
CITI Technical Report 98-8

SCFS: A UNIX Filesystem for Smartcards

Naomaru Itoi
itoi@eecs.umich.edu

Peter Honeyman
honey@citi.umich.edu

Jim Rees
rees@umich.edu

Abstract

Smartcard software developers su�er from the lack of a standard

communication framework between a workstation and a smartcard. To

address this problem, we extended the UNIX �lesystem to provide ac-

cess to smartcard storage, which enables us to use �les in a smartcard

as though normal UNIX �les.

December 3, 1998

Center for Information Technology Integration

University of Michigan

519 West William Street

Ann Arbor, MI 48103-4943

2 itoi

1 Introduction

Today, it is easy to purchase smartcards in rea-
sonable prices, e.g., $5 - $20 for each. How-
ever, smartcard software development is hard:
smartcard software developers have long suf-
fered from the lack of a user friendly stan-
dard communication protocol between appli-
cation software1 and a smartcard. The ISO-
7816 communication protocol [9] is so widely
accepted that virtually all smartcards support
it.2 However, the protocol is not a particularly
desirable one:

� It is a primitive message passing proto-
col. Providing only read and write op-
erations for raw data, it does not de�ne
higher interfaces such as UNIX �les and
I/O streams. This hampers our ability to
build application software.

� Although all smartcards support ISO-
7816, details of implementation of the pro-
tocol di�ers among vendors and types of
smartcards. This requires software devel-
oper to tailor their applications to speci�c
smartcards.

Di�erences among smartcards range from
trivial ones, such as di�erent opcodes, to
essential ones, such as di�erent authen-
tication mechanisms, etc. For example,
the CLA byte of application class3 is 0x00
in some smartcards (Giesecke & Devrient
STARCOS Version 2.1), while it is 0xc0 in
others (Schlumberger MultiFlex).

To address the de�ciencies of ISO-7816,
many new standards have been proposed. Ex-
amples are:

� General purpose standards: Open Card
Framework (OCF) [2, 8] and PC/SC [3, 4].

� Special purpose standards: PKCS #11
[12] for cryptography, EMV [5] and SET
for electronic commerce.

1\Application software" is a program running on a
workstation that communicates with a smartcard. A
program running on a smartcard is called \on-chip soft-
ware".

2Almost all smartcards support ISO-7816-1, 2, and
3. Many support ISO-7816-4 [17]

3For description of \CLA" and \application class",
please see Guthery and Jurgensen [6] or ISO-7816 [9]

� On-chip software standards: JavaCard [14]
and MULTOS [15].

Although these standards provide abstrac-
tions at a higher level than ISO-7816-4, it re-
mains a challenging task for developers to se-
lect a standard, purchase all software and hard-
ware required, learn API and tools, and �nally
implement software. Furthermore, those stan-
dards do not eliminate problems with interop-
erability { e.g., OCF limits the programming
language to Java; PC/SC is used only with
Windows { and create their own API depen-
dencies, because software written for one stan-
dard does not run with another. We discuss
these issues in Section 5.1.
Our solution to this problem is to embrace a

classic, sophisticated API { the UNIX �lesys-
tem { instead of inventing a new one. The
UNIX �lesystem API suits a smartcard well
because a smartcard is a passive device used
for secure storage: a smartcard stores data (se-
crets), and responds to requests from a work-
station to read or write the data. It does not
initiate actions. This passivity is characteristic
of storage devices such as hard disks.
In UNIX operating systems that support

vnodes (equivalently, Virtual Filesystem, or
VFS) [11] [13], it is possible to write a virtual
�lesystem that communicates with a special
hardware device, e.g., a smartcard, and mount
it in the UNIX �lesystem name space. The
mounted hardware device then becomes iden-
tical to any UNIX �lesystem hierarchy from
the perspective of a user or application soft-
ware. For example, if a smartcard is mounted
on /smartcard, it is possible to use UNIX com-
mands such as ls, cd, pwd, and cat, and system
calls such as open, read, and write on �les in
the smartcard.
We have implemented a smartcard �lesystem

(or SCFS) in the OpenBSD-2.24 kernel. With
SCFS mounted, a user or an application can
use �les in a smartcard as she would normal
UNIX �les.
The remainder of this paper is organized as

follows. Section 2 describes our goals and the
design of SCFS. Section 3 details implementa-
tion of SCFS. (Readers not interested in im-

4OpenBSD is a free, 4.4BSD-based operating sys-
tem. http://www.openbsd.org

Smartcard Filesystem 3

plementation details may want to skip Section
3.) Performance evaluation in Section 4 shows
that the overhead of SCFS is small and does
not substantially degrade the performance of
smartcard software. We discuss SCFS with a
comparison to other standards in Section 5 .
Future direction is in Section 6 and concluding
remarks are in Section 7.

