It allows only
simple authentication, consisting of a clear-
text password, and Kerberos version 4
authentication [6], which translates into an
X.500 external authentication method. The
LDAP bind operation includes a choice of
credentials, allowing for future expansion of
available authentication methods.

The DAP unbind, abandon, modify RDN,
add and delete operations are virtually
identical to their DAP counterparts.

4. Key Advantages

LDAP has four key advantages over DAP.
First, it runs directly over TCP (or other reli-
able transport, in theory), eliminating much
of the connection set-up and packet-han-
dling overhead of the OSI session and pre-
sentation layers required by DAP. In
addition, the near universal availability of
TCP/IP implementations means that LDAP
can run on most systems Òout of the box.Ó

Second, LDAP simplifies the X.500 func-
tional model in two ways. It leaves out the
read and list operations, emulating them via
the search operation. It also leaves out some
of the more esoteric and less-often-used ser-
vice controls and security features of full
X.500 (e.g., the ability to sign operations).
This simplifies LDAP implementations.

Third, though X.500 and LDAP both
describe and encode protocol elements
using ASN.1 and BER [12], LDAP uses
string encodings for distinguished names
and data elements. X.500 uses a complex
and highly-structured encoding even for
simple data elements; LDAP data elements
are string types. This encoding is a big win
for distinguished names, which have con-
siderable structure leading to encoding/
decoding complexity and size. LDAP rele-
gates the knowledge of a valueÕs syntax to
the application program rather than lower-
level protocol routines.

Center for Information Technology Integration 5

The Lightweight Directory Access Protocol: X.500 Lite

Finally, LDAP frees clients from the burden
of chasing referrals. The LDAP server is
responsible for chasing down any referrals
returned by X.500, returning either results or
errors to the client. Clients assume a single
connection model in which X.500 appears as
a single logical directory.

5. Implementation

In setting out to implement LDAP we had
three goals in mind:

•

provide a freely available reference
implementation of the protocol;

•

enable the development of LDAP clients
on a wide variety of platforms; and

•

solve the problem of providing access to
our campus X.500 directory.

In addition, we have found our implementa-
tion has been incorporated into a number of
vendor offerings, increasing the availability
of LDAP products.

Our LDAP implementation has three main
components: a server, a client library, and
various clients. Our LDAP server,

ldapd

, is
based on the popular ISO Development
Environment (ISODE) package. We use the
ISODE OSI stack implementation and DAP
client library to access X.500. The

ldapd

server supports connections to multiple
X.500 servers, providing efficient handling
of referrals.

The

ldapd

 server can be run as a UNIX
stand-alone daemon or from

inetd

, the UNIX
Internet protocol daemon. It accepts connec-
tions from LDAP clients, forking off a copy
of itself to handle each connection. It also
supports connectionless LDAP (CLDAP)
[10], a version of LDAP that runs over UDP
or other connectionless transport. CLDAP is
useful in applications where speed is para-
mount, the information desired is small, and
the connection setup overhead of LDAP is
too large.

Key to the success of our LDAP implemen-
tation has been

libldap

, the LDAP client
library. The

libldap

 library gives program-
mers a simple yet powerful C Language API
for accessing the X.500 directory through
LDAP. The library is self-contained, includ-
ing the necessary ASN.1/BER routines for
producing and reading LDAP protocol ele-
ments. It contains routines to begin and end
sessions with the directory, perform searches
and other operations, and parse and display
the results obtained from the directory. Fig-
ure 4 is a C code fragment showing a simple
use of

libldap

. It illustrates the synchronous
interface provided by

libldap

. Asynchronous
routines are also provided.

