
CITI Technical Report 98-7

Smartcard Integration with Kerberos V5

Naomaru Itoi
itoi@eecs.umich.edu

Peter Honeyman
honey@citi.umich.edu

Abstract

We describe our design and implementation of smartcard integra-

tion with Kerberos V5. Authentication is among the most important

applications for smartcards and is one of the critical requirements for

computer security. By augmenting Kerberos V5 with tamper-resistant

hardware, we enhance the security of Kerberos V5 and o�er a potential

\killer application" leading to wider adoption of smartcard technology.

December 3, 1998

Center for Information Technology Integration

University of Michigan

519 West William Street

Ann Arbor, MI 48103-4943



Smartcard Integration with Kerberos V5

Naomaru Itoi and Peter Honeyman

itoi@eecs.umich.edu, honey@citi.umich.edu

1 Introduction

Smartcards are a rapidly emerging technology
that have received much attention both from
industry and academia. Smartcards can make
signi�cant impact on current computer systems
because of their inherent security and mobility.
According to market researcher Dataquest,

the smartcard market will grow from 544 mil-
lion units in 1995 to 3.4 billion units by 2001.
However, the vast majority of smartcards are
used in Europe; 90 percent of worldwide smart-
card shipments went to Europe in 1995. Only
2 percent were shipped to the Americas [4].
Smartcards are not popular in the United

States because there is no \killer application"
for smartcards here. Smartcards were intro-
duced to Europe by government telecommuni-
cations monopolies in the form of phone cards,
but the telecommunications industry in the US
is private and decentralized.
These cultural and economic di�erences are

common to other smartcard applications preva-
lent worldwide, such as health care and bank-
ing. In addition, credit cards are more success-
ful in the US than in Europe, in part due to the
prevalence of online veri�cation, which is uni-
versally available in the US. This keeps fraud
rates low { reportedly 0.07% [11] { which allows
card issuers to indemnify customers for any loss
over 50 USD. Consequently, issuers, customers,
and merchants are equipped and satis�ed with
magstripe cards and readers, which feature low
cost and broad familiarity [3].
The information technology business sector

might provide the killer application for the
smartcard industry in the United States be-
cause the demand for secure computer envi-
ronments is huge and growing. There is grow-
ing fear of hackers attacking sensitive informa-
tion on the Internet. Smartcards can provide
a secure authentication system when combined

with sound authentication protocols, and can
signi�cantly improve computer system security
wherever authentication plays a critical role in
the computer security scheme, i.e., everywhere.
Here at the University of Michigan, smart-

cards are already deployed and used for storing
a small amount of cash. Thus, we have a good
setting for extending the deployment of smart-
cards in the computer environment:

� Students and faculty are familiar with us-
ing smartcards.

� An infrastructure is well established, e.g.,
many vending machines and shops have
smartcard readers.

� There is a serious security problem that
can be solved by integrating smartcards
into the computer environment.

� University technologists, especially at the
Center for Information Technology Inte-
gration (CITI), have skill sets and re-
sources to develop smartcard applications.

The goal of our project is to develop, build,
and deploy a smartcard-integrated computer
environment. We want to provide a smartcard
in everyone's pocket that handles computer
authentication, computer pro�les, electronic
cash, banking, identi�cation, course registra-
tion, paying rents, submitting resume, copy
machines, etc. [6].
The centrally administered computing envi-

ronment at the University of Michigan is pro-
tected by Kerberos, the most widely used net-
work authentication protocol [21, 13]. Ker-
beros is also key to the security infrastructure
at MIT (where Kerberos was invented), Cor-
nell, Carnegie-Mellon, and Stanford, as well as
in commercial product o�erings fromMicrosoft
and Oracle.



