
CITI Technical Report 98−5

The Packet Vault: Secure Storage of Network Data

C.J. Antonelli
cja@citi.umich.edu

M. Undy
mundy@umich.edu

P. Honeyman
honey@citi.umich.edu

ABSTRACT

This paper describes the packet vault, a cryptographically secured archiver of network
packet data. The vault captures network packets, encrypts them, and writes them to
long-term CD-ROM storage for later analysis and evidentiary purposes. The crypto-
graphic organization of the vault permits selected traffic to be made available without
compromising the security of other traffic. Some weaknesses remain in the vault; we
conclude with a description of present experiences and future plans.

June 25, 1998

The Packet Vault: Secure Storage of Network Data

C.J. Antonelli
cja@citi.umich.edu

M. Undy
mundy@umich.edu

P. Honeyman
honey@citi.umich.edu

INTRODUCTION

The goal of the packet vault project at the Center
for Information Technology Integration is to pro-
vide cryptographically secured long-term storage
of network packets, both as input data for intru-
sion detection algorithms and for evidentiary pur-
poses.

In any computing environment, security
threats are a major concern. Following Voydock
and Kent [1], we classify threats into three
categories:

g unauthorized release of information,

g unauthorized modification of information, and

g unauthorized denial of resource use.

Intrusions originating from the network, in
which an intruder uses specially crafted packets
to attack systems, constitute threats in all
categories.

Creating a complete, permanent record of all
activity on a subnet addresses these threats in
several ways. First, intrusion detection algo-
rithms can be executed using the record as the
input packet source. Detectors can be run over
the same record with different parameter settings,
outputs of different detectors can be compared,
and new detectors can be created and evaluated
against the record. Each of these experiments
requires a permanent record of packets.

Second, in response to an intrusion in pro-
gress, the packet vault can be attached to a subnet
under attack; the packets it stores may be used to
determine quickly the source and nature of the
intrusion, and thus help shape the response. In
addition, the vault can be permanently connected
to a suspect subnet and the record examined
periodically.

Finally, a properly constructed corpus of
packet data may serve as evidence in a court of
law.

In the remainder of the paper, we give an
overview of the goals of the packet vault, fol-
lowed by a discussion of the hardware, software,
and cryptographic organization of the vault.
Finally, we describe our experiences, and con-
clude with some observations and a discussion of
future work.

GOALS

The architecture of the packet vault reflects the
following goals:

g Commodity. Our fundamental orientation is
to build a packet vault from commodity
hardware and software, notwithstanding the
attraction of expensive machines with fast
buses and I/O devices. With a vault built
from cheap parts in hand, it is clear that we
can trade money for speed by buying faster
parts.

g Completeness. To create a complete record
it is vital to capture and store every packet.
We believe that an adversary can exploit any
attempt at packet triage; the only way to
defend against such attacks is to build a vault
that can store packets at the maximum rate the
network can deliver them.

g Permanency. We decided from the outset
that our storage medium would be CD-ROM,
because of consistently bad long-term experi-
ences with data storage on magnetic tapes,
and because we wanted to learn a bit about
CD-ROM writers. We are not concerned with
the relatively low data rates of the writers, as

- 1 -

Antonelli/Undy/Honeyman

we can depend on them to improve, and in
any case we can use multiple writers.

g Openness. Finally, we assume that the CD-
ROMs containing network traffic will be
available for unsupervised inspection, either
intentionally or by larceny. It is critical that
the data stored on them be protected with
strong cryptography and organized in such a
way that some subsets of the traffic can be
revealed without exposing others. Ideally, we
would like to publish keys that unlock certain
data on a given CD-ROM, without the posses-
sion of those keys exposing other data on it.

We observe that our goals of commodity and
completeness are in tension, particularly at net-
work speeds above 10 Mbps. Our goal is to con-
struct a vault that can store all packets on a typi-
cally loaded 10 Mbps Ethernet network, and to
depend on faster hardware to improve the rate at
which packets can be acquired.

ARCHITECTURE

An early design consideration was whether a sin-
gle commodity machine could accept packets
from the network, encrypt them, and write them
to CD-ROM without becoming overloaded.
Early experiences with the bursty nature of Ether-
net networks, coupled with the real-time require-
ments of CD-ROM recorders† convinced us that
two machines would be necessary.