#include <ldap.h>
LDAP *ld;
LDAPMessage *e, *r;
char *a, *dn;
/* open a connection and authenticate */
if ((ld = ldap_open(“hostname”, LDAP_PORT))
== NULL)

fail();
if (ldap_simple_bind_s(ld, NULL, NULL) !=
LDAP_SUCCESS)

fail();
/* search for entries, return all attrs */
if (ldap_search_s(ld, “c=US”, LDAP_SCOPE_ONELEVEL,
“o=*michigan*”, NULL, 0, &r) != LDAP_SUCCESS)

fail();
/* step through each entry returned */
for (e = ldap_first_entry(ld, r); e != NULL;

e = ldap_next_entry(ld, e)) {
/* get and print the entry name */
dn = ldap_getdn(ld, e);
printf(“entry: %s\n”, dn);
free(dn);
/* step through each attribute */
for (a = ldap_first_attribute(ld, e);

a != NULL;
a = ldap_next_attribute(ld, e, a)) {

printf(“attr: %s\n”, a);
/* get and print vals */
v = ldap_get_values(ld, e, a);
for (i = 0; v[i] != NULL; i++) {

printf(“val: %s\n”, v[i]);
}
ldap_value_free(v);

}
}

Figure 4. Sample

libldap

 code.

 This code fragment
searches for and retrieves entries from the
directory. The entries are then stepped
through and each value of each attribute is
printed. If the attribute names retrieved are
known,

ldap_get_values()

 can be called
with the names directly.

In addition to the basic operations shown in
Figure 4,

libldap

 contains routines to assist
LDAP application developers in a variety of
ways. There are

display template

 routines
which provide a standardized way of dis-

Center for Information Technology Integration

6

Howes

playing entries. The display format is gov-
erned by a configuration file that tells which
attributes to display for entries of a particu-
lar object class and how to display them. By
using these routines, no code changes are
necessary for an application to change how
entries are displayed, add a new attribute to
the display, etc.

Also provided are routines to assist in the
construction of search filters. Often, differ-
ent filters need to be constructed based on
user input. For example, in a simple look-up
application if a user types in a number, one
might want to perform a search for entries
with a phone number (home, work, fax, or
pager) matching all or part of the number. If
an alphabetic string is input, a search by
name is more appropriate. If an exact match
search yields no results, a less restrictive
approximate search might be tried. The

get
Þlter

 routines automate the process of creat-
ing these filters. The filters produced are
specified in a configuration file via regular
expressions that are matched against user
input.

Many LDAP client applications have been
developed by us and others on the Internet.
Some of the more interesting applications
include maX.500, waX.500 and xax500, GUI
clients for the Macintosh, MS Windows, and
X Windows, respectively; go500gw, a gopher
to X.500 gateway; web500gw, a World Wide
Web to X.500 gateway; and mail500 and
fax500, RFC 822-based X.500-capable mail-
ers. Work is ongoing on other applications
as well.

6. Performance

The performance of LDAP is satisfactory for
most applications. In this section, we com-
pare the performance of DAP and LDAP in
four areas: response time to queries; the size
of queries; PDU encoding speed; and the
size and complexity of client-side imple-
mentations. For these comparisons, we used
our LDAP implementation and the ISODE
DAP implementation. The same DSA was

used for all query measurements, providing
a baseline for comparison.

Table 1 shows the performance of a range of
typical DAP and LDAP queries. The tests
were conducted on a dedicated machine
running the DAP and LDAP clients, the
LDAP server, and the DSA. As can be seen
in the table, the delay introduced by LDAP
is minimal. This delay could be eliminated
altogether by a native DSA implementation,
eliminating the intermediate encoding,
decoding, and protocol translation.

Table 2 shows the size of the queries and
results given in Table 1. It shows that LDAP
queries are substantially smaller than equiv-
alent DAP queries. The savings are due pri-
marily to the simplified DN and value
encodings. Query sizes are also reduced by
the absence of service controls in every
operation.

Tables 3 and 4 show the time to decode and
encode a range of typical DAP and LDAP
PDUs. They show that LDAP has a modest
performance advantage for simple PDUs
and a substantial advantage for complex
PDUs, especially those containing many dis-

Table 1. Comparison of DAP and LDAP query times.

Searches were performed using the same
DSA, with a “hot” cache of entries. Times
are in milliseconds.

Query DAP LDAP

Unauthenticated bind 30 68
Authenticated bind 34 56
Simple search (one entry) 32 41
Simple search (50 entries) 293 353

Table 2. Comparison of DAP and LDAP query sizes.

