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ABSTRACT

An advantage of today’s high speed networks is the ability to support group communication. Ap-
plications that support group communication allow the free exchange of ideas and data in real time,
regardless of the physical distance between the participants. Unfortunately, support for additional
protocol features such as reliability, secrecy, and total ordering in the multicast context requires
more bandwidth and greater complexity than in traditional point-to-point communication. In this

paper we describe a middleware software layer and associated API that attempts to minimize these
requirements by providing multiple securechannelsbased on IP multicast within the same logical
group. Named LSGC (lightweight secure group communication), the software provides the impor-
tant features needed by a group application: reliable delivery, best-effort delivery, and security. In

providing both reliable and unreliable channels, an application need pay only for the delivery assur-
ances it needs. We conclude with a description of our implementation and supporting performance
data.
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1 Introduction

An advantage of today’s high speed networks is the ability to support group communication. Applications that support
group communication allow the free exchange of ideas and data in real time, regardless of the physical distance
between the participants. For group applications such as videoconferencing, high bandwidth requirements dictate a
multicast communication model. Unfortunately, support for additional protocol features such as reliability, secrecy,
and total ordering in the multicast context requires more bandwidth and greater complexity than in traditional point-
to-point communication. Furthermore, these requirements increase as more protocol features are needed.

In this paper we describe a middleware software layer and associated API that attempts to minimize these re-
quirements by providing multiple communicationchannelsbased on IP multicast [1] within the same logical group.
Named LSGC (lightweight secure group communication), the software will be used by application developers to create
high-bandwidth group applications with a minimum of protocol and infrastructure overhead.

While there are many architectures and protocols described in the literature aimed at enabling reliable, fault-
tolerant, and/or secure group communication [2, 3, 4, 5, 6, 7], they incur significant costs. Integrating with these
systems requires additional application infrastructure, bandwidth, or both. We attempt to avoid these costs with a
single, lightweight software layer that provides the important features needed by a group application: reliable delivery
and security. Moreover, applications choose which features they wish to pay for on a per message basis, avoiding
unnecessary overhead.

LSGC and its associated protocols address three central goals:

1. An application using the API must view the group as a single abstraction. Applications are free to transmit
messages to the same group with varying delivery semantics without changing the group context. The underlying
protocols used to provide varying delivery semantics must be transparent to the application.

2. All communication within the group must be secured. Communication between the members must be confiden-
tial, integrity assured, and fresh.

3. The operation of the security mechanisms must introduce minimum additional latency and throughput limita-
tions. Lightweight protocols and cryptographic algorithms are to be used in attempting to achieve this goal. The
dynamic nature of group communication coupled with the bandwidth requirements of the target applications re-
quire that the group must adapt to changes in membership with minimal overhead. Moreover, the cryptographic
algorithms employed in our system must be fast enough to support the high bandwidth requirements of target
applications.

In addressing these goals, we introduce the use of multiple logical channels within the same group with varying
delivery semantics. Our current prototype provides two logical channels over which application messages can be trans-
mitted: thereliablechannel and theunreliablechannel. The reliable channel is used by applications to send messages
that contribute to the global shared state. We use the termcritical message to refer to this type of traffic. Using this
mechanism, application developers need not address the many design issues associated with state consistency in the
presence of unreliable communication. Reliability in the group context requires either implicit or explicitconsensus
about the existence and ordering of messages. Control messages are required to achieve this consensus, and thus can
introduce latencies and consume bandwidth. The unreliable channel is used in those cases where a message does not



need reliability, or where the overhead costs are larger than the application is willing to pay. Messages transmitted to
the group on the unreliable channel are delivered as “best effort” traffic, the reliability and timeliness of which depends
on the network environment.

Both channels operate under a single logical group, obviating the need for reconciliation of potentially divergent
group membership. Generally, applications that require multiple delivery semantics need to create and maintain a
separate group for each type of delivery. This requires the application to maintain state for each group, and to ensure
synchronization the membership between groups, which introduces additional failure modes that must be handled
directly by the application. In LSGC, group membership and failure modes are inclusive: a process is in groups for all
channels or none, and if any channel fails, then they all fail. This is consistent with our single group abstraction: the
application interacts with a single “logical” group.

