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1.  Introduction

A new approach to analytic modeling and measurement of client-server configurations being designed
today is needed in order to accurately predict system performance long before such systems are imple-
mented. Accurate modeling allows the designer to test the feasibility of many alternate configurations be-
fore nailing down the final design and implementation. In particular, PeopleSoft has developed a two-
tiered architecture and application system that is now widely distributed throughout the world. How-
ever, good models of this architecture lag far behind the initial deployments of the system.

We develop a closed queuing network model for a two-tiered PeopleSoft 6 client-server system with an
Oracle database server and demonstrate it using a new performance modeling tool that applies mean
value analysis. The focus of this work is to provide useful capacity planning insights for an actual large-
scale university-wide deployment of the PeopleSoft system. A testbed and database exerciser are then de-
veloped to measure model parameters and perform the initial validation tests. The testbed also provides
preliminary test data on a proposed three-tiered deployment architecture that includes the Citrix Win-
Frame environment as an intermediate level between the client and the Oracle server.

In Section 2 we present the analytic modeling techniques used to model a two-tiered PeopleSoft 6 archi-
tecture. In Section 3 we describe the testbed and database exerciser we have built to validate the model
parameters and gather performance data. In Section 4 we present the results of some preliminary investi-
gations of the Citrix WinFrame product [6], which is used to build a three-tiered architecture on top of
PeopleSoft 6. Finally, we summarize our results in Section 5, along with a discussion of future work.

2.  Analytic Modeling of Multi-Tiered Client-Server Systems

Today many legacy applications on mainframes have been downsized to multi-tiered client-server archi-
tectures. Analytic modeling techniques developed for mainframe systems have also been applied to eval-
uate these distributed client-server configurations [2,13,15,18]. However, it is becoming clear that a major
emerging problem is to obtain the required performance measures for estimating the model parameters.
The lack of transaction-oriented monitoring facilities in a multi-tiered environment make performance
measurements much more difficult than in a centralized mainframe environment [8,9]. Therefore, com-
plex client-server configurations, such as the University of Michigan (U-M) production deployment of
PeopleSoft applications, require a closely coordinated approach to analytic modeling and measurement.
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2.1  Software Architecture of PPS6 in Production Environments

PeopleSoft 6 (henceforth called PPS6) is a two-tiered client-server application [17]. PPS6 clients are “thick”
clients running on Windows 95/NT platforms. Each client program, called a panel in PeopleSoft terminol-
ogy, accesses remote Oracle databases as a sequence of SQL statements when a user fills data into various
fields of the panel. The underlying database connections are managed by SQL*Net, which provides net-
work connectivity in distributed, heterogeneous computing environments [19]. This two-tiered PPS6 ar-
chitecture is augmented in the U-M production environment with a third tier consisting of Citrix
WinFrame servers. PPS6 clients run on these remote application servers, access an Oracle database and
communicate with user desktop machines running the Citrix WinStation client to display results [16]. The
deployed PPS6 production system hence resembles a generic three-tiered client-server architecture as
shown in Figure 1.

Figure 1. The production deployment of PPS6 with Citrix WinFrame extension.

Citrix WinFrame extends the Windows NT server with multi-user and distributed presentation capabili-
ties [6]. It allows multiple users from different desktop platforms, including non-Windows platforms, to
run Windows applications on a single WinFrame server. Citrix implements the distributed presentation
service with its Independent Console Architecture (ICA) [5]. ICA is conceptually similar to the X-Win-
dows protocol on UNIX platforms and utilizes highly optimized drawing primitives and a proprietary
Thinwire protocol to achieve a distributed Windows presentation.

2.2  Analytic Modeling of PPS6 Client-Server Systems

Since PPS6 is actually a two-tiered client-server application and because we believe it is too complicated
to build a three-tiered model directly, we first develop a two-tiered model to study how PPS6 clients in-
teract with the Oracle database server. The two-tiered model is a closed queueing network model (QNM)
with a fixed number of customers (PPS6 clients). This model, shown in Figure 2a, includes a fixed number
of clients, a local network, and a database server.