The packet vault hardware is composed of
two 133 MHz PCI-bus Pentium machines inter-
connected via a private 100 Mbps Ethernet. One
machine (the "listener") is connected to the net-
work being monitored and is used to capture and
encrypt the data, which are then sent over the
private Ethernet. The listener never stores pack-
ets on magnetic disk.

The other machine (the "writer") receives the
encrypted packets and assembles them on mag-
netic disk for subsequent writing to CD-ROM.
The two magnetic disks on the writer are attached
to a common SCSI bus. A second SCSI bus
hhhhhhhhhhhhhhhhhh
† Our CD-ROM recorder, like all early commodi-
ty recorders, possesses a small (512 KB) data
buffer and thus requires the attached host to main-
tain a constant data rate. Failure to maintain the
required rate results in a ruined CD-ROM session
or disk. In addition, data cannot be added incre-
mentally to a CD-ROM; they must first be format-
ted into an ISO-9660-compliant image on magnet-
ic disk and then written to the CD-ROM in toto.

dedicated to the CD-ROM recorder (CD-R)
avoids bus contention. Figure 1 shows the
hardware architecture of the packet vault.

Listener

Writer

Disk Disk

CD-R

Figure 1

We chose UNIX for both listener and writer
because of its familiarity and flexibility.
OpenBSD was chosen for the listener for its ker-
nel packet filtering support; early availability of
CD-R drivers dictated the choice of Linux for the
writer.

We use BPF [2] on the listener to capture all
packets seen on the 10 Mbps network being mon-
itored and write them to an accumulator file in a
memory file system (MFS [3]). We modified the
BPF code to pass packets directly from the kernel
network buffers to MFS, obviating two copies
between user and kernel space. A listener pro-
cess monitors the size of the accumulator file and
renames it when it reaches 4 MB in size or after 1
minute has elapsed, which keeps the sizes of the
MFS packet files manageable. The names of the
packet files reflect the time of day they were
created. Another process on the listener polls the
MFS for new packet files, encrypts the contents,
and uses rcp to copy the files over the private
100 Mbps link to the writer. Unencrypted data
are stored only in the MFS, so in the event of a
system failure no unencrypted data remain.†

When enough packet files have accumulated
on the writer to fill a CD-ROM, a background
process is spawned on the writer. The writer pro-
cess generates an ISO-9660-compliant image on
magnetic disk containing the packet files and the
cryptographic material necessary to permit
hhhhhhhhhhhhhhhh
† We do not run the listener with swapping en-
abled, and ignore potential attacks on RAM
hardware [4].

- 2 -

Data Vault

recovery of the packet data. The image is written
and later purged from magnetic disk. A double-
buffering scheme is used so that image generation
writes and subsequent packet file writes do not
contend for the same physical disk. The packet
data path is shown in Figure 2.

BPF accum pkt file

Encrypt
payload

Translate
IP src/dst

Copy to
writer

Make ISO
image

Write
CD-ROM

Figure 2

CRYPTOGRAPHIC ORGANIZATION

The cryptographic organization of the vault fol-
lows from our requirement that vault data be pub-
lishable. Ideally, we would like to provide free
access to a mass storage device filled with vault
data while providing fine-grained access to indivi-
dual packet contents. Our basic strategy is to
encrypt all packet payloads; the challenge is then
to devise a means of associating different keys
with different packets, to some level of granular-
ity. Clearly, both ends of the spectrum are unac-
ceptable: one key per CD-ROM risks a serious
breach if lost; managing a different key for each
packet quickly becomes unmanageable.

Our unit of granularity is the conversation,
defined as a set of packets with the same source
and destination IP addresses. We considered
including port numbers for finer control, but this
would require special treatment for non-TCP
streams, and created problems with port-agile
applications.

Each CD-ROM volume holds sufficient infor-
mation to reconstruct the packet traffic it stores,
thus no ancillary information need be managed.
We use a multi-level encryption scheme. Sym-
metric key encryption is used to seal packet pay-
loads and any additional information necessary to
reconstruct the packets (explained below).
Asymmetric key encryption is used to encrypt the
symmetric keys. A trusted third party such as the
Regents of the University of Michigan holds the
private key. Figure 4 shows the cryptographic
organization on CD-ROM.