2 Design

2.1 Design Goals

Our goal is to provide a user friendly interface
to access a smartcard. We de�ne design goals
as follows, although not all can be achieved, for
reasons outlined in Section 2.2:

� Files in a smartcard should be indistin-
guishable from other UNIX �les.

� A smartcard can be accessed with any
UNIX system calls (e.g., creat, open,
read, and write).

� UNIX commands (e.g., ls, cd, pwd, and
cat) can be used to access �les in a smart-
card.

� The smartcard VFS must be able to access
any smartcard that supports ISO-7816.

� The smartcard VFS should hide details
about a smartcard to users.

� Security of a smartcard must be preserved.

� No smartcard �les may be cached in the
UNIX system because a smartcard is a
more secure place to store data (see the
end of Section 2.3).

2.2 Design Problems

A huge obstacle to achieving our goals is the
absence of a standard way to request metadata
information about �les in a smartcard. Some
information essential for the UNIX �lesystem
is simply not present in a smartcard, e.g.,
�le sizes, directory contents, and time stamps.
Without such information, it is impossible to
implement the complete functionality of the

UNIX �lesystem. For example, without direc-
tory entries, it is impossible to implement ls
properly.
We have two choices, with concomitant

tradeo�s:

� Dictate an internal format on a smartcard
to store information such as directory en-
tries, length of a �le, etc., in a �le in a
smartcard. This provides full functional-
ity of UNIX �lesystems.

� Degrade functionality of SCFS. For exam-
ple, no ls, no cat.

We compromise between the two choices. We
believe it is essential to be able to determine a
smartcard's directory structure through UNIX
commands such as ls, so SCFS requires di-
rectory structure information to be stored in
a smartcard. We also require a smartcard
to store �le lengths because they are neces-
sary to implement the read and write system
calls. Every directory (or DF in ISO-7816) in
a smartcard has a �le called ff.fe containing
the requisite metadata.

2.3 Design

Inspired by Arla [18], SCFS is implemented as a
kernel module, xfs, that handles VFS requests,
and a user daemon, scfsd, that communicates
with an ISO-7816 smartcard. Figure 1 shows
the overview of the design.

VFS XFS

Application SCFSD Smartcard

User-level

Kernel

ISO-7816
interface

UNIX
Filesystem
interface

Figure 1: SCFS design

When an application calls a VFS operation
(e.g., read, or write to a smartcard �le), the
kernel module upcalls scfsd to request service.
Scfsd creates ISO-7816 APDUs,5 sends them to

5An Application Protocol Data Unit, or APDU, can
be viewed as a framing protocol for messages passed
from application software to a smartcard.[9].

4 itoi

a smartcard, gets returned data, and passes it
to the kernel module.

Separation between xfs and scfsd allows us
to use an existing ISO-7816 library [16] for han-
dling the ISO-7816 protocol and dealing with
its complex timing requirements. Kernel code
is minimized, making SCFS easy to debug and
port.

To absorb di�erences among smartcards,
SCFS requires some knowledge of a smart-
card before it is mounted, e.g., existence
of special APDUs, opcodes used for AP-
DUs, ATRs6 they return, etc. The informa-
tion is stored in a SCFS con�guration �le,
/usr/scfs/etc/scfs.scdb by default.

SCFS automatically identi�es a smartcard
type from its ATR. When a reset signal is
sent to a smartcard, it responds with a 4 -
32 byte ATR, unique to each smartcard type.
The SCFS con�guration �le has a database of
known ATRs. If the ATR from the smartcard
is listed in the con�guration �le, SCFS retrieves
the entry for that type of smartcard. Details
about the con�guration �le are described in
Section 3.6.