Since the PPS6 clients (running on WinFrame servers) and the database server reside on the same Ether-
net network in the production environment, the local Ethernet can be modeled as a load-dependent ser-
vice center accessed by clients and the server [14,15]. PPS6 clients are modeled as delay centers with a
fixed population and a constant think time (the elapsed time from receiving a previous reply to submit-
ting another request). The database server is modeled as a load-independent service center with two de-
vices, namely a server CPU and a server disk. Each class of client requests is carried out with a certain
amount of server CPU time (CPU service demand) and server disk time (disk service demand), both as-

ICA

TCP/IP

SQL*Net

TCP/IP

Campus Network

WinStation

Citrix
WinFrame

Server

Oracle
Database
ServerDistributed Presentation Remote DB Access

PPS6 client

router

10/100 Mbps Ethernet



Center for Information Technology Integration 3

Performance Modeling of the PeopleSoft Multi-Tier Remote Computing Architecture

sumed, for now, to be exponentially distributed. Therefore, client requests in the closed QNM are charac-
terized as multi-class homogeneous workloads.

Figure 2. Queueing network model of the two-tiered PPS6.

2.3  Solution Techniques for Evaluating QNMs

Mean-value analysis (MVA) is an efficient algorithm for evaluating closed QNMs with exact solutions
[12,14,15]. In previous work, MVA has been enhanced to evaluate more complicated QNMs. First, it has
been extended to evaluate closed QNMs with multiple job classes. Second, an evaluation technique for
service centers representing load-dependent devices has been developed and integrated into the MVA al-
gorithm. For QNMs with large numbers of job classes, however, the exact MVA algorithm could require
excessive time and space to run. Therefore, an approximate solution technique, called the approximate
MVA, is usually used in practice. Since the approximate MVA is quite accurate, it is useful as a general
technique, even for QNMs that could be solved exactly [14].

We have developed a performance modeling tool, called the MVA tool, for evaluating closed QNMs with
Ethernet devices [4]. It provides a Tcl/Tk user interface for constructing analytic models and displaying
model outputs after evaluation. The core evaluation technique is based on a multi-class, approximate
MVA algorithm, called the linearizer [3], which we have enhanced to evaluate Ethernet networks (load-
dependent devices). The model parameters of a closed QNM can be directly converted into equivalent
model parameters in the tool. Figure 2b shows the equivalent model representation in the MVA tool for
the analytic model introduced in Figure 2a.

A job class is represented as a parallelogram with two parameters: the client population (N) and the aver-
age client think time (Z). A device is represented as a circle with its service discipline, either a queueing or
delay service center, as its single parameter. A link connecting the parallelogram and a circle contains in-
formation about the service requirement for a job class visiting the device, namely its visit ratio (V) and
the average service time for each visit (D). For models with multiple job classes, each job class is repre-
sented by a separate parallelogram whose service requirement is specified by links connecting to visited
devices.

2.4  MVA Extension with the Ethernet Device

The modeling parameters of an Ethernet device are determined differently from CPU and disk devices.
Ethernet performance varies with network traffic due to access contention caused by the link-layer proto-
col, Carrier Sense Multiple Access with Collision Detection (CSMA/CD) [10,11]. One approach for assess-
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ing the per-packet delay in an Ethernet network is to model the network as a load-dependent (LD) device,
and solve the model via the extended MVA algorithm with LD service centers [14,15]. The corresponding
LD service center models Ethernet contention as a certain number of stations simultaneously accessing
the network. One disadvantage of this approach is the difficulty of assessing the per-packet delay when
considering the interference traffic from sources outside the system under evaluation.1 The background
traffic problem can be solved by modeling an Ethernet network with respect to the overall packet rate and
the average packet length rather than number of stations accessing the network [1,2,11].

Assessing the per-packet delay in Ethernet with respect to the average traffic rate can be accomplished by
the Ethernet delay submodel of NetMod [1]. This submodel applies Lam’s formula for the per-packet de-
lay [11], and Hammond and O’Reillys’ formula for Ethernet utilization [10]. Lam’s Ethernet delay model
estimates per-packet delay with four input parameters: the Ethernet transmission speed, the one-way
propagation delay of the Ethernet network, the average packet rate, and the average packet length. The
packet rate and packet length parameters are averaged from all traffic sources accessing the Ethernet.
Background traffic is thus taken into account while estimating the per-packet delay.