Smartcard Integration to Kerberos V5 3

Kerberos su�ers from some inherent secu-
rity pitfalls, principally its reliance on pass-
words selected by users. In recent years, CITI
sta� have used password guessing attacks [6, 7]
on the University of Michigan Kerberos servers
with (disappointing) success, quickly obtaining
thousands of passwords on each occasion. To
improve the security of Kerberos and the in-
frastructure it protects, we intend to replace
passwords with randomly generated Kerberos
keys stored on a smartcard.
The remainder of this paper is organized as

follows. In Section 2, we describe why and
how smartcards can enhance the security of
Kerberos. In Section 3, we explain the pro-
tocol we use to integrate Kerberos with smart-
cards. Section 4 contains implementation de-
tails for those who want to port our program
to other operating systems or to use other types
of smartcards. (Readers who are not interested
in implementation details may want to skip the
section.) Performance is evaluated in Section
5. Section 6 discusses related work and smart-
cards we have examined. Future directions are
described in Section 7, followed by concluding
remarks in Section 8.

2 How can smartcards help

in Kerberos?

Bellovin and Merritt enumerate problems of
Kerberos that \are not solvable without em-
ploying special-purpose hardware, no matter
what the design of the protocol." [2] The prob-
lems are:

� Need for secure encryption device

� Need for secure key storage

� Dictionary attack on passwords

We explain these problems, and describe coun-
termeasures that take advantage of strong se-
curity feature of smartcards.

2.1 Need for external encryption
device

In the Kerberos protocol, a user key, Ku, is
shared between a user and a Key Distribution

Center (KDC), a trusted third party. Ku is
derived from a password: a workstation reads
the password from a user, converts it to Ku,
and uses it to decrypt a ticket granting ticket
(TGT), an initial credential in Kerberos. The
protocol is shown in Figure 1.

password

User

Workstation

Kerberos 
KDC1) username

2) {TGT}

Ku

Ku

Ku

3) Decrypt TGT

Figure 1: Kerberos authentication proto-
col without a smartcard

1) When a user attempts to login to a work-
station, the workstation sends a request to the
KDC. 2) KDC generates a TGT, encrypts it
with Ku, and sends it back to the workstation.
3) The workstation asks the user for a pass-
word, hashes it into key Ku, and uses the key
to decrypt the TGT. If the TGT decrypts prop-
erly, the user is authenticated and is allowed to
login.
In this protocol, Ku is exposed to two par-

ties, a user and a workstation. A key memo-
rized by a user can be vulnerable because she
can tell it to another person, or an adversary
might \shoulder surf" it when she types it. A
key in a workstation can be vulnerable if the
workstation is not securely protected or cannot
be trusted for other reasons. For example, if
an adversary can scan the entire physical mem-
ory of the workstation, he can obtain the key.
Along the same lines, if someone has admin-
istrative access rights to the workstation, it is
straightforward to install a rogue login program
in the workstation that stores a user's password
in the adversary's directory. (This is called a
Trojan horse attack.)
To solve these problems, it is desirable to de-

crypt the TGT outside a workstation. There-
fore, an external encryption device is required.

2.2 Need for secure key storage

Kerberos stores some keys in computers, e.g.,
session keys in a workstation and user keys in



4 itoi

KDC. However, typical computers cannot store
information securely. Information in a com-
puter system is stored either in memory or in a
hard disk, but neither is su�ciently secure. A
secret in a hard disk is hard to protect because:

� A powerful adversary can access (read and
write) it.

� It is usually backed up in mass storage de-
vices, which may lack su�cient physical or
cryptographic protection.

A secret in memory is also hard to protect be-
cause :

� Memory can be physically scanned by a
powerful adversary.

� It may be paged out to hard disks, which
can be scanned.

Therefore, secure storage outside a workstation
and KDC is an important goal.