Translation table symmetric key

Volume payload symmetric key

Translation tables

Trans. header Packet payload

Regent’s public key

Regent’s public key

Translation table key

Payload key
Figure 3

Our implementation uses 1024 bit PGP [5] for
asymmetric key and DESX [6] for symmetric key
encryption. Starting with Karn’s DES implemen-
tation [7] we added both pre- and post-whitening
steps for each block:

DESXk.k1.k2(x)=k2⊕DESk(k1⊕x)

This requires 184 bits of key material, and con-
servatively extends the effective key length of
DES in our environment to at least 95 bits, with
respect to key search in the sense of Kilian and
Rogaway [6], while adding a trivial amount of
computation to each block encryption.†

To hinder traffic analysis, we obscure source
and destination addresses by substitution. A
translation table mapping real to substituted
addresses is encrypted with DESX using a trans-
lation table key KT unique to each volume. A
second table mapping pairs of real to substituted
source and destination addresses, also encrypted
with the translation table key, allows reconstruc-
tion of the conversations contained on a disk
without requiring a search of the entire disk to
establish conversation pairs. Both translation
tables are written to CD-ROM.

A key is constructed for a given conversation
by combining the concatenated, untranslated
source and destination IP addresses with a 192-bit
volume master key KV using exclusive-or, and
then using DESX in CBC mode to encrypt a 192-
bit constant with the combined value:

KCi
=DESXKV⊕(SAi | | DAi)(CONST)

The resulting 192-bit conversation key Kci
is used

to encrypt packet payloads of the conversation:
hhhhhhhhhhhhhhhh
† We assume an attacker could obtain all the
plaintexts for all encrypted packets on a volume,
and that the average packet length is 100 bytes,
yielding 6 million plaintext/cyphertext pairs.
Rogaway’s effective key length expression [8]
then becomes 55+64−1−lg (6×106)

- 3 -

Antonelli/Undy/Honeyman

Ci=DESXKCi
(Pi)

A new volume master key and translation table
key are generated for each volume. Currently,
they are computed from previous keys:

KVi +1
=DESXKVi

(KVi
)

KTi +1
=DESXKTi

(KTi
)

where KV0
and KT 0

were randomly generated.
We plan to replace this with a practically strong
random data accumulator and generator, imple-
mented according to Gutmann [9].

Finally, a new pair of PGP keys are generated
per vault instance. The public key is used to seal
the volume master and translation table keys
before they are written to CD-ROM.

EXPERIENCES

The packet vault has been up and running sporad-
ically for the last year, collecting packets from a
10 Mbps Ethernet that is usually lightly loaded
but exhibits periods when traffic exceeds 70%
due to experimental video work.

The major challenges in the construction and
operation of the vault have been systems
engineering and integration. Bottlenecks
discovered along the way were removed until the
vault could handle the incoming network traffic.
For example, it was discovered that passing pack-
ets in and out of the kernel from BPF to MFS was
too slow, so we modified the listener’s kernel to
skip the kernel/user space copies.

Disk usage on the writer must be monitored
closely because of the large volumes of data
involved. Currently, the vault does not clean up
when interrupted; to achieve reliable operation
upon restarting, six locations spread across both
machines must first be checked for abandoned
temporary files.

The data path consists of several stages, some
of which process data in parallel, and some
sequentially. Payload encryption and network
copying are the most costly operations in this
pipeline, yet both of these operations occur
sequentially. Generating the image and writing
the image to a CD are also costly, but as larger
buffers are available for these steps only the aver-
age throughput is of importance.

If the sustained input rate exceeds the
throughput of any stage in the data path, eventu-
ally some buffer becomes exhausted and the vault

fails. The first failure is almost always caused by
the MFS filling up, which crashes the listening
process. Experimentally, with a 70% utilization
of the source Ethernet, the vault crashes after
about two minutes. Increasing buffer sizes is of
limited practical value; doubling the memory
allocated to MFS extends this time to four
minutes.

At 70% network utilization, while the writer
is busy generating a CD image, its disk and pro-
cessor utilizations increases dramatically, and the
rcp time increases by a factor of two to three. It
takes about 7 minutes to generate an image under
these conditions. A bug validated our assumption
that double-buffering was needed: a failure to
toggle the drive on which the image was being
created resulted in packet files for every other
volume being written to the same disk on which
an image was being built; the resulting overload
backed up the data path and crashed the vault.