Khandker has validated the feasibility of the integration of the linearizer with the analysis algorithm of
NetMod [13]. He combines the above two algorithms with a small program which converts the output of
the linearizer to NetMod, and vice versa. The combined method iterates one algorithm after the other,
and uses the outputs of one algorithm as input parameters of the other until the two algorithms converge.
In our implementation of the linearizer, we enhance his method by incorporating the Ethernet delay
model into the core iteration of the linearizer directly. This new algorithm converges to the same perfor-
mance measures but requires fewer iterations. The enhanced linearizer introduces new input parameters
for an Ethernet device:

B The transmission speed (network bandwidth) of Ethernet (10 or 100 Mbps).

τ The one-way propagation delay of the Ethernet network.

Tbg The background traffic of Ethernet in Mbps.

The visit ratio and service time of an Ethernet device are replaced by:

Nc,k The average number of packets generated for class c customer per invocation.

Lc,k The average packet length of all packets generated by a class c customer per invocation.

The aggregate Ethernet traffic is estimated in a way similar to NetMod’s analysis algorithm [1]. The aver-
age packet length, Lk, for an Ethernet device k is estimated by the following formula:

1.  It is difficult to estimate how many stations besides the system under evaluation will simultaneously access the
Ethernet and cause contention. In our case, the problem is that multiple PPS6 clients are running on a single
WinFrame server, but from the Ethernet point of view only one PPS6 client is accessing the network.

Lk

Xc N( ) Nc k, Lc k,××
c 1=

C

∑

Xc N( ) Nc k,×
c 1=

C

∑
------------------------------------------------------------=
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The average packet rate, Rk, is estimated as:

Both formulas use Xc(N), the estimated throughput for a class c customer in the previous iteration [4,13],
to compute the per-packet delay of Ethernet in the current iteration.

3.  Measurement Methodology and Model Validation

A performance model aims at representing the behavior of a real system in terms of its performance. The
input parameters for a performance model describe the hardware configuration, the software environ-
ment, and the workload of the system under study. The representativeness of a model depends directly
on the quality of its input parameters [15]. Measuring details of user workloads and resource consump-
tion is straightforward for mainframe systems such as MVS. However, this task becomes complicated and
difficult in a multi-tiered environment due to the lack of centralized and transaction-oriented monitoring
facilities. Therefore, developing accurate measurement methodologies is vital to and should be coordi-
nated with analytic modeling.

3.1  Measurement Testbed

A measurement testbed is used to measure model parameters and perform the initial validation tests. The
testbed is composed of a WinStation client (Windows NT Workstation 4.0 equipped with a 200 MHz Pen-
tium processor and 32 MB RAM), a WinFrame server (Citrix WinFrame Server 1.6 equipped with two 200
MHz Pentium processors and 128 MB RAM), and a database server (IBM RS/6000 Model F30 running
AIX 4.1 and Oracle server 7.3.1, equipped with 256 MB RAM). These three machines are attached to a pri-
vate 10-Mbps Ethernet through a Cisco 1900 switch that also provides connectivity to the campus net-
work, but can be configured to isolate the testbed during performance data gathering.

A database exerciser, called Stress, is used as the load generator against the testbed Oracle server [4].
Stress allows manual selection of database access functions and supports automatic request generation for
synthetic database workloads. When used in the latter mode, Stress can compose a mixed workload from
four SQL database calls (insert, delete, query, and update a record), each with different weights, and then
run the workload repetitively against the specified database while collecting performance statistics.

3.2  Model Parameter Measurement and Estimation

According to the analytic model, the service requirement of a Stress request is described with four model
parameters: the server CPU service demand (Dcpu), the server disk service demand (Ddisk), the number of
packets generated (Npkt), and the average packet length of these packets (Lpkt). Although the goal is clear,
there are no monitoring tools in AIX that measure these parameters. This is because most UNIX systems
do not have the concept of an application transaction.1 Therefore, the Oracle server sees only a stream of
database accesses (SQL statements) from clients; there is no transaction identifier which can be used to as-
sociate server resource consumption with the end-user work unit. Although Oracle servers provide a
trace facility, SQL trace and tkprof, the resolution is limited to one hundredth of a second, which is too
coarse for the short SQL statements generated by Stress or PPS6 clients. As a consequence, the only feasi-
ble solution at present is to use general tools, such as iostat, sar, tcpdump, and tcptrace, available on most
UNIX platforms.

1.  Transaction processing monitors such as Tuxedo and Encina are relative newcomers to UNIX environments.

Rk

Tbg Xc N( ) Nc k, Lc k,××
c 1=

C

∑+

Lk
----------------------------------------------------------------------------=
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Iostat can report system statistics of CPU and disk utilization at specific time intervals with the granular-
ity of seconds. Our measurement monitors the following three performance measures:

%user The percentage of time the system unit spent in execution at the user (or application) level.