2.3 Dictionary Attack

When a user chooses a poor password, the de-
rived user key Ku, is subject to a dictionary
attack. Dictionary attack is performed as fol-
lows:

1. Create a list of commonwords, names, etc.

2. Derive keys from the words in the list.

3. Obtain a <plaintext, ciphertext> pair.

4. Decrypt the ciphertext with the derived
keys.

5. If the plaintext is recovered correctly, the
key used for decryption is revealed.

For example, if the password is a short English
word, an adversary can try all English words
in the dictionary and quickly discover the pass-
word.
Kerberos is vulnerable to dictionary attack

because:

1. It is a password-based authentication pro-
tocol.

2. It easily gives up a <plaintext,
ciphertext> pair to the adversary.

Test runs of dictionary attack in the University
of Michigan Kerberos realm have yielded pass-
words for more than 5% of the user accounts,
i.e., over 4,000 accounts [6].1

To solve problem (2), pre-authentication is
introduced in Kerberos V5. The Kerberos au-
thentication protocol with pre-authentication
is depicted in Figure 2.

password

User

Workstation

Kerberos 
KDC

1) {username,timestamp}

3) {TGT}

Ku

Ku

Ku

Ku

2) CheckKu

4) Decrypt TGT

Figure 2: Kerberos authentication proto-
col with pre-authentication

In this scenario, KDC ensures that the client
knows Ku before issuing a TGT. 1) When the
client requests the TGT, it sends a username
and a timestamp encrypted with Ku. 2) If
KDC can successfully decrypt with Ku and re-
cover the username and a valid timestamp, it is
sure that the client knows Ku. If not, KDC as-
sumes someone is forging the client to obtain a
<plaintext, ciphertext> pair and rejects the re-
quest. 3) After pre-authentication, KDC sends
TGT encrypted by Ku to the workstation and
the protocol continues as depicted in Figure 1.

Pre-authentication prevents an adversary
from getting a <plaintext, ciphertext> pair
just by requesting it, and thus raises the bar
of security to the adversary. However, the ad-
versary can still eavesdrop a network to obtain
a <plaintext, ciphertext> pair. Also note that
it is very easy for the adversary to recognize a
plaintext because it includes well known entries
such as a user name and a realm name.

As long as Kerberos uses passwords for se-
cure information, dictionary attack cannot be
solved completely. Therefore, it is desirable
to replace passwords with randomly generated

1The most common password was \love."



Smartcard Integration to Kerberos V5 5

bits stored in tamper-resistant hardware [17].

A smartcard is an ideal device to solve the
problems outlined here. The countermeasures
are described in the next section.

3 Design

In this section, we describe a method intended
to enhance the security of Kerberos. It takes
advantage of a smartcard to solve the problems
stated in Section 2.
From the discussion in Section 2, our design

goals are:

� Use randomly generated bits for Ku.

We can prevent dictionary attack by us-
ing a random key instead of a user chosen
password. However, we then require a way
for users to possess their keys, as it is im-
possible (and insecure!) to expect anyone
to remember a random string of any sub-
stantial size.

� Store a user key in a smartcard.

A smartcard can serve as an external
key storage because it is designed to be
tamper-proof with restricted communica-
tion mechanisms.

� Decrypt TGT in a smartcard.

A smartcard can perform decryption as an
external encryption device because it has
DES en(de)cryption mechanisms.2

� Do not modify KDC.

If KDC must be modi�ed to implement the
smartcard augmentations, then our e�orts
will o�er enhanced security in our local
Kerberos realm, but nowhere else. We also
want our improvements to enhance the se-
curity of Kerberos realms beyond our ad-
ministrative control.

3.1 Protocol

Figure 3 shows our Kerberos authentication
protocol with a smartcard. Steps 1) and 2)

2Or claims to. Many smartcards claim to o�er DES

but they in fact do not. We discuss this further in

Section 6.2

are identical to the original protocol (Figure 1).
3) When the workstation receives the TGT, it
does not decrypt it by itself. Instead, it sends
the TGT to a smartcard. 4) The smartcard
then decrypts the TGT, and returns the TGT
in plaintext to the workstation. 5) If the work-
station con�rms that the decrypted TGT is cor-
rect, the protocol is �nished and the user is au-
thenticated. The protocol satis�es the goals we
stated above; TGT is decrypted in the smart-
card, Ku never leaves the smartcard, Ku can
be random bits, and KDC is not modi�ed 3.