Unlike most UNIX �lesystems, SCFS does
not cache data read or written because caching
might degrade the security of data resident in a
smartcard. Data in the UNIX �lesystem (typ-
ically a hard disk) is not protected as securely
as in a smartcard. For example, a UNIX user
with administrative (or \root") privileges can
access all data in a UNIX �lesystem, while she
may not be able to access �les in a smartcard
protected with PINs or keys.

3 Implementation

3.1 Overview

As described in Section2.3, SCFS is separated
into a kernel module (xfs) and a SCFS dae-
mon (scfsd), detailed in Sections 3.2 and 3.3,
respectively. Communication between xfs and
scfsd is detailed in Section 3.4. Implementa-
tion of SCFS is based on Arla-0.6. Communica-
tion between xfs and scfsd is derived directly
from Arla.

6Answer To Reset.

3.2 Kernel Module (xfs)

The kernel module (xfs) implements a virtual
�lesystem, the pioctl system call, and com-
munication with scfsd.
The virtual �lesystem consists of several

functions called by the kernel when a �le in
SCFS is accessed. For example, the core part
of the read system call is implemented by the
xfs read() vnode operation in the xfs.
We describe some important vfs operations,

xfs mount() and xfs root(), and some im-
portant vnode operations, i.e., xfs lookup(),
xfs read(), xfs write(), xfs getattr() and
xfs readdir() in Section 3.5.
Xfs is typically loaded into the kernel at boot

time. When xfs needs to communicate with a
smartcard, it performs the communication by
upcalling scfsd. For example, xfs read() in-
vokes xfs message readsc() in scfsd. Xfs

waits until it receives data from scfsd, and
sends the data back to the application with the
uiomove kernel function.

3.3 SCFS daemon (scfsd)

Scfsd performs operations requested by xfs.
For requests that require smartcard access,
scfsd translates the request to ISO-7816 AP-
DUs. Figure 2 shows an example of message
ow when an application requests to read 8
data bytes from a smartcard.

VFS XFS

Application SCFSD Smartcard

read(8 bytes)

msg_readsc
msg_installdata(data)

{00, a4, b0, 00, 08}

data

data

data

Figure 2: Reading 8 data bytes from a
smartcard

3.4 Communication between xfs
and scfsd

Xfs communicates with scfsd through RPC.

Smartcard Filesystem 5

When xfs needs access to a smartcard, it con-
structs a request message, puts it into a mes-
sage queue, and waits for scfsd to reply. Code
for sending a request to read 8 bytes from a
smartcard is as follows:

struct xfs_message_readsc msg;

msg.header.opcode = XFS_MSG_READSC;

msg.buf = buf;

msg.size = 8;

msg.offset = 0;

fidcpy (msg.fid, xnode->handle);

xfs_message_rpc(fd, &msg.header,

sizeof(msg));

After invoking xfs message rpc(), xfs

sleeps until it receives the result of the request.
Scfsd eventually receives data from a smart-
card and sends it back to the kernel module.
Here is an example of sending a reply message:

struct xfs_message_installdata msg;

msg.header.opcode = XFS_MSG_INSTALLDATA;

memcpy (msg.buf, data);

msg.size = size;

xfs_send_message_wakeup(fd, error, msg);

3.5 Important VFS/Vnode oper-
ations

In this section, we detail the implementation of
some important VFS and vnode operations.
VFS Operations:

� xfs mount()

Xfs mount() mounts SCFS on a speci�ed
directory. It �rst sends a reset signal to the
smartcard. When it receives ATR from the
smartcard, it scans the con�guration �le to
�nd a smartcard description that matches
the ATR, reads the con�guration informa-
tion, initializes scfsd, initializes xfs, and
creates the mount point.

� xfs root()

Xfs root() operation selects a root direc-
tory (3f.00) in a smartcard and installs
an XFS node and a vnode for a root node.

Vnode operations:

� xfs lookup()

Xfs lookup() translates a path to an 8
byte fid.7 It checks if the requested path-
name and its parent are both in the direc-
tory structure. If they are, it constructs
and returns the �d. Currently, a path
length is restricted to four components be-
cause a fid is 8 bytes long, big enough to
hold four ISO-7816 components, which are
two bytes each. We map these two bytes
into their ASCII equivalents in the natural
way.