The other obvious target for performance
optimization is the encryption code. We use a
machine-specific implementation of the DES
code compiled with full optimization and aggres-
sively cache the DES key schedules. These
changes speed up the encryption task by over
80%, but opens the door to a denial of service
attack by an adversary who manufactures packets
that defeat the caching.

FUTURE WORK

The focus of this work is the creation of a crypto-
graphically secured record of packet activity on a
given subnet. The next major step involves
focusing on intrusion detection methods, using
this corpus as a virtual network testbed. We have
plans for more specific improvements to the
packet vault.

Hardware

Our vault could clearly benefit from more capable
hardware.

Software

Better administrative and fault-handling scripts
are needed for graceful shutdown and restart of
the vault. An occasional inability of the writer to
allocate buffer space for the private Ethernet link
remains to be resolved.

The high disk loads caused by creating an
ISO-9660 image en masse could be ameliorated
by constructing the image incrementally.

- 4 -

Data Vault

Limits of Passive Protocol Analysis

Ptacek and Newsham [10], point out a shortcom-
ing in passive protocol analysis due to the inabil-
ity of an intrusion detection system to determine
accurately what is happening on networked
machines. They identify three classes of attacks:
insertion, in which the detector is made to see
traffic that the victim does not; evasion, in which
the victim sees traffic the detector does not; and
denial of service, in which the detector is fed
traffic designed to cause it to fail.

The packet vault is subject to these attacks.
However, since the vault obtains packets directly
from the link level device driver, it does nothing
beyond reading and storing each packet as it
arrives on the interface. Fragment reassembly,
management of TCP connection state, and so
forth are left to the analysis phase after the CD-
ROMs are written. This causes attacks on the
vault by, say, deliberately overlapping fragments
to fail, as the vault does not reassemble them;
further, the complete evidence is stored for later
analysis.

As long as the recording rate exceeds the
arrival rate, then the packet vault defeats evasion
and denial of service attacks. Insertion attacks
are still problematic; however, permanently stor-
ing all packets does permit them to be replayed
against an instrumented networked machine.

ACKNOWLEDGEMENTS

We thank Mike Stolarchuk for his contributions
to the architecture of the packet vault. He also
wrote the BPF layer modifications, and provided
invaluable systems engineering assistance. Dan
Boneh suggested the conversation key mechan-
ism. This work was partially supported by
Bellcore.

1. V.L. Voydock and S.T. Kent, ‘‘Security
Mechanisms on High-Level Network Proto-
cols,’’ Computing Surveys 15(2), pp. 135−171
(June, 1983).

2. Steven McCanne and Van Jacobson, ‘‘The
BSD Packet Filter: A New Architecture for
User-level Packet Capture,’’ pp. 259−269 in
Winter 1993 USENIX Conference Proceed-
ings, San Diego (January, 1993).

3. Marshall Kirk McKusick, Michael J. Karels,
and Keith Bostic, ‘‘A Pageable Memory
Based Filesystem,’’ pp. 137−143 in Summer
1990 USENIX Conference Proceedings,

Anaheim (June, 1990).

4. Peter Gutmann, ‘‘Secure Deletion of Data
from Magnetic and Solid-State Memory,’’ pp.
77−89 in Sixth USENIX Security Symposium,
San Jose (July, 1996).

5. William Stallings, ‘‘Protect Your Privacy:
The PGP User’s Guide,’’ Prentice-Hall, New
Jersey (1995).

6. Joe Kilian and Phillip Rogaway, ‘‘How to
Protect DES Against Exhaustive Key
Search,’’ pp. 252−267 in Advances in Cryp-
tology - Crypto ’96, Lecture Notes in Com-
puter Science, ed. N. Koblitz, Springer-Verlag
(1996).

7. Phil Karn, karn@unix.ka9q.ampr.org
(December, 1995).

8. Phillip Rogaway, RSA Laboratories’ Crypto-
Bytes 2(2) (Summer, 1996).

9. Peter Gutmann, ‘‘Software Generation of
Cryptographically Strong Random
Numbers,’’ pp. 243−257 in Winter 1998
USENIX Security Symposium Proceedings,
San Antonio (January, 1998).

10. Thomas H. Ptacek and Timothy N. News-
ham, Insertion, Deletion, and Denial of Ser-
vice: Eluding Network Intrusion Detection,
Secure Networks, Inc. (January, 1998).

- 5 -