The central goal in the design of our security mechanisms is performance: all security related operations must be
lightweight. We have adapted the Leighton-Micali [8] key distribution algorithm to the group environment. This algo-
rithm has several desirable properties with respect to our stated goals. First, it uses fast (symmetric key) cryptographic
algorithms throughout. Second, the algorithm generates unique shared secrets between any two members. These keys
are useful in quickly distributing new group session keys. The security services use the reliable channel to distribute
authenticity and session key information.

We have completed our initial implementation of LSGC and ported it to several platforms. LSGC provides a single
object interface to the group. Using this object, an application has the ability to communicate via either channel, view
the current group membership, or retrieve security related information. We use the multicast extensions [1] of the
Internet Protocol (IP) [9] as our communication primitive. As such, our implementation should be widely supported
by most existing networks.

Applications with real-time requirements, such as audio and video conferencing, are well suited for LSGC. LSGC
allows these applications to transmit data at the highest rates available on the unreliable channel, while maintaining
state consistency through the reliable channel. In systems where all communication is required to be reliable, this
solution may not provide performance improvements but may still offer value as a secure communication mechanism.

In this paper, we outline the architecture of LSGC and give a detailed description of the security mechanisms.
In later sections, we discuss our experiences with the implementation and give a summary of the preliminary perfor-
mance measurements. The remainder of this paper is organized as follows. Section 2 describes the LSGC design and
operation. In Section 3 we analyze the performance of our implementation. In Section 4, we review the literature
germane to this work. In Section 5 we assess the contributions of this research and identify directions for future work.

2 Architecture

The purpose of LSGC is to provide a useful interface that aids application developers in building high performance
group applications. Applications using our system are provided facilities to send messages with differing delivery
guarantees within a single logical group. These delivery guarantees are specified for each message. In many existing
systems, separate independent communication channels must be created to support different guarantees. Here, variable
delivery guarantees are used for enhanced performance. The use of a single group for separate types of communica-
tion, as opposed to separate groups, lowers the overhead of group maintenance. With one group, no coordination is
needed to reconcile potentially divergent group membership between the channels. Moreover, the use of unreliable
communication within the group lowers the costs of application traffic.

Like most group communication systems, our architecture is based on a dynamic group membership model.
Through the API, a process applies for group membership. The identity of the group is specified by a multicast
address. If membership is granted, the application is free to transmit and receive messages from the group. Based on
the type and urgency of each message, an application determines over which channel it will be transmitted. A group
member is free to exit the group at any time. All members are immediately notified when the membership changes.

Based on IP multicast, LSGC provides two channels for group communication: a reliable channel and an unre-
liable channel. The reliable channel guarantees that either a transmitted message is delivered or (nearly) immediate
notification of failure is reported. More specifically, the delivery is guaranteed to be atomic (with respect to failures),
totally ordered, and reliable: either all or none of the group members receive a message, and all messages are received
by all members in the same order. The unreliable channel makes no guarantees about the delivery of the message.



Figure 1: LSGC Protocol Layers - Critical messages are passed between the protocol layers, tagged, and encrypted.
After transmitting the message, a confirmation from the group is observed and returned to the sender. Unreliable
messages are encrypted and passed directly to the network interface.

Some, none, or all of the group members may receive a message. The underlying IP protocols allow us to assume
that, in the absence of a malicious party, the integrity of messages is assured. In the future, we may add channels that
provide other delivery semantics.

In most environments it is not desirable to broadcast group communication in the clear over the network, so
LSGC secures all communication, guaranteeing the secrecy, integrity, and freshness of each transmission. A secret
message has the property that it is computationally infeasible for an untrusted party to recover the plaintext without
the encryption key. A receiver is able to determine that a message was sent recently, and is thus fresh. Each message
is integrity protected; it is possible for the receiver to verify that a message has not been modified in transit. Although
not supported in the current version, we intend to extend to these facilities to include other guarantees, such as sender
authenticity.

Described in Figure 1, internally the LSGC consists of three protocol layers. Each layer provides services specific
to a feature of LSGC and depends on lower layer services. The security services layer depends on membership in the
group, which is established and maintained in the process group management layer. The process group management
layer requires the use of the reliable delivery semantics provided by the reliable broadcast layer to correctly maintain
group membership.

The security services layer provides facilities for ensuring the secrecy, integrity, and freshness of the group com-
munication. In providing these facilities, we adapt the Leighton-Micali [8] key distribution algorithm to a group
environment. Using this algorithm, LSGC periodically distributes a unique cryptographic key that is used to encrypt
the group communication. A detailed description of these mechanisms and protocols is given in Section 2.1.