LDAP queries are significantly smaller
than their DAP counterparts. Query sizes
are in bytes.

Query DAP LDAP

Unauthenticated bind 192 14
Authenticated bind 409 138
Simple search request 237 105
Single search result 547 355

Center for Information Technology Integration 7

The Lightweight Directory Access Protocol: X.500 Lite

tinguished names where the LDAP string
representation is a big win.

Finally, we compare implementation size
and code complexity). Such a comparison is
anecdotal at best, given the wide range of
programmer skills and goals used in pro-
ducing the implementations. However,
some conclusions favorable to LDAP can be
drawn from the overwhelming advantage it
has in this area, as shown in Table 5.

The Directory Enquiries client was chosen
for the size comparison. It can be compiled
to use either DAP or LDAP for X.500 com-
munication. The code complexity of the
ISODE DAP and our LDAP client libraries
were also compared. We used two complex-
ity measures. The first, a count of the num-
ber of semi-colons, approximates the
number of statements. The second, a count
of the number of ÒifÓ statements, approxi-
mates the number of code paths. In comput-
ing both of these metrics, an effort was
made to include only those portions of code
required to access X.500.

Table 3. Comparison of DAP and LDAP decoding
times.

 LDAP protocol elements are easier
to decode, especially for complex PDUs.
The complex PDU contained an attribute
with over 600 DNs. About half of the DAP
decoding time was spent in a duplicate
check, to ensure that an attribute has only
one of each value.

PDU Complexity DAP LDAP

Simple 550 110
Medium 7,925 714
Complex 38,393 2,702

Table 4. Comparison of DAP and LDAP encoding
times.

 LDAP protocol elements are
encoded more efficiently, especially for
complex PDUs.

PDU Complexity DAP LDAP

Simple 24 6
Medium 1,084 324
Complex 2656 989

7. Future Work

LDAP has succeeded in making X.500 more
accessible and is largely responsible for a
substantial increase in X.500 client develop-
ment. Despite this success, X.500 deploy-
ment on the Internet remains disappointing.
One reason for this is the heavyweight
nature of X.500 servers; to take advantage of
the proliferation of LDAP clients to access
local data, a site must first bring up a full
X.500 service. To address this problem we
are developing a

stand-alone

 LDAP server
called

slapd

.

Slapd

 exports the same LDAP
functionality described above but is back-
ended by its own local database, not by
X.500.

To prevent stand-alone LDAP servers from
being isolated from the rest of the X.500
world, we have made a compatible exten-
sion to LDAP that allows the return of refer-
rals to the client. This adds some complexity
on the client side to follow the referrals, but
in return we gain simplicity in the server.

The 1993 version of the X.500 standard
includes many features missing from 1988
X.500, on which LDAP is based. Among the
new features are access control, replication,
schema management, and various DAP

Table 5. Comparison of DAP and LDAP implemen-
tation complexity.

 The DE client, which can
be built using either DAP or LDAP, is used
to compare implementation size. Semi-
colon count, which approximates the num-
ber of statements, and “if” statement count,
which approximates the number of code
paths are another measure of complexity.
The comparison was between ISODE-8.0
and our LDAP implementation.

Metric DAP LDAP

Total size (DE) 1,484,568 334,552
 Text 958,464 221,184
 Data 385,024 73,728
 BSS 141,080 39,640
Semicolon count 46,746 1,989
If count 9369 568

Center for Information Technology Integration 8

Howes

extensions. A new version of LDAP is under
development by the Internet Engineering
Task Force that will incorporate some of
these features, as well as address some secu-
rity concerns with the present version of
LDAP, such as its lack of strong authentica-
tion and integrity insurance capability.

The DAP extensions include the ability to
retrieve search results a ÒpageÓ at a time,
specify a byte limit on the size of an
attribute to return, treat the attributes of a
DN as part of the entry during a search, and
more. The security features being consid-
ered include strong (public key-based)
authentication, and signing of operations.