Workstation

Kerberos 
KDC

2) {TGT}

Ku

Ku

4) Decrypt TGT

Ku

User

1) username

3) {TGT}Ku

5) TGT

Figure 3: Kerberos authentication proto-
col with a smartcard

4 Implementation

We implemented the smartcard integrated Ker-
beros protocol described in Section 3. We now
detail the modi�cations we made to the Ker-
beros library, the DES library, and the Ker-
beros client.

TGT decryption is implemented with a
STARCOS version 2.1 smartcard fromGiesecke
& Devrient. This card o�ers superior perfor-
mance by providing native cipher block chain-
ing (CBC) for long messages. (A Kerberos V5
TGT is over 200 bytes long.) The development
platform is OpenBSD-2.2 on Pentium 133MHz
PC. The code base is Kerberos version 1.0.5
released by MIT.

3In fact, KDC in Kerberos V5-1.0.5 must be mod-

i�ed by one line to run the protocol due to a bug in

Kerberos. However, this modi�cation will not be nec-

essary in later version of Kerberos. We discuss it in

Section 4.1.



6 itoi

4.1 Adding an encryption system
in Kerberos library

Kerberos V5 uses a look-up table to provide for
easy replacement and development of encryp-
tion systems [12]. The look-up table associates
an encryption type to cryptographic functions,
such as encryption, decryption, and checksum
functions, and data structures, such as a key
structure. It is simple to add a new encryption
system entry by adding an entry to the look-up
table.
There are several encryption system types

de�ned in the RFC[12] and implemented in
Kerberos V5-1.0.5 including:

� NO encryption

� DES in CBC mode with a CRC-32 check-
sum (des-cbc-crc)

� DES in CBC with MD5 (des-cbc-md5)

We created a new encryption system,
DES in CBC with MD5 with a smartcard
(des-cbc-md5-sc). We added a new entry
des-cbc-md5-sc in the look-up table. The en-
try is de�ned in des md5.c (Figure 4).

krb5_cryptosystem_entry
mit_des_md5_sc_cryptosystem_entry {
EncryptionType ENCTYPE_DES_CBC_MD5_SC;
DecryptionFunc mit_des_md5_sc_decrypt_func();
// Other members are identical to des-cbc-md5

};

Figure 4: Smartcard cryptosystem entry

mit des md5 sc decrypt func() is a new
function that uses a smartcard for decryption.
The other members of the entry are not modi-
�ed.
Although the default hash method in Ker-

beros V5-1.0.5 is CRC, implementation of des-
cbc-crc in Kerberos V5-1.0.5 has a bug. In the
Kerberos 5 speci�cation, the initialization vec-
tor (IV) of DES-CBC mode is de�ned to be 0
[12]. However, des-cbc-crc uses the user key
as the IV. This error can not be �xed easily
because Kerberos 5 is already deployed widely.
The G&D smartcard cannot use the key as an
IV without passing it as an argument to the
card, which defeats our goal of eliminating the
key on the workstation.

To our relief, des-cbc-md5 uses 0 as the IV,
complying with the RFC. Rumor has it that the
next version of Kerberos will use des-cbc-md5
by default.

4.2 Modifying DES library

mit des md5 sc decrypt func() calls the
DES CBC encryption function in f cbc.c.
We created a new DES CBC function
mit des cbc sc encrypt() that calls a DES
function in a smartcard instead of a Kerberos
DES library. STARCOS version 2.1 can handle
up to 112 bytes in one command. The TGT,
whose length is approximately 200 bytes,
is divided into two pieces, decrypted in a
smartcard piece by piece, and combined into
one TGT in the workstation.

The speci�c commands, or APDUs in ISO
7816-4, sent to the smartcard are as follows.
(Readers not familiar with smartcard APDUs
are advised to consult the ISO 7816-4 speci�ca-
tion [8] or Guthery and Jurgensen's book [5].)

� Send \decrypt" APDU with 112 (0x70)
bytes of encrypted data.

0x80 0xf8 0x81 0x81 0x70 data ...

� Send \get response" APDU to upload 112
bytes of plaintext data.