� xfs read()

Xfs read() reads data from a (possibly
PIN-protected) smartcard �le, as follows.
(1) It selects the target �le. (2) When
the current �le and the target �le have the
same parent, the target �le is selected by
a select APDU. Otherwise, the entire path
from the root must be navigated; ISO-7816
does not allow selection of an arbitrary �le,
only one in the currently selected direc-
tory, so in this case, xfs read() selects the
root �le (3f.00), and moves down a path
one by one to the target �le. (3) With the
�le now selected, xfs read() sends a read
APDU (e.g., c0 b0 00 00 length) to the
smartcard. (4) If the read request fails be-
cause the �le is protected by a PIN, scfsd
prompts the user for a PIN. The prompt
is directed to the controlling tty of the ap-
plication that issued the system call. (5)
Finally, scfsd passes the data read back
to the user via a call to the xfs layer and
kernel uiomove().

� xfs write()

Xfs write() behaves identically to
xfs read(), except for the direction of
data.

� xfs getattr()

Xfs getattr() installs a VFS attribute
structure (struct vattr) and an XFS

7A fid is a �le identi�er that is unique in SCFS,
consisting of names of the �le itself and its ances-
tors. For example, a fid of a �le 3f.00/77.77/77.01 is
77.01.77.77.3f.00.ff.ff.

6 itoi

attribute structure (struct xfs attr).
Scfsd performs the actual construction of
the XFS attribute structure and sends it
to xfs, which converts it into a VFS at-
tribute structure.

� xfs readdir()

Xfs readdir() is typically called by a
getdirentries() system call, often as a
result of an ls command. It returns di-
rectory entries (struct dirent) of a se-
lected directory. Each entry describes a
�le or a directory in the selected directory.
ISO-7816 shortcomings require that we de-
�ne our own metadata strategy, described
in Section 2.2. Xfs readdir() constructs
full directory entries from the directory en-
tries and from our metadata �le and re-
turns them to the application.

� pioctl()

Some functionalities in a smartcard do not
�t the concept of a �lesystem. For exam-
ple, there is no system call to read a PIN to
authorize a user. However, these function-
alities are necessary to take advantage of
security features of a smartcard. To incor-
porate them into SCFS, we implemented
the pioctl() operation.8 Like ioctl(),
pioctl() takes opcode and data and per-
forms an opcode speci�c action.

Implementation of pioctl() is straight-
forward, translating one opcode to one
APDU. Pioctl() implements verify PIN,
verify a key, internal authentication, exter-
nal authentication, get response, and get
challenge APDUs.

3.6 Con�guration File

The con�guration �le (stored in
/usr/scfs/lib/scfs.scdb by default)
includes entries for ATR, the name of the
smartcard, the CLA byte used for APDUs,
whether the APDUs are supported by the
smartcard, the type of supported PIN protec-
tion, etc. An example of a con�guration �le is
as follows:

8Pioctl() originated in AFS. We use pioctl() to
avoid adding a new system call; this decision will be
revisited someday.

ATR 3b 32 15 0 49 10 {

CARDNAME CyberFlex

MULTIFLEXPIN no

MULTIFLEXGETRES no

CLA_DEFAULT c0

CLA_VERIFYKEY f0

CLA_READBINARY f0

CLA_UPDATEBINARY f0

CLA_READRECORD -1

CLA_UPDATERECORD -1

}

ATR 3b 2 14 50 {

CARDNAME MultiFlex

MULTIFLEXPIN yes

MULTIFLEXGETRES yes

CLA_DEFAULT c0

CLA_VERIFYKEY f0

}

ATR 3b 23 0 35 11 80 {

CARDNAME PayFlex/MCard

MULTIFLEXPIN no

MULTIFLEXGETRES no

CLA_DEFAULT 00

}

The byte string after the \ATR" tag is
matched with the ATR returned from a smart-
card at reset. The CLA * tags de�nes CLA
bytes for speci�c APDUs, used by scfsd to
construct APDUs. -1 means that the APDU
is not supported in the smartcard type. If
a CLA byte is not speci�ed for the APDU,
CLA DEFAULT is used. For example, in Cy-
berFlex, the CLA byte is 0xf0 for the ver-
ify key, read binary, and update binary AP-
DUs. Read record and update record APDUs
are not de�ned. 0xc0 is used for the CLA byte
for the other APDUs.