%sys The percentage of time the system unit spent in execution at the system (or kernel) level.

%tm_act The percentage of time the physical disk was active (busy).

These performance metrics can be converted directly into CPU and disk utilization: the server CPU utili-
zation (%cpu) is the sum of %user and %sys; and the server disk utilization (%disk) is the same as %tm_act.
Tcpdump can display the headers and payload of packets captured by a network interface. Tcptrace can an-
alyze the packet traffic captured by tcpdump; for example, it can reconstruct and compute statistics about
TCP connections established between pairs of hosts. For each type of Stress request, the number of
SQL*Net packets (Nc,k) generated and the average packet length (Lc,k) are derived from the packet trace
collected by tcpdump. Since each type of Stress request always generates the same number of SQL*Net
packets, we count each packet and average the packet length manually. For SQL statements generating a
large number of packets, tcptrace can produce a statistical analysis of the packet trace.

Three different Stress requests - Stress insert, Stress update, and Stress delete - have been measured for initial
validation tests. Each performance measurement is conducted over 10,000 consecutive requests to mini-
mize the boundary effect of measurement. The elapsed time of 10,000 requests is measured by Stress itself
to derive the average completion time per request and the server throughput. The average CPU time con-
sumed by the Stress program on the client machine is measured with pview, a Windows NT 3.51 process
monitoring tool. For each type of Stress request, we repeat the same measurement with different numbers
of concurrent clients. The measurement data are presented in Tables 3-5. Table 6 shows the number of
SQL*Net packets, the average packet length, and the client CPU time consumed by Stress for each type of
request.

For each performance measurement, we set up Stress to generate consecutive synchronous requests. The
number of requests (n) carried out within the measurement interval (T) is measured along with the server

 C: request completion time.
 X: server throughput.

Table 3. Measurement data for Stress insert.
# of

clients
%cpu %disk C (ms) X Dcpu

(ms)
Ddisk
(ms)

1 20.19 57.66 59.79 16.73 12.07 34.47
2 32.35 90.70 75.43 26.52 12.20 34.21
3 39.31 90.38 92.46 32.45 12.11 27.85
4 45.89 91.21 106.20 37.67 12.18 24.21
5 52.04 91.07 115.44 43.31 12.02 21.03
6 56.45 89.66 134.73 44.54 12.68 20.13

mean 12.21 26.98
stdev 0.24 6.31

Table 4. Measurement data for Stress update.
# of

clients
%cpu %disk C (ms) X Dcpu

(ms)
Ddisk
(ms)

1 24.74 40.99 79.58 12.57 19.69 32.62
2 44.40 69.59 96.72 20.68 21.47 33.65
3 55.62 78.43 117.93 25.44 21.86 30.83
4 65.18 80.52 137.78 29.03 22.45 27.24
5 72.23 81.16 158.23 31.60 22.86 25.68
6 76.24 81.11 184.41 32.54 23.43 24.93

mean 21.96 29.24
stdev 1.31 3.66

Table 5. Measurement data for Stress delete.
# of

clients
%cpu %disk C (ms) X Dcpu

(ms)
Ddisk
(ms)

1 24.38 42.85 82.44 12.13 20.10 35.33
2 42.43 69.91 99.83 20.03 21.18 34.89
3 54.07 79.98 122.04 24.58 21.99 32.54
4 62.64 81.89 143.76 27.82 22.51 29.43
5 68.70 82.63 166.44 30.04 22.87 27.50

mean 21.73 31.94
stdev 1.11 3.41

Table 6. Other Stress request parameters.
request type Npkt Lpkt Dclient
Stress insert 6 115.67 16.12
Stress update 16 123.94 26.46
Stress delete 16 113.44 28.51
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CPU utilization and disk utilization statistics. Therefore, the average completion time (C) per request is
estimated as T/n and the average server throughput (X) is estimated as n/T requests per second (rps). The
average CPU service demand is estimated from the %cpu as:

Similarly, the average disk service demand is estimated from %disk as:

The estimated service demands for each type of Stress request are also shown in Tables 3-5. The number
of Stress clients varies from one to six except for Stress delete. The mean and standard deviation of the esti-
mated service demands are listed at the end of each table. Unlike Stress insert, the service demands of
Stress update and Stress delete are quite similar, and they even generate the same number of SQL*Net pack-
ets. This is because the Stress program uses a query statement to locate the record before updating or de-
leting it. Therefore, Stress insert requires less CPU time for service because each request is accomplished
in a single SQL statement.