Finally, with the growing popularity of the
World Wide Web, we see interesting and
exciting possibilities for merging the two
technologies. Work has already begun on
defining a URL format for LDAP [3], and a
URL-valued attribute for X.500 [8].

8. Summary

The Lightweight Directory Access Protocol
provides a low-overhead method of access-
ing the X.500 directory. It runs directly over
TCP, and makes several simplifications to
full X.500 DAP, leaving out many of the
lesser-used features. LDAP uses primitive
string encodings for most data elements,
making it more efficient and easier to imple-
ment than DAP. We have developed a freely
available reference implementation of LDAP
which has been ported to several platforms,
including UNIX, VMS, PC, and Macintosh.
Our intermediate-server-based implementa-
tion introduces little delay over full DAP,
produces smaller protocol exchanges, and
results in smaller and less complex clients.
Our implementation is freely available:
ftp://terminator.rs.itd.umich.edu/ldap/
ldap.tar.Z

There is also an LDAP discussion list join-
able by sending email to:
ldap-request@umich.edu

9. Acknowledgements

This material is based upon work supported
by the National Science Foundation under
Grant No. NCR-9416667. LDAP was devel-
oped in collaboration with Steve Kille,
Wengyik Yeong, and Colin Robbins, along
with help from members of the Internet
Engineering Task Force. My colleague Mark
C. Smith deserves much of the credit for the
LDAP implementation described in this
paper. Many thanks also to Peter Honey-
man for his ever-valuable review.

References

1. “The Directory: Overview of Concepts, Mod-
els and Service,” CCITT Recommendation
X.500, 1988.

2. T. Howes, S. Kille, W. Yeong, and C. Rob-
bins, “The String Representation of Standard
Attribute Syntaxes,” RFC 1778, March 1995.

3. T. Howes and M. Smith, “An LDAP URL
Format,” Internet Draft draft-ietf-asid-dap-
format-00.txt, March 1995.

4. T. Howes, M. Smith and B. Beecher. “DIXIE
Protocol Specification,” RFC 1249, August
1991.

5. S. Kille, “A String Representation of Distin-
guished Names,” RFC 1779, March 1995.

6. S.P. Miller, B.C. Neuman, J.I. Schiller, and
J.H. Saltzer, “Kerberos Authentication and
Authorization System,” MIT Project Athena
Documentation Section E.2.1, December
1987.

7. M. Rose, “Directory Assistance Service,”
RFC 1202, February 1991.

8. M. Smith, “Definition of an X.500 Attribute
Type and Object Class to Hold Uniform
Resource Identifiers (URIs),” Internet Draft
draft-ietf-asid-x500-url-01.txt, March 1995.

9. W. Yeong, T. Howes, and S. Kille, “Light-
weight Directory Access Protocol,” RFC
1777, March 1995.

10. A. Young, “Connectionless Lightweight
Directory Access Protocol,” Internet Draft
draft-ietf-osids-cldap-02.txt, April 1995.

Center for Information Technology Integration 9

The Lightweight Directory Access Protocol: X.500 Lite

11. Specification of Abstract Syntax Notation
One (ASN.1), CCITT Recommendation
X.208, 1988.

12. Specification of Basic Encoding Rules for
Abstract Syntax Notation One (ASN.1),
CCITT Recommendation X.209, 1988.

Author Information

Tim Howes is a Senior Systems Research
Programmer for the University of Michi-
gan's Information Technology Division. He
received a B.S.E. in Aerospace Engineering,
a M.S.E. in Computer Engineering from
U-M, and is completing a Ph.D. in Com-
puter Science. He is currently project direc-
tor and principal investigator for the NSF-
sponsored WINX project, and in charge of
directory service development and deploy-
ment at U-M. He is the primary architect
and implementor of the U-M LDAP direc-
tory package, the DIXIE system, the GDA
X.500 DSA, and a major developer of the
QUIPU X.500 implementation. He is author
or co-author of several papers and RFCs,
including RFC 1777 and RFC 1778 defining
the LDAP protocol. He is chair of the IETF
Access, Searching, and Indexing of Directo-
ries working group, and an active member
of the ACM and IEEE.