4 Performance Evaluation

Here we evaluate the performance of SCFS.

4.1 Method

For four di�erent settings of read and write

system calls, we measured total elapsed time
and time spent to access a smartcard. The dif-
ference reects �lesystem overhead. Figure 3
shows this relation.

Smartcard Filesystem 7

read(2)
call

start reading
smartcard

end reading
smartcard

read(2)
returns

Total Time

smartcard access time

scfs overhead scfs overhead

Figure 3: Performance Evaluation

The four settings are read 8/128 bytes
and write 8/128 bytes. The measurement
is performed for a Schlumberger MultiFlex
smartcard, communicating at 9.6 Kbps with
OpenBSD-2.2 operating system on Pentium-
133MHz.

4.2 Result

The result is shown in Table 1. Command
names, total time, time spent for smartcard
communication, and SCFS overhead are shown.
All times are in ms.

Command Total SC Overhead

Read 8 bytes 28.9 28.2 0.7 (2.4%)
Read 128 bytes 190.2 189.4 0.8 (0.4%)
Write 8 bytes 63.4 62.7 0.7 (1.1%)
Write 128 bytes 1259.5 1258.9 0.7 (0.1%)

Table 1: Performance Evaluation Result

The numbers show that SCFS overhead is
negligible. Most of the time is spent communi-
cating with the card.

4.3 Breakdown

Figure 4 shows a breakdown of the 8 byte read.
It takes 11 ms to send the read APDU, 11 ms
for the smartcard to process a read command,
9 ms to receive data from the smartcard, and
1 ms SCFS overhead.

5 Discussion

5.1 Related Work

Here we discuss three important related works,
OCF, PC/SC, and some special purpose stan-

Start
read

(ms)

Start
receiving
data

End
receiving
data

Complete
read

0 11.9

32.6

Send read
APDU to card

0.6

33.0

Figure 4: Breakdown of 8 byte read

dards.

OCF

OpenCard Framework is middleware that sup-
ports a smartcard with Java [2, 8] by provid-
ing high-level APIs, vendor transparency, card
type transparency, and extensibility. These ob-
jectives are similar to ours. The principal ad-
vantage of OCF is that it employs Java. Pro-
grammers familiar with Java can start smart-
card programming easily. The following is an
example taken from \OpenCard Framework 1.1
Programmer's Guide" [7]. It reads a �le \id"
(0xc009) and prints it out to standard output.

public static void main(String[] args)

{

System.out.println(

"reading smartcard file...");

try {

SmartCard.start();

// wait for a smartcard with file

// access support

CardRequest cr =

new CardRequest(

FileAccessCardService.class);

SmartCard sc =

SmartCard.waitForCard(cr);

FileAccessCardService facs =

(FileAccessCardService)

sc.getCardService(

FileAccessCardService.class, true);

CardFile root = new CardFile(facs);

CardFile file =

new CardFile(root, ":6964");

byte[] data =

facs.read(file.getPath(), 0,

file.getLength());

8 itoi

sc.close();

String entry = new String(data);

entry = entry.trim();

System.out.println(entry);

} catch (Exception e) {

e.printStackTrace(System.err);

} finally { // even in case of an error

try {

SmartCard.shutdown();

} catch (Exception e) {

e.printStackTrace(System.err);

}

}

System.exit(0);

}

}

The example code is easy to understand for
those familiar with Java. Programmers can
take advantage of the higher abstraction of
Java, such as I/O streams, etc. OCF is inte-
grated with JavaCards, providing a consistent
development environment for application soft-
ware and on-chip software.
However, the reliance on Java can also be

viewed as a disadvantage. Java and its object
oriented model modularize and simplify com-
plex software, but a smartcard is a simple, pas-
sive device. For many smartcard applications,
Java might be viewed as overkill.
In SCFS, we use a smartcard in a simple way.