The goal of the process group management layer is to provide all processes with a consistent view of group
membership. Knowledge of group membership drives the content and tone of a session, so its management is critical.
Failure detection must also be provided, so that participants are informed when members are unexpectedly removed
from the session. This layer ensures that each member is aware of the current membership and is informed in a timely
manner when group membership changes.

The management of the group membership is based on a server granting scheme. A potential member attempts a
join by notifying a distinct member, called thesession leader, of its intent. After joining, the new group membership
is distributed by the session leader, and reliable application traffic continues. The success of these algorithms depends
on the underlying reliable broadcast mechanisms. The current membership is shared state held between the group
members, and as such reliable delivery makes consistency much easier to obtain.

Security services require a member to obtain credentials to present to the group before joining. These credentials



are obtained through a pre-authentication protocol, described in Section 2.1. During the join phase, the credentials are
authenticated by each current member. If the credentials are found to be authentic, the new member is added to the
group.

The reliable broadcast layer provides reliable, atomic, totally ordered delivery of group traffic. The messages are
atomic; either all processes receive a message or none do. The messages are totally ordered; all processes receive the
messages in the same order. These delivery semantics are used to ensure that all critical data are delivered to the group
members correctly.

We base our design on a sequencer arbitrated commit scheme [5, 6, 10]. The sequencer is responsible for main-
taining the order of messages by associating a sequence number with each application level message. This association
is broadcast to the group. Ordering and loss detection is achieved by each member observing the sequence number of
messages and delivering them to the application accordingly.

Membership can be potentially large, so we have selected a negative acknowledgement (NAK ) scheme for loss
recovery. When an application detects a missed message, it requests a retransmission by sending a NAK message.
Positive acknowledgement, wherein all receivers acknowledge each received message, is unsuitable in our system for
two reasons. First, with positive acknowledgement, the costs of a single application message grows linearly with
group size (in terms of the number of messages). Second, a receiver must know the identity of all the receivers. At
this protocol layer, group membership information is unavailable.

An implication of using NAKs is that the sequencer must maintain an indefinite backlog of messages for later
retransmission, and this backlog can consume significant resources. We avoid this resource problem by designating a
maximum number of messages that may be missed by a client. If the sequencer receives a NAK for a message outside
this backlog window, it does not respond, eventually resulting in the client exiting the session.

2.1 Security Services

In this section we outline the facilities that ensure secrecy, freshness, and integrity of group communication. We
adapted a two-party key distribution algorithm to the group environment to provide all authenticated members with a
context specific session key. All application level communication is encrypted using this key. We conclude this section
with a discussion of several implementation issues.

The central goal of the security services is to provide security for all application level traffic. Specifically, we ensure
that the application level messages are confidential, integrity checked, and fresh. The confidentiality of application
messages is ensured by a session key. Any party with access to this key has full access to the plaintext of all application
messages. All traffic is integrity checked: all receivers will be able to determine that any message has or has not been
altered in transit. The application messages are guaranteed to be fresh. Replay of messages from previous sessions are
detectable by receivers.

The threat model for our system is based on the protection of the application level messages. We state the goal of
an adversary is to obtain access to these messages. To this end, we assume the adversary may add, modify, or delete
any message. We do not address denial of service attacks.

Each potential member,A, of a group (including the session leader) has a shared secretKA registered with a trusted
third party called the key distribution center (KDC). This secret key is generated and registered with theKDC before
the party attempts to join any session. We assume an out of band method for establishing key registration. The strength
of the security is based on the protection of these keys. We assume the application has some secure way of obtaining
the keying information; pass phrases are normally used for this purpose.

Before describing our solution, we state our trust in the member applications. We assume that all processes that
have achieved membership, and thus have been authenticated, adhere to the system specification. We assume no
member willingfully discloses its long term or session keys. All members trust theKDC not to disclose their long term
key, and to generate pair keys according to the specification.

Group communication systems found in the literature provide varying levels of support for secure communication.
The simplest form of secure communication can be found in ISIS [5], where group communication is encrypted via
a session key. At the other end of the spectrum, RAMPART [4] uses a highly sophisticated, fault-tolerant framework
to enable secure group communication in the presence of actively malicious processes. Our goals of secure and high
performance multiparty communications leads us to less ambitious security goals. We define a protocol for session



key distribution and message encryption whose primary goal is high performance: key distribution and encryption
must be as lightweight as possible.