Model parameters, such as CPU or disk service demand, usually use the mean of all measurement data
available. The MVA tool can determine accurate performance measures if the variance of measured ser-
vice demands is relatively small in comparison to their mean. For Stress requests, however, the measured
service demands vary with the number of concurrent Stress programs: the CPU service demand increases
slightly with more concurrent clients and the disk service demand apparently decreases with more con-
current clients.1 This undesired phenomenon will cause a discrepancy between the measurement data
and the model outputs.

3.3  Model Validation and Performance Evaluation

Considering the disparity in the measured service demands, we evaluate the analytic model with two
sets of model parameters. The only difference between the two sets of parameters is their CPU and disk
service demands: one uses the mean value of all measured service demands (called Model 1) and the
other uses the exact measures obtained with five concurrent Stress clients (called Model 2).

When the input parameters are applied, the MVA tool determines the performance measures for a fixed
client population (number of concurrent clients) with zero think time. We increase the client population
one at a time until the disk, which is the bottleneck device, is saturated. The model outputs and the mea-
surement data are compared with three performance curves: completion time (the average residence time
in a job class), CPU utilization, and disk utilization, all against throughput. These performance curves for

1.  Similar measurement results have also been reported in [8]. We believe several reasons may cause the
phenomenon. First, the reduced disk service time is most likely due to the Oracle SGA buffer caching and UNIX
disk buffer caching. Second, the increasing CPU service time is probably due to the contention for shared Oracle
resources such as free lists, redo log buffers, locks, and latches.

Dcpu
%cpu T×

n
-----------------------=

Ddisk
%disk T×

n
------------------------=
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Stress insert are shown in Figure 7. Performance curves for Stress update and Stress delete are available in
our technical report [4].

Figure 7. Comparison of measurement data and model outputs for Stress insert.

Figure 7a shows the service demands of Stress insert from the measurement data, and from the input pa-
rameters of Model 1 and Model 2. Among three different Stress requests, Stress insert has the largest dis-
parity in its measured disk service demand: it drops from 34.47 ms with one client down to 20.13 ms with
six clients. This causes about 7.32 ms of difference in disk service demands between Model 1 and Model 2.
The model outputs for completion time (Figure 7b) and disk utilization (Figure 7d) thus reflect this dis-
parity and cause a major discrepancy between model outputs and measurement data. However, since
Stress insert has a very small disparity in the measured CPU service demands, the CPU utilization from
the model outputs closely matches the measured CPU utilization (Figure 7c).

The MVA tool determines that the Oracle server saturates with a throughput of 35 rps for Model 1 and
47.55 rps for Model 2. The maximum throughput can also be derived from the inverse of the disk service
demands applied to the model (1/0.028 and 1/0.021) because the disk is the bottleneck device in this case.

For Stress update and Stress delete, the disparity among all measured disk service demands is similar to,
but not so significant as for Stress insert. However, another undesired phenomenon arises in that the mea-
sured CPU service demand increases for Stress update and Stress delete as more clients are added. This

(c) CPU utilization(a) service demands

(b) completion time (d) disk utilization
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causes a small discrepancy in CPU utilization between the model outputs and the measurement data. In
general, the same analytic model does a better job of predicting performance measures for Stress update
and Stress delete than for Stress insert because the former have a smaller overall disparity in measured ser-
vice demands.

From the above performance experiments, we find the analytic model does not predict the performance
satisfactorily because of the discrepancy between the model outputs and the measurement data. More
specifically, the general model assumption about fixed service demands is not valid because the mea-
sured service demands actually vary with the number of concurrent clients. As a result, the first step for
model refinement is to identify the actual cause for the disparity in service demands at the Oracle server.
This task requires better monitoring tools capable of decomposing the execution of an SQL request into
smaller components. In addition, we also have to characterize how service demands vary with the num-
ber of concurrent Oracle connections.

3.4  Regression Analysis of Service Demand s

Regression analysis is a general technique for finding a formula consistent with a set of data that can be
used for predicting values outside the range of the original data [12]. The technique is applied here to es-
timate service demands for a larger number of concurrent clients. In this subsection, we exercise this tech-
nique with the performance measures of Stress delete and compare the result with the previous model
outputs.