0x00 0xc0 0x00 0x00 0x70

4.3 Modifying kinit

In the authentication function get in tkt(),
an encryption system can be chosen as an ar-
gument. We modi�ed kinit.c so that it does
not request a password from the user, and spec-
i�ed encryption type des-cbc-md5-sc instead
of des-cbc-md5.

5 Performance Evaluation

Here we evaluate the performance of our Ker-
beros modi�cations.



Smartcard Integration to Kerberos V5 7

5.1 Performance Evaluation

We ran the authentication protocol described
in Section 3.1 by executing the modi�ed kinit

program �ve times and logged salient perfor-
mance data. The authentication time uctu-
ates within a relatively small range (1.53 - 1.57
sec.), averaging 1.55 sec. We analyze perfor-
mance in detail in the following sections.

5.2 Time line

Figure 5 shows a time line of one of the �ve
trials.

Start
kinit

Reset
Card

(sec)

Start
decryption

End
decrypt

Complete
kinit

0

0.01

0.37 1.47

Start
RPC

Complete
RPC

0.06

0.18

0.31 1.55

Open
File

Figure 5: Time line

Decryption is the obvious bottleneck of the
protocol, taking 1.1 sec., or 70% of the elapsed
time. Decryption is slow { with an 8-bit data
path and a 3.5 MHz clock, a smartcard is much
slower than a workstation. In addition, about
half of the elapsed time is due to the slow (9.6
Kbps) communication with the smartcard.4

5.3 Breakdown

Table 1 shows how much time is spent in each
part of the protocol. Time is in ms.

part name time (ms) std. deviation
decryption 823 0.754
(non comm part) 498 0.0219
(comm part) 325 0.766
get response 304 0.0459
card reset + open �le 245 0.00340
RPC 59.8 9.65
pre-processing 6.19 0.0583
post-processing 83.3 4.80
total 1521 8.76

Table 1: Authentication time breakdown

The decryption step is separable into two
parts: the time to send the encrypted ticket to

4Many smartcards can be con�gured to communi-

cate at higher speeds, up to 115 Kbps.

the smartcard, and the actual decryption time.
Get response reads plaintext from a smartcard.
Open �le is required to select a key �le. RPC
time is for communication with KDC.
Total time to authenticate is 1.52 sec.

Smartcard-related tasks { initialization, com-
munication, and decryption { dominate, taking
1.37 sec. The rest of time, including RPC com-
munication with KDC, is 0.15 sec. Of the 1.37
sec. of smartcard time, communication takes
0.629 sec., decryption takes 0.498 sec., and ini-
tialization takes 0.245 sec. Communication is
the bottleneck; we anticipate improving perfor-
mance by communicating at higher date rates.

6 Discussion

6.1 Related Work

Here we relate this e�ort to secure computer
systems, secure bootstrapping, smartcard au-
thentication, and smartcard integration with
Kerberos.

Secure computer system

We refer to two e�orts with our goal in com-
mon, a secure computer environment.
In their paper \Dyad: A System for Using

Physically Secure Coprocessors", Tygar and
Yee describe their secure hardware and oper-
ating system in small computer systems (i.e.,
workstations and PCs) [22]. They build a co-
processor that is physically tamper-proof and
has the ability to process and store secrets. The
coprocessor provides 1) secure bootstrapping,
2) secure logging, and 3) copy protection. They
build an operating system called Dyad to op-
erate on a secure coprocessor.
Their approach is top-down: unlike most se-

curity protocols, they do not assume security
of low level components of computers such as
operating systems, because an adversary can
reload the kernel. To solve this problem, they
build special purpose hardware, and build oper-
ating systems around it. This approach di�ers
from ours, as we will explain.
Another related e�ort is described in \Au-

thentication in Distributed Systems: Theory
and Practice", by Butler Lampson et. al. [14].
They develop a theory of authentication for



8 itoi

distributed systems based on an access con-
trol model. They build tools necessary for se-
cure systems, such as encrypted channels, boot
strapping, naming, and program loading. Ac-
companying the design of these tools are for-
mal proofs of their security. Finally, they build
an operating system to take advantage of the
tools.