We achieve these performance goals by leveraging on the broadcast and group membership semantics provided by
the underlying protocols. Membership is used implicitly to state authenticity, and session keys are distributed on this
basis. Before being allowed to join, each prospective member is pre-authenticated. During authentication, a potential
member is given a context sensitiveauthentication token, which is presented to the group during the join phase. Each
token is specific to both the joining process and the current group membershipview. 1 The token can be validated by
each existing member without obtaining additional information.

All messages are encrypted with a session key specific to each view of group membership. As each new view is
installed, a new session key is generated and distributed. We use separate session keys for each view, for two reasons.
First, we do not want to grant recently joined members access to previous communication. Second, this reduces the
amount of time a session key is in use. If a session key is compromised, it will disclose only the session traffic
generated during the duration of the view. Possession of the session key for one view provides no information with
which to infer the key for the next view. Because of our lightweight mechanism, the impact of the potentially large
number of key distributions is minimal.

We chose the Leighton-Micali key distribution algorithm [8] to authenticate and transmit the authentication to-
ken to the joining member. The main advantage of Leighton-Micali is low cost: it uses symmetric key encryption
throughout, with none of the modular exponentiation operations associated with public key cryptosystems. Public key
cryptography requires significantly more computation than symmetric algorithms. The de-facto standard for public-
key cryptography, RSA, can be up to 100 times slower in software and 1000 times slower in hardware than DES, the
predominant symmetric algorithm [11].

Before describing the protocols, we define the notation used in this section. We use the termSL to refer to the
identity of the session leader,A to refer to a potential member of the session, andKDC to refer to the key distribution
center.fXgk refers to messageXencrypted under the keyk. The view identifier,g, is used to uniquely tag the changing
views of group membership. The termSKg refers to a session key in viewg, andSKg+1 for the (next) viewg + 1.
The termI, possibly with a subscript, refers to a nonce value. Key distribution protocols based on Leighton-Micali
define a term�A;B , called apair key, used to support secret communication between collaborating membersA andB.
Derived from the pair key, the session leader and a potential memberA maintain a shared secret key�SL;A. A MD5
hash [12] for the textx is described byHx.

It is important to note the format of an identity, nonce, key value, and view identifier. Each identity is a unique
16 byte null terminated ASCII string of alphanumeric characters. A potential member is assigned this value when
registering a long term key with theKDC. Nonce values are unique 64 bit values. To ensure nonces are not reused,
some source of monotonic values, such as the system clock, may be used. Key format is algorithm dependent. The
DES standard uses an eight byte key (including eight parity bits). In the future, as other ciphers are integrated into
LSGC, we will need to support other formats. The view identifierg consists of a two parts. The first part is an eight
byte null terminated group name string that identifies the group, used only for displaying and debugging purposes. The
second is an eight bit nonce value. Each time a new view is created (g + 1), a new nonce in generated and appended
to the group name string to create the new view identifier.

A session is started by the initial member, called the session leader. The session leader initializes the session
by generating a session key and initiating the process group management protocol. The session leader serves as the
arbiter of group membership for that session. We use DES [13] for all encryption in the system; its inherent strength
is evident from its 20-year history, yet its 56-bit key length has long been the subject of debate. Related algorithms
such as triple-DES [14] or DESX [15] offer the strength of DES with considerably longer keys.

A prospective member initiates a session join by sending a message to the session leader containing her identity
and a nonce value. The session leader then obtains the pair key�A;B from theKDC. Derived from two identities
and their associated long term keys, the pair key is used to establish an ephemeral secure channel between the pro-
cesses. Messages 1-3 in Figure 2 describe the exchange between the prospective member, the session leader, and the
certification authority.

To prevent replay attacks, the session leader verifies the encrypted nonce valueI1 included in theKDC’s response.

1A groupview is the set of identities associated with the members of the group during a period where no changes in membership occur. If the
membership changes (a member joins or leaves the group), then a new view is created.