As mentioned in the previous subsection, the MVA tool evaluates the model of different client popula-
tions with the same CPU and disk service demands. Since the measured service demands actually vary
with the client population, it is reasonable to change them as we change the client population. However,
an immediate problem arises because we do not have a complete set of performance measures for model
evaluation. Therefore, we apply regression analysis to our measured service demands for one to five con-
current clients to estimate the service demands for six or more clients.

To discover the trend of the service demands for Stress delete, the measured values are plotted against the
number of concurrent clients in Figure 8. We then determine what kind of regression methods should be
chosen for each case. In this example, we chose linear regression for the CPU service demand, (the
dashed line in Figure 8) and curvilinear regression for the disk service demand (the bold curve). The re-
gression analysis thus provides the MVA tool with the estimated service demands of different numbers of
concurrent clients for model evaluation. The regression model outputs are shown in Figure 9.
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Figure 8. Stress delete: regression analysis for service demand estimation.

Figure 9. Comparison of performance measures and three model outputs for Stress delete.

# of

clients

measured regression

Dcpu Ddisk Dcpu Ddisk

1 20.10 35.33 20.35 36.91
2 21.18 34.89 21.04 33.88
3 21.99 32.54 21.73 31.49
4 22.51 29.43 22.42 29.54
5 22.87 27.50 23.11 27.91
6 23.79 26.53
7 24.48 25.33
8 25.17 24.28
9 25.86 23.36
10 26.55 22.53
11 27.24 21.78
12 27.92 21.10
13 28.61 20.49
14 29.30 19.92
15 29.99 19.40
16 30.68 18.91
17 31.36 18.47
18 32.05 18.05
19 32.74 17.66
20 33.43 17.29

(a) service demands (c) CPU utilization

(b) completion time (d) disk utilization
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Figure 9a plots the estimated service demands against the throughput, which provides another way for
judging the trend predicted by the regression methods chosen. From the performance curves in Figure
9b-d, the regression model outputs match the measurement data much better than do the outputs of
Model 1 and Model 2. However, the regression model outputs at higher throughput values are not very
accurate because of limits in the regression method itself; the error in predicted value grows larger as the
independent variable increases [12]. In addition, we observe that while the disk service demand curves
must eventually approach the horizontal our model does not predict this behavior.

From the above experiment, we observe that regression analysis is an attractive alternative when perfor-
mance measures do not provide enough information for estimating model parameters. This method nev-
ertheless has restrictions. First, it is not very accurate at high throughput values. Second, we have only
exercised this method with a single job class and a zero think time because our measurement techniques
cannot provide performance measures in a mixed workload environment. It is still inconclusive if multi-
ple job classes and a non-zero think time can affect the accuracy of this method. Third, we can only apply
regression analysis with respect to the number of concurrent clients, instead of the client population at
the service center.1 However, modeling an LD service center requires information about how its service
demand varies with its client population. These issues will be addressed in our future research plan.

4.  Preliminary Investigation of Citrix WinFrame Servers

Citrix WinFrame allows Windows applications to be deployed in a network-centric, three-tiered architec-
ture: the application execution and data storage occur on central servers, and only a “thin” piece of client
software is required at the client system. The three-tiered deployment is accomplished with Citrix’s uni-
versal thin-client software, the multi-user NT server, and the Independent Console Architecture.

4.1  Citrix’s Independent Console Architecture

A distributed Windows presentation separates the graphic user interface (GUI) of an application from its
execution logic. In Windows NT 3.51 and previous releases, the window manager and graphics sub-
systems are implemented as a separate user-mode process called the Win32 subsystem (or csrss) [7]. In or-
der to redirect the Windows display to a remote machine, Citrix adds a Thinwire component into the
Graphics Device Interface (GDI) and video drivers of the Win32 subsystem. The Thinwire component im-
plements the Thinwire protocol which provides highly optimized drawing primitives for Windows pre-
sentation. The WinFrame server uses a separate instance of csrss to manage the Windows display for each
WinStation.

ICA divides its functions into individual protocol drivers layered as a protocol stack (shown in Figure
10). The Thinwire data protocol relies on the ICA protocol to provide reliable, in-sequence delivery of data.
Additional protocol drivers can be configured to supplement the ICA protocol with functions such as
compression, encryption, framing, reliable delivery, and modem control. The bottom layer is the network
transport driver (TCP/IP, IPX/SPX, NetBIOS, or PPP/SLIP) provided by Windows NT.