Their approach is also a top-down approach.
They �rst design the authentication theory,
and build an operating system based on the
theory, then prove it secure through the design
process.

Both Dyad and TAOS take top-down ap-
proaches: they start with a well-developed the-
oretical framework, then design secure hard-
ware to support the theory, then build oper-
ating systems based on them.

Although these approaches are substantive
and technically sound, they are not practical
for most existing computer environment be-
cause they build new operating systems from
scratch. We take a more pragmatic and exper-
imental approach and build from the bottom-
up for rapid implementation and deployment.
We employ currently available, secure, inexpen-
sive hardware in the form of commercial smart-
cards, integrate them with prevalent standards,
and �t them { e�ortlessly { into our existing
computer environment.

A disadvantage of our approach is that we
still rely on the security of hardware and op-
erating systems, of which we cannot be sure.
(Often, we have great doubts!) For example, if
an operating system is completely replaced, it
is quite possible for an adversary to use stolen
credentials to access resources.

Our solution to this problem is to store all
critical secrets in a smartcard. A smartcard is
tamper-resistant hardware, so no matter what
happens to the hardware and the operating sys-
tem, we can be con�dent that the secrets in
the smartcard remain safe. In the previous ex-
ample, even if the operating system is compro-
mised, critical information in a smartcard, such
as authentication keys, can not be accessed by
the adversary. Therefore, our approach signi�-
cantly \raises the bar" of security in a computer
system with relatively small cost.

Secure Bootstrap

In their paper \A Secure and Reliable Boot-
strap Architecture", Arbaugh et. al. introduce
AEGIS, a secure bootstrap process [1]. They
add a small PROM to commodity hardware.
The PROM is assumed to be secure, i.e., it is
not replaced by the adversary. The PROM con-
tains execution code to start bootstrapping and
digital signatures. During the bootstrap pro-
cess, all execution code is veri�ed by the digi-
tal signature. At the end of the bootstrap pro-
cess, a commodity operating system, FreeBSD
in their example, starts up. As the execution
code in PROM is trusted and bootstrap pro-
cess is trusted, the operating system is trusted
when it starts.
AEGIS is similar to our approach in the sense

that both try to minimize components that
must be trusted, the added PROM in AEGIS
and the smartcard in our case. Also, both
use commodity hardware and software. AEGIS
and our approach complement one another be-
cause AEGIS aims at starting an operating sys-
tem securely, and we aim at establishing a se-
cure computer environment built on top of se-
cure operating systems.

Authentication with Smartcards

Several authentication protocols that use
smartcards have been proposed. For exam-
ple, Rubin proposes one-time password [18],
Shoup and Rubin propose session key distribu-
tion in the third-party setting [20], Leach pro-
poses the use of zero knowledge authentication
[15], and Wang and Chang propose use of pub-
lic key authentication in smartcards [23]. Each
of these concentrates on one-to-one authentica-
tion, such as when a user logs in to a computer.
This di�ers from our approach in that we in-
tegrate a smartcard into a standard authenti-
cation protocol already in heavy use. Among
them, only Shoup and Rubin's protocol has ac-
tually been implemented with a smartcard [10].

Smartcard Integration with Kerberos

In their paper \Enhancing SESAME V4 with
Smart Cards", Looi et. al. describe smartcard
integration with SESAME V5, a European im-
plementation of Kerberos V5 [16]. Their ap-



Smartcard Integration to Kerberos V5 9

proach is very similar to ours. They describe
two ways of accomplishing smartcard integra-
tion:

1. Store a user key in a smartcard, load the
key into a workstation, and use it for de-
crypting TGT instead of a derived key
from a password.

2. Decrypt TGT in a smartcard.

Method 1 is not as secure as method 2 be-
cause the user key is loaded in a workstation. If
the workstation is not trusted, the key is vul-
nerable. For example, a Trojan horse attack
can easily obtain the key. Method 2, identical
to our method, had not been implemented at
the time of their writing.