Join Protocol
1. A! SL : A; I0
2. SL! KDC : SL;A; I1
3. KDC ! SL : [�SL;A = fAgKSL

� fSLgKA
]; fI1gKSL

4. SL! A : SL; fI0; g; fg;AgSKg
g�SL;A

5. A! group : A; fg;AgSKg

6. SL! group : g; (A; fg + 1; SKg+1g�SL;A); (B; fg + 1; SKg+1g�SL;B); :::

Leave Protocol
The session leader generates and transmits message 6.

Application Messages
7. [groupmember]! group : g; fA; I2; [message]; H[message]gSKg

Figure 2: Protocol description.

The session leader generates the valuefAgKSL
. This value is XOR-ed with the pair key�SL;A received from the

KDC. The resulting value is a shared secret key (fSLgKA
= �SL;A) that is used to create a secure channel between

the session leader and the prospective memberA.
The session leader creates and returns a response message containing a view identifier, an authentication token, and

a nonce value encrypted with the shared secret key�SL;A. The authentication token contains the view identifier and
requesting process identity, encrypted under the session key for that view. Upon receiving this message, the receiver
decrypts the contents and verifies the nonce. Mutual authentication is achieved through the verification of the secretsA
andSLshare with theKDC. The potential member must be in possession of the secret shared with theKDC to decrypt
the key distribution message. The session leader must be in possession of the secret shared with theKDC to determine
the secret key shared withA. A is convinced the key is fresh by validating the nonce value sent in the original request.
Message 4 describes the authentication response message.

Note thatA need not communicate with theKDC to obtain the shared secret keyfSLgKA
= �SL;A; she can

compute it directly.A decrypts the session key with this value and validates her nonce.
When a member tries to join the session, the received authentication token is presented to the group (message 5).

All current group members possess the session key, and can validate the contents of the token. After decrypting the
token, each group member validates the contents by verifying that the group identifier matches the current group and
the joining member identity is consistent with the join request. If the token contents are not valid, the join request
is ignored, and the group continues. If the token is valid, the new member is allowed to join the group and a new
view and session key is installed. An adversary may intercept the token and attempt to join with it. In this case, the
join identity and the one inside the token will not match, and be ignored. If an adversary attempts to impersonate the
token owner, he will be able to join the session but unable to obtain the session key for the new view (see session key
distribution below).

After a joining member presents an authentic token to the group (which includes the session leader), the session
leader broadcasts the message containing the new session key and new view identifier. In the session key distribution
message the new session key is encrypted under the shared secret key shared with each member. This is similar to the
key distribution used during aLEAVEoperation in the Iolus system [16]. The session leader caches the shared secret
keys, so creating this message is fast: encryption of 24 bytes (8 bytes of new session key plus 16 bytes of new group
identifier) per member. Using the cached, shared secret key, the receivers of this message extract the session key out
of the message and begin using it immediately. Message 6 describes the session key distribution message. The size
of this message grows linearly with group size, and is potentially large. But keying material needs to be sent in any
solution, so the size of the message is large by its nature, not as a side effect of our design. Schemes that distribute a
key to each member individually will transmit the same amount of data over many more messages. The Iolus system
[16] mitigates the need for a large key distribution message by introducing subgroups. The subgroups form a hierarchy
of groups to which the keying material is distributed. The keys cascade from supergroup to subgroup, thus reducing
the size of any one distribution message. Should it be deemed necessary in the future, we may add support for a similar
mechanism.



All communication in the session is encrypted with the session key and tagged with the group view identifier.
Included in each application message is the sender’s identity and a nonce value. Associated with each group member
is a monotonically increasing counter (I2) that is reset to 1 as a new group membership view is installed. This counter,
represented by the nonce value in the message combined with the session key ensures that the message has not be
replayed from earlier in the session. To ensure integrity, an MD5 hash of the application data, sender identity, and
nonce value is concatenated with the message, and verified upon reception. Message 7, where[message] is the
message content, describes its format.

A potential problem occurs during the transition of group views. During the join process, application data such as
continuous media may continue to be broadcast over the unreliable channel. Because of delays in the delivery of the
session key across the reliable channel, a process may receive an unreliable message encrypted with a session key that
it does not yet or will never possess. In the following paragraphs we outline several solutions to this problem.

This session key transition problem is difficult to address with a single general solution. In applications with
low throughput characteristics, it may be reasonable to buffer data until the new key arrives. High performance
applications, such as videoconferencing, have much higher throughput requirements and thus can not buffer data for
long. This is a reasonable solution only if the delay is likely to be very short. Another potential solution is to transmit
with both keys for some period after a group change, but this potentially doubles the bandwidth use and increases
latency due to the processing of unneeded packets2.