1.  For this task, we need to measure how service demands vary with the number of pending disk requests at the
Oracle database server.
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Figure 10. ICA Protocol Stack.

The Thinwire protocol uses window frames (WdFrames) to carry presentation information in both direc-
tions of the WinStation connection. At the WinStation, WdFrames carry key-strokes and mouse move-
ments; at the WinFrame server, WdFrames carry Windows objects (bitmaps, brushes, glyphs, and
pointers) for display at the WinStation. ICA can accommodate low network bandwidth for its presenta-
tion service because small Windows objects are cached in client memory and large bitmaps are persis-
tently cached on the client’s disk. Windows objects therefore are transported across the network on first
reference; most subsequent references can be resolved through local caches. In addition, multiple Wd-
Frames are encapsulated (or batched) in a single ICA packet to reduce the network traffic.

4.2  Characteristics of ICA Overhead

Remote computing in the WinFrame environment requires extra CPU time to manage the distributed pre-
sentation. We call this extra CPU time the ICA overhead to distinguish it from the actual CPU time con-
sumed by the application. ICA overhead also applies to the WinStation on which the GUI is actually
displayed. Therefore, we further distinguish the ICA-client overhead from the ICA-server overhead at the
WinFrame server. Since ICA overhead is incurred by the distributed presentation, the GUI design of a
Windows application is the key factor in determining the amount of overhead generated. However, sev-
eral configuration settings of a WinStation connection can also affect ICA overhead. The two most impor-
tant are the encryption and compression settings because they cause extra CPU time for each ICA packet
[5]. Other configuration settings affecting the ICA overhead include the size and the color depth of the
window display at the WinStation.

4.3  Performance Measurement of ICA Overhead

ICA overhead can be measured by the task manager, a process monitoring utility, or by perfmon, a general
monitoring tool. Since the WinFrame server uses a separate csrss process to manage distributed presenta-
tion on behalf of each WinStation, WinStation-induced ICA-server overhead can be measured against the
specific csrss process associated with each WinStation. Similarly, we can measure the ICA-client overhead
against two specific processes, called wengfN.exe and wfcrun32.exe1. Table 11 shows the performance mea-
sures of the ICA overhead for running the Stress program in the three-tiered configuration. Performance
measures in the shadow area are actually measured; the other measures are derived values. The measure-
ment focuses on the ICA traffic rate and the CPU consumption of three processes - Stress itself, csrss at the

1. Wfcrun32.exe consumed no CPU time in our experiments, so we do not consider it further here.
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WinFrame server, and wengfN at the WinStation. Based on the ICA traffic rates and the CPU utilization of
csrss and wengfN, we can estimate the ICA-client overhead and ICA-server overhead in CPU time cost per
byte.

Several interesting phenomena are revealed by Table 11. First, the cost of the distributed presentation ser-
vice provided by ICA on behalf of Stress is very high. It consumes about 96% of the CPU time at the Win-
Station and 19% of the CPU time at the WinFrame server; the latter figure is very close to the CPU
utilization of Stress itself, when run in the two-tiered configuration. Second, ICA-client overhead (140 us/
byte) is more costly than ICA-server overhead (28 us/byte). We have not yet found a good explanation
for this five-fold overhead difference. Third, the average ICA traffic rate is low, less than 0.6% of Ethernet
bandwidth, even though our test has an artificially high GUI update rate.

4.4  Comparison with Two-Tier

To further investigate the cost of remote computing, we measured the completion time and CPU con-
sumption for running Stress in both two-tiered and three-tiered configurations. The measurement data
are shown in Figure 12 with different numbers of database calls.

Figure 12. Measurement of application impact of Citrix WinFrame.

Comparing the measurement data in both cases, we can draw three conclusions. First, the Stress program
consumes about an equal amount of CPU time in both configurations. Second, there is a noticeable over-
head (about 14-17%) in completion times for running Stress in the three-tiered as opposed to the two-
tiered configuration, and the difference grows linearly with the completion time. Third, the WinStation
(in the form of wengfN.exe) consumes much more CPU time for the presentation of Stress results than it
does running the Stress program itself.