6.2 DES in Smartcards

Many vendors claim that their smartcards sup-
port DES, but we had a very hard time getting
a smartcard that meets our requirements, even
though all we need is pure, unadulterated DES.
Here we list some of the DES-capable smart-
cards that let us down when examined closely:

� Schlumberger CryptoFlex

It seems to have DES, but they do not
open the API, so we are unable to issue
the proper APDUs.

� Schlumberger MultiFlex

Internal authentication command returns
the �rst six bytes of the eight bytes of en-
crypted data.

� IBM MFC

The smartcard encrypts a ran-
dom number challenge presented by
SCT CMD AUTHENTICATE command.

� MAOSCO MULTOS

The card supplied with the developer's kit
encrypts with a �xed key, 0x41, 0xad,

0x82, 0x23, 0xa9, 0x0b, 0xe2, 0xa1.
According to the manual, \for security
reasons," DES is used with a \known
cryptographic key."

� General Information Systems OSCAR

The DES key is XOR'ed with a random
number before it is used. According to
their e-mail: \The keys are XOR'ed with
a random number for security reasons."
While this may help secure the serial link
between the terminal and the reader, it
makes the card useless for enterprise se-
curity deployment.

� Gemplus GPK

The key size is limited to 40 bit, a aw not
shared by Kerberos.

Eventually found a smartcard that satis�ed
our needs: Giesecke & Devrient STARCOS.

7 Future Direction

Comparison among several smart-
cards

We plan to implement the Kerberos authen-
tication protocol in several smartcards, e.g.
Schlumberger CryptoFlex, IBM MFC, MUL-
TOS, and so on.5 We expect to �nd some dif-
ferences in their performance because:

� Some of the smartcards have DES CBC
mode.

� Some of the smartcards have key schedul-
ing APIs.

� Communication speed di�ers among
smartcards.

We also expect to �nd di�erences in user
friendliness and stability among smartcards
and developer's kits.

Kerberos tickets in a smartcard

As we argued in Section 2, it is desirable to
store keys in a smartcard rather than in a work-
station. Therefore, storing session keys in ad-
dition to the user key in a smartcard adds se-
curity to the protocol. If tickets are stored on
a smartcard, it is secure to leave a worksta-
tion to have a cup of co�ee as long as the user

5If we receive smartcards with DES. See our discus-

sion in Section 6.2.



10 itoi

brings the smartcard with her. Although an
adversary can access the console, he cannot ac-
cess resources protected by Kerberos because
he does not have session keys.

Smartcard integration with PAM
and NT-PAM

We will address secure single sign-on. Com-
bined with PAM [19] or Windows NT-PAM [9],
smartcards can provide secure single sign-on [7]
because they can store keys and passwords se-
curely, and can be integrated into existing au-
thentication protocols, as we have shown in this
paper.

8 Conclusion

In this paper, we identi�ed certain limitation
of Kerberos and ways that a smartcard can
counter them. We suggested a protocol that
takes advantage of the secure features of a
smartcard to enhance security of Kerberos.
The protocol is implemented with a Giesecke &
Devrient STARCOS smartcard and Kerberos
V5-1.0.5. Performance evaluation shows the
protocol runs reasonably fast.

Acknowledgment

We thank Andrew Webb and Giesecke & Devri-
ent America, Inc. for providing us with STAR-
COS smartcards and the smarts to use them
e�ectively.

References

[1] WilliamA. Arbaugh, David J. Farber, and
Jonathan M. Smith. A secure and reli-
able bootstrap architecture. Technical Re-
port MS-CIS-96-35, University of Pennsyl-
vania, 1996. MS-CIS-96-35.

[2] S. M. Bellovin and M. Merritt. Limi-
tations of the kerberos authentication
system. In Proceedings of the Winter
1991 Usenix Conference, January 1991.
ftp://research.att.com/dist/internet security/
kerblimit.usenix.ps.

[3] Jorge Ferrari et al. Smart Cards:
A Case Study. IBM Redbook,
1998. http://www.redbooks.ibm.com/
SG245239/sg245239.htm, Section 1.11.