Another alternative is to establish a waiting period during which all transmitted data is encrypted using the old
session key. Here, a newly joined member is unable to process unreliable traffic until the waiting period is over. A
potential security risk is that processes that leave the group are able to continue decrypting the unreliable traffic during
the wait period.

The target applications generate large amounts of continuous data. If buffering is used, the vast amount of data
arriving at the client will likely overflow available buffer space. Because the data is continuous, arbitrary delays in the
stream may degrade the service provided by the application. For the similar performance reasons, we are reluctant to
introduce double encryption into the system.

After weighing these factors, we have chosen to drop any incoming message for which we do not currently possess
the key. In local area networks these delays are short, yielding little data loss during the transition. If in the future
we find the costs of the outages outweigh the costs in performance and/or buffer space, and we will reevaluate this
decision.

Thought not implemented in our the initial version of LSGC, we note the need to secure the messages of the
underlying process group management and reliable broadcast protocols using the session key. In the absence or such
protections, an adversary may be able to mount attacks against the group. By intercepting and modifying the messages
of the underlying protocols, an adversary may be to block notification of a group membership change and resulting
session key distribution. In this way, and adversary is able to get a sender to continue sending application messages
using an old session key. Using similar techniques, an adversary will be able to reorder application messages within
the group. We are currently integrating cryptographic protection of the underlying protocol messages into LSGC.

3 Performance

We have completed the implementation of LSGC as described in the previous sections, with the exception of the MD5
hash used for secure communication. All code and test applications have been ported to Microsoft Windows95, HP-
UX version 10.20, Solaris 2.5.1, and Linux 2.0.18. Using fault insertion, unit, and soak tests, the stability of the system
has been established. Our implementation is in prototype form and little attention has been paid to wringing the best
performance from it, so the performance reported in this section is preliminary, but provides indicators of the power
of our design. Where applicable, we point out where the deficiencies of the current implementation lie and propose
potential enhancements.

2It is possible to mitigate the costs of encrypting with both keys. A solution would be to generate a random one time key and encrypting it under
both the new and old session keys. The message itself would be encrypted using the random key. The ciphertext of the random key encrypted with
each session key, plus the encrypted message would be broadcast to the group. A receiver would then reverse the process with an available session
key.
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Performance was measured using two test applications that perform client and server functions. The server ap-
plication creates the sessions, which one or more clients join. The tests were run on Sun Microsystems UltraSparc
Model 170E (167MHz) with 128MB memory and 4.0GB hard drives over a 10Mbit Ethernet network. The protocol is
self regulating, so the sender transmits reliable traffic as fast as the protocol allows. Unreliable traffic is paced by the
sender at the shortest interval that does not incur significant packet loss. Each application message is 8KB. We use a
single sender and measurements are taken at all receiver hosts.

Our first series of tests determines whether the unreliable channel performs significantly better than the reliable
channel. Intuitively, we expect that the delays caused by the atomic broadcast mechanism reduce system throughput.
In our implementation, a sender may have only one uncommitted message outstanding, thus limiting transmission.
Performance may be improved by augmenting the protocol to include a sender window. In this way, a sender can have
more than one outstanding packet at a time, increasing the total throughput. Unfortunately, this enhancement may
require the introduction of a group flow control mechanism. For this work, we assume a small amount of critical data
needing reliable delivery semantics, so the enhancement is deemed unnecessary for our initial tests.

In Figure 3, we show measurements of throughput for the several delivery/security communication models. These
tests measure a session containing a server and three clients. Four tests lasting 110 seconds each were executed. We
show the end to end (application to application) throughput for each test. Each mode of communication was tested
(reliable secure, unreliable secure, reliable insecure, and unreliable insecure) to determine the effects of both reliability
and security on system throughput.

We point out several features of the throughput described in Figure 3. The most significant, if not surprising,
fact is that the unreliable channel has significantly higher throughput. We attribute this to several factors. First, the
throughput of the reliable channel is limited by the sender window of 1. Missed packets must be NAKed, requiring
additional multicast traffic processing by all hosts, which reduces the total amount of time in which the application
data may be processed. The unreliable insecure traffic has very little delay. The test application is able to saturate the
10 Mbps Ethernet using the insecure unreliable delivery.