Table 11. Performance measurement of ICA overhead on behalf of Stress program.
# of DB

 calls

C

(sec)

CPU time (sec.) %CPU ICA ICA Overhead (us/byte)
WinServer WinStation WinServer WinStation WinServer WinStation

stress csrss wengfN stress csrss wengfN (bytes/sec)
500 38.22 7.87 7.06 39 20.59 18.47 102.04 6970.53 26.49 146.39

1000 75.77 15.47 14.70 73 20.42 19.40 96.34 7214.87 26.89 133.54
1500 113.83 24.51 21.70 109 21.53 19.07 95.76 6926.25 27.53 138.25
2000 152.91 32.36 29.78 143 21.16 19.48 93.52 6926.32 28.12 135.02
2500 190.81 40.65 37.27 182 21.30 19.53 95.38 6847.54 28.52 139.30
3000 229.64 46.43 44.24 219 20.22 19.27 95.37 6684.91 28.82 142.66
3500 269.13 55.23 52.43 256 20.52 19.48 95.12 6759.26 28.82 140.73
4000 307.81 61.28 59.31 293 19.91 19.27 95.19 6682.80 28.83 142.44
mean 20.71 19.24 96.09 6876.56 28.00 139.79
stdev 0.57 0.35 2.53 176.11 0.93 4.21

# of DB
calls

2-tiered Stress 3-tiered Stress
CPU C CPU C wengfN

500 8.03 32.73 8.47 38.22 39
1000 15.62 63.61 16.08 75.77 73
1500 23.28 98.58 24.75 113.83 109
2000 31.09 130.59 31.58 152.91 143
2500 37.97 166.34 39.23 190.81 182
3000 45.72 200.31 47.83 229.64 219
3500 55.03 235.34 55.91 269.13 256
4000 61.33 266.92 63.75 307.81 293
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4.5  Performance Impact of Citrix in Production Environments

Modeling the WinFrame extension requires careful analysis about how ICA consumes system resources
in the forms of CPU time on WinFrame servers and WinStations, and traffic rate on the Ethernet segment
connecting the WinFrame server and the Oracle server. Our preliminary investigation has allowed us to
develop a measurement methodology to characterize the ICA overhead. Based on the technique, we have
analyzed the ICA overhead on measurement data from live stress testing of PPS6 applications in the pro-
duction environment. We observe a linear relationship in CPU consumption between the PPS6 client
(pstools) and csrss (Figure 13a), and between the CPU consumption of csrss and the number of WdFrames
generated (Figure 13b). This discovery allows us to estimate resource consumption in units of PPS6 trans-
actions and to develop an analytic model for the WinFrame extension.

Figure 13. Resource consumption estimation of ICA overhead in the production environment.

5.  Conclusions and Future Work

We presented the modeling and measurement of client-server configurations in a multi-tiered environ-
ment featured in the University of Michigan production deployment of the PeopleSoft 6 (PPS6) client/
server system. We used a closed QNM to model the two-tiered PPS6, and built a performance modeling
tool to evaluate the model via MVA. The model outputs closely matched the measured values in those
cases where the service demands remained constant with increasing numbers of clients, as the model as-
sumes a fixed service demand for all client populations. However, in several cases the CPU and disk ser-
vice demands were found to vary with the number of clients, causing major discrepancies. To address
this problem, we used regression analysis to estimate the varying service demands for multiple concur-
rent users. The model outputs closely matched the measured values after we applied the new service de-
mands estimated with the regression analysis. However, we still have to validate the regression approach
under mixed workloads when performance measurements in such an environment are feasible. We also
performed some preliminary measurements for running Windows applications in a three-tiered Citrix en-
vironment, both by monitoring network traffic and by measuring CPU utilization. The study provides
some valuable insights for estimating the extra resource consumption caused by the ICA overhead as re-
quired for modeling the three-tiered extension.

The major problem we have encountered is the lack of transaction-oriented monitoring facilities that
charge system resource consumption to individual workloads in a multi-tiered environment. In addition,
the tracing and monitoring facilities on Oracle servers do not provide detailed performance measures to

(a) %cpu:csrss vs.pstools. (b) # of frames vs. %cpu of csrss.
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study how service requirements vary with concurrent users and mixed workloads. In order to address
this issue, we plan to combine several monitoring tools to estimate service demands as suggested in [8].
These tools include iostat and sar at the operating system level, Oracle dynamic performance tables
(v$sysstat and v$sesstat) at the Oracle system level, and SQL trace and tkprof at the level of individual
SQL statements.
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