[4] Smart Card Forum. factoids.
http://www.smartcrd.com/info/more/Factoids.htm.

[5] Scott B. Guthery and Timothy M. Ju-
rgensen. Smart Card Developer's Kit.
MacMillan Technical Publishing, Indi-
anapolis, Indiana, December 1997.

[6] Peter Honeyman. Ubiquitous smart-
cards at the university of michigan.
http://www.citi.umich.edu/projects/sinciti/
smartcard/smartcard-vision.html, 1997.

[7] Peter Honeyman, William A. Adamson,
and Jim Rees. Joining security realms: A
single login for netware and kerberos. In
Proceedings of Fifth USENIX UNIX Secu-
rity Symposium. USENIX, June 1995. Salt
Lake City.

[8] The International Organization for Stan-
dardization and The International Elec-
trotechnical Commission. ISO/IEC 7816-
4 : Information technology - Identi�cation
cards - Integrated circuit(s) cards with con-
tacts, 9 1995.

[9] Naomaru Itoi and Peter Honeyman. Plug-
gable authentication module for windows
nt. In Proceedings of 2nd USENIX Win-
dows NT Symposium, Seattle, August
1998. USENIX.

[10] Rob Jerdonek, Peter Honeyman, Kevin
Cofman, and Jim Reesand Kip Wheeler.
Implementation of a provably secure,
smartcard-based key distribution proto-
col. In CARDIS'98, Louvain-la-Neuve,
Belgium, Sept. 1998. Third Smart Card
Research and Advanced Application Con-
ference.

[11] VISA Ken Ayer. Standardization in chip
card security evaluations. Presentation in
SCIA workshop, November 1998.

[12] John T. Kohl and B. Cli�ord Neuman.
The kerberos network authentication ser-
vice (v5), September 1993. Request For
Comments 1510.



Smartcard Integration to Kerberos V5 11

[13] John T. Kohl, B. Cli�ord Neuman, and
Theodore Y. T'so. The evolution of
the kerberos authentication system. Dis-
tributed Open Systems, pages 78{94, 1994.
IEEE Computer Society Press.

[14] Butler Lampson, Martin Abadi, Machael
Burrows, and Edward Wobber. Authen-
tication in distributed systems: Theory
and practice. In Operating Systems Re-
view, volume 27-5, pages 165{182. ACM,
December 1993.

[15] John Leach. Dynamic authentication
for smartcards. Computers & Security,
14(5):385{389, 1995.

[16] Mark Looi, Paul Ashley, Loo Tang Seet,
Richard Au, Gary Gaskell, and Mark Van-
denwauver. Enhancing sesame v4 with
smart cards. In CARDIS'98, Louvain-la-
Neuve, Belgium, Sept. 1998. Third Smart
Card Research and Advanced Application
Conference.

[17] Joseph N. Pato. Using pre-authentication
to avoid password guessing attacks, 1993.
OSF DCE Request For Comments 26.0.

[18] Aviel D. Rubin. Independent one-time
passwords. USENIX Journal of Computer
Systems, February 1996.

[19] V. Samar and R. Schemers. Uni�ed lo-
gin with pluggable authentication modules
(pam), October 1995. Request For Com-
ments 86.0.

[20] Victor Shoup and Avi Rubin. Session key
distribution using smart cards,. In Pro-
ceedings of Eurocrypt '96, pages 321{331,
Saragossa, Spain, May 1996.

[21] Jennifer G. Steiner, Cli�ord Neuman, and
Je�rey I. Schiller. Kerberos: An au-
thentication service for open network sys-
tems. In Proceedings of the Winter 1988
USENIX Conference. USENIX, February
1988.

[22] J. D. Tygar and Bennet Yee. Dyad: A
system for using physically secure copro-
cessors. Technical report, Carnegie Mellon
University, May 1991. CMU-CS-91-140R.

[23] Shiuh-Jeng Wang and Jin-Fu Chang.
Smart card based secure password authen-
tication scheme. Computers & Security,
15(3):231{237, 1996.