For example, we can print out a �le (as in the
OCF example) by typing:

% mount_scfs /dev/scfs0 /smartcard

% cat /smartcard/id

OCF cannot be used with languages such
as C and C++, the languages in which most
operating systems and security protocols are
written. Consequently, OCF o�ers little to en-
hance directly the security of many operating
systems and security protocols, such as UNIX,
Kerberos, and SSH.

PC/SC

PC/SC is a general purpose architecture for in-
tegrating a smartcard into PCs [3]. Its objec-

tives are similar to OCF and SCFS. According
to part 6 of the speci�cation [4], the PC/SC
API is similar to the UNIX �lesystem, featur-
ing Open(), Close(), Read(), Write(), Seek(),
etc. Therefore, usability of PC/SC and SCFS
are similar.

Unlike OCF, PC/SC supports multiple lan-
guages and development environments, such
as C, VC++, VB++, and Java. However,
it is used only with Windows operating sys-
tems. While SCFS currently supports only
OpenBSD, it is possible to port it to other
UNIX systems, and (perhaps) even to Windows
NT.9

Special Purpose Standards

Application speci�c standards such as
PKCS#11, EMV, and SET have advan-
tages in usability in speci�c domains because
of higher abstractions than SCFS. In SCFS,
functionality to take advantage of smartcard
security, such as internal and external authen-
tication, is given by the pioctl() system call.
However, pioctl() is not as user friendly
as the functionality provided by PKCS#11,
EMV, and so on. We may provide libraries for
speci�c purposes to wrap around SCFS to give
higher abstractions.

5.2 Advantage of SCFS

Transparent API with the UNIX Filesys-
tem

SCFS di�ers from the other approaches such as
OCF and PC/SC because it is implemented as
an operating system extension. Consequently,
to an application, smartcard �les look identical
to �les stored on other media. With SCFS, an
application can use a smartcard without mod-
i�cation (Figure 5).

Application

OS

Application

OS SCFS

Figure 5: Application is not modi�ed to
use SCFS.

9If we purchase the Installable Filesystem package.

Smartcard Filesystem 9

With SCFS, many UNIX applications can
take advantage of smartcard security without
modi�cation. For example, here is how we
made SSH work with a private key stored in
a smartcard: we added a symbolic link from
$HOME/.ssh/identity to /smartcard/ss/id

and copied a private-key to the SSH identity
�le.

citi% mount_scfs /dev/scfs0 /smartcard

citi% ln -s /smartcard/ss/id

~/.ssh/identity

citi% ssh sin.citi.umich.edu

Enter PIN:

sin% logout

Although not tested yet, Kerberos tickets and
Netscape cookies can be stored in SCFS in sim-
ilar ways.
In contrast, OCF or PC/SC require that an

application be modi�ed to use a smartcard be-
cause the API for a smartcard is di�erent from
the API for normal �les (Figure 6).

Application

OCF or PC/SC

OS

Application

OS

Figure 6: Application must be modi�ed
to use OCF or PC/SC

Portability

Another advantage of SCFS is portability.
Most of the SCFS code is in user space and
easily ported to other operating systems. The
xfs kernel module is based on Arla, which is
already ported to many UNIX-like operating
systems, including Solaris, NetBSD, FreeBSD,
OpenBSD, Linux, AIX, HP-UX and Digital
UNIX. It is easy to port SCFS xfs to other
operating systems.

5.3 SCFS as Development Tool

Smartcard standards other than SCFS give
higher abstractions for users, e.g. Java lan-
guage in OCF, EMV'96 for electric commerce,
PKCS#11 for cryptographic applications, etc.
Depending on the type of applications, di�erent

kinds of abstraction may be required. There-
fore, there are many standards that do not in-
teroperate [1]. In contrast, SCFS works with
a raw smartcard with a minimum amount of
abstraction; no matter what application is on
a smartcard, SCFS can access the smartcard.
SCFS allows users to access a smartcard with
sophisticated UNIX commands, such as cd, ls,
pwd, cat, etc. SCFS is especially helpful in
maintenance, testing, and debugging; Figure 7
depicts our model of SCFS as a development
tool.

SCFS

Smartcard

Application

OCF PC/SC EMV PKCS#11

Application Development

Maintenance, Test, Debug

Figure 7: SCFS as a low-level develop-
ment tool.