Another observation is that secure channels have much lower throughput than insecure channels. For both reliable
and unreliable traffic, the throughput of secure communication is roughly1

3 that of insecure communication. We
attribute this largely to the encryption and decryption costs. In our prototype, DES encryption occurs in the critical
path of message transmission. This causes the transmission of each packet to be delayed by the amount of time it
takes to encrypt the buffer. Modifications may be made to remove this latency by pre-encrypting each message while a
previous message is being transmitted. Faster encryption schemes may also be used to decrease this cost. For example,
the CITI secure videoconferencing system [17] uses two fast ciphers, RC4 and VRA, which have been found to be
four and eight times faster than DES, respectively, when used as stream ciphers. In integrating our work with the CITI



Figure 5: Throughput : as measured with differing group sizes. Throughput is largely independent of group size.

system, we will add support for these ciphers.
A final observation is that while the throughput of the secure traffic remains essentially constant, the insecure

traffic shows great variability. Brief periods of change in throughput are due to environmental issues. The unreliable
insecure traffic saturates the network, so any traffic from other hosts affects our throughput. These tests were taken
on a large network, so usage spikes affect our throughput tests. With reliable insecure traffic we see a much larger
variance. This can be attributed to the reliable transport mechanism. Packet loss in our environment is due to receiver
overrun. Each lost packet causes one or more hosts to send a NAK. When the server sees any NAK, it responds with
the NAK response message, which is slightly larger than the original message. In this way, the buffer overrun problem
can be exacerbated by the NAK/response. Hosts may be able to avoid the multiple NAK problem by monitoring the
channel for NAKs, sending them only when there is not one outstanding. This is essentially a flow control problem,
which we relegate to the application. We do not see this problem with reliable secure communication because of
limited throughput: encryption of traffic is slow, so receiver buffers are not overrun.

As described in section 2.1, a group membership change triggers the distribution of a new session key. The
cost of key distribution is a function of group size and the speed of the cryptographic algorithm. In Figure 4, we
use the throughput characteristics found in the previous tests to estimate the best case costs of join/leave processing
supported by LSGC. Note that these numbers are best case: as groups grow larger, the possibility of retransmissions
increases. Retransmissions lengthen the membership change processing time. We show this performance with our
current implementation (DES), and two other cryptographic algorithms we intend to integrate with LSGC (RC4 and
VRA). Note that for group sizes of less than 200, LSGC can process 50 or more membership changes per second,
far more than is likely to occur. When LSGC is supporting larger groups (up to 350 or so members), more than
20 membership changes can be processed each second. Very large groups may overwhelm LSGC with membership
changes. If support for groups containing 300 or more members is required, the key distribution costs can be reduced
by a hierarchy of session leaders.

The next series of tests determines the effects of group size on throughput. We repeated the previous test with
group size of two, four, and eight hosts. Figure 5 shows the average throughput for each of the tests in kilobytes per
second. For these group sizes the performance is largely constant, which is what we would expect to see. Multiple
receivers receive the data in exactly the same manner, regardless of the group size. This is the advantage of multicast.
We attribute the small variance reported throughput between the group sizes to environmental issues. Repeated tests
of the same type indicate differences comparable to those reported in Figure 5.

One possible result not shown in this figure is that the number of NAKs as a percentage the total traffic increases
with group size. At some point, the overhead of NAK processing affects total throughput. This problem is known as
acknowledgement implosion. Paulet al. [18] define a protocol in which a tree of multicast subgroups is connected.
In each subgroup, a distinct member, known as theprimary receiverperforms acknowledgements for the group as a
whole to a parent subgroup in the tree. Acknowledgements and retransmissions are localized within the subgroup,
reducing total protocol overhead. We may elect to augment our work in this way in the future.



4 Related Work

Much of the existing technology on which reliable group communication is based was originally implemented in the
ISIS [5] and later HORUS [3] group communication systems. These systems provide a framework in which group
applications with reliable delivery requirements can be developed. Using these frameworks, developers can experiment
with other features, such as secure communication. One important feature of the HORUS system is the introduction of
a comprehensive security architecture. A key element to this architecture is the fault-tolerant key distribution scheme.
Process group semantics are used to facilitate secure communication. As group membership changes, new session keys
are distributed. The key distribution mechanism can tolerate, up to a point, the loss of the global timing source, which
is used to ensure the freshness of the keying material. Public key certificates are used to authenticate message traffic,
which are retrieved from a certification authority. The costs of using this architecture for group communication is large.
The authors show that a group of 4 members can process< 100kb/second [3], which is far below the requirements for
a high bandwidth system such as videoconferencing.