6 Future Directions

Some ideas derived from other smartcard
standards suggest enhancements to SCFS. In
PC/SC, a smartcard speci�c driver is loaded as
a DLL (Dynamic Loadable Library). In SCFS,
smartcard speci�c code is directly written in
the user-level application, scfsd. PC/SC's ap-
proach is more extensible than ours because it
does not require recompilation to add a driver
for a new smartcard. We are considering ex-
tending SCFS to have the same advantage by
reading con�guration information from a table.
We intend to port SCFS to di�erent oper-

ating systems and to support more smartcard
types. (Currently it supports only Schlum-
berger MultiFlex, CyberFlex, and PayFlex).
Security of SCFS should be explored. SCFS

is currently vulnerable to Trojan Horse attacks,
i.e., if an adversary has administrative privi-
leges, she can install a rogue version of SCFS
that steals a user's PIN or modi�es contents of
the smartcard. We are investigating integrity

10 itoi

checking and authentication of SCFS code by
a smartcard.
We plan to use SCFS in several applications.

One of them, storing Kerberos tickets, is par-
ticularly interesting, as it dovetails with our
related Kerberos V5 smartcard extensions [10].
In that application, the smartcard performs de-
cryption on Kerberos tickets. Storing the result
in a protected SCFS �le indicates the synergy
of our approach.

7 Conclusion

We have implemented a Smartcard Filesystem
(SCFS) to ease development of smartcard soft-
ware. SCFS provides a UNIX �lesystem API
for a smartcard. Developers can use the well-
established UNIX API and development envi-
ronment to develop smartcard software. Per-
formance evaluation shows the overhead caused
by SCFS is negligible.

8 Acknowledgment

We thank the Arla developers: Assar Wester-
lund, Love Hornquist-Astrand, Magnus Holm-
berg and manymore people in the arla-drinkers
mailing list for patiently answering our ques-
tions.

References

[1] Duncan W. Brown. Application de-
velopment: A new focus for smart
card suppliers and implementaters. In
CardTech/SecureTech'98, volume 1, pages
352{353, Washington, DC, April 1998.

[2] OpenCard Consortium. General in-
formation web document, Oct. 1998.
http://www.opencard.org/docs/gim/
ocfgim.html.

[3] Microsoft Corporation. Smart
cards, white paper, April 1998.
http://www.microsoft.com/ smart-
card/smartcards/scardwp.asp.

[4] PC/SC Workgroup (Microsoft Corp.
etc.). Interoperability speci�ca-
tion for iccs and personal computer

systems, part 1-8, December 1997.
http://www.smartcardsys.com.

[5] Europay, MasterCard, and Visa. Emv'96:
Integrated circuit card application spec-
i�cation for payment systems, June
1996. http://www.mastercard.com/
emv/emvspecs02.html.

[6] Scott B. Guthery and Timothy M. Ju-
rgensen. Smart Card Developer's Kit.
MacMillan Technical Publishing, Indi-
anapolis, Indiana, December 1997.

[7] R. Hermann, D. Husemann, and
P. Trommler. Opencard framework
1.1 programmer's guide, Oct 1998.
http://www.opencard.org/docs/pguide/
PGuide.html.

[8] Reto Hermann, Dick Huseman, and Peter
Trommler. The opencard framework. In
CARDIS'98, Louvain-la-Neuve, Belgium,
Sept. 1998. Third Smart Card Research
and Advanced Application Conference.

[9] The International Organization for Stan-
dardization and The International Elec-
trotechnical Commission. ISO/IEC 7816-
4 : Information technology - Identi�cation
cards - Integrated circuit(s) cards with con-
tacts, 9 1995.

[10] Naomaru Itoi and Peter Honeyman.
Smartcard integration with kerberos v5.
Technical report, Center for Information
Technology Integration, Dec. 1998. CITI
Techreport 1998-8.

[11] S. R. Kleiman. Vnodes: An architecture
for multiple �le system types in sun unix.
In Proceedings of USENIX Summer Tech-
nical Conference. USENIX, 1986.

[12] RSA Laboratories. Pkcs #11:
Cryptographic token interface stan-
dard. version 2.01, December 1997.
http://www.rsa.com/rsalabs/pubs