The RAMPART system [4] provides secure communication in the presence of actively malicious processes. The
system uses secure channels between two members of the protocol to provide a maximum of security and authenticity.
Protocols depend greatly on theconsensusof processes to reach agreement on the course of action. The costs of the
strong guarantees is very high: the authors state the latencies can exceed those of other published protocols by an order
of magnitude.

A limitation of many secure group communication systems is that they do not scale to larger networks. The Iolus
system [16], addresses this limitation. Scalability in Iolus is achieved by limiting the effects of membership changes to
locally maintained subgroups. Each subgroup maintains its own session key, replaced after each membership change.
While this approach is effective, little description about the delivery semantics is given. In the future, if scalability
becomes a concern, we may choose to integrate these methods into LSGC.

Virtual networks provide developers an abstraction to build applications designed for (logically) local network
traffic, but executed across across larger networks. The Enclaves system [2] extends this model to include secure group
communication. Group communication in the Enclaves system is controlled at a finer grain, where group membership
is controlled not only by authentication, but by policies defined by a group definition. A distinct member authenticates
a process wishing to join the group, and validates the new membership using the policy definition. Authentication
tokens are passed to an admitted member and presented to other group members as needed.

In the systems mentioned above, we see that a wide range of security threats and fault tolerance requirements can
be addressed by applying well known techniques. Yet, fulfilling these requirements comes at the expense of increasing
costs. Though appropriate for situations where bandwidth and latency requirements are marginal, these solutions
are likely to fail to meet the needs of applications with high performance requirements. This motivates our design,
where the requirements for delivery semantics and performance differs between the types of traffic within a single
application.

5 Conclusions and Future Work

This paper has presented a design and preliminary performance measurements of middleware for secure, high perfor-
mance multicast applications. We see two central contributions of this work. The first is the use of multiple delivery
semantics within a single group. Messages with reliability requirements are sent through the reliable channel, and
those without are sent unreliably. Using these channels, applications pay only for the delivery guarantees commensu-
rate with their needs. The second contribution is the definition of a lightweight pre-authentication mechanism for the
group environment. Each potential member is authenticated by a server, and given anauthentication token. This token
is then presented to the group when a join is attempted. Current group members can validate this token without any
external information. After entering the group, session key distribution to all members requires only one message. In
this design, we have succeeded in creating a lightweight security mechanism by reducing the total number of messages
and using symmetric cryptography throughout.

Our initial intuition about the performance characteristics of the system appears valid. We have shown that there
is much to be gained through the use of multiple logical channels, and that we can provide a secure solution with



minimal overhead. Our tests indicate that throughput is largely unaffected by group size.
The initial implementation is complete. Groups can establish reliable and unreliable communication, the contents

of which can be securely transmitted as required. Key distribution, client, and server applications have been developed
to further test and optimize the implementation. However, the maturity of the system is not at the point at which we
can establish the true throughput and latency. We are encouraged by the initial tests, and have identified several ways
in which the implementation can be optimized.

We are integrating LSGC with the CITI secure videoconferencing system. We intend to show the viability of
our approach in completing this integration. It seems important to benchmark LSGC against other applications with
similar goals (HORUS, RAMPART,etc.), and learn from the designs of these systems, so we plan to make these
comparisons.

Other work includes the development of additional mechanisms for reliable broadcasting. Inclusion of causal,
FIFO, and similar mechanisms can increase the usefulness of LSGC. We will extend the multiple channel model to
include these delivery guarantees within the same group. In addition, we seek to identify other target applications to
integrate with LSGC.

We also see the need to broaden the range of security services provided. Inclusion of sender authenticity and
non-repudiability may prove to be valuable. Possible threat models applicable to group systems are innumerable, and
general solutions will prove valuable.

Finally, there may be a need for greater fault tolerance. Reiter points out that distributed systems have much to
gain from group based communication [4]. The solutions presented in this paper have a single point of failure, and
thus provide limited availability assurances. The application of the techniques presented in this paper may enhance
the performance of these services, but without stronger fault tolerance may not be applicable to all environments.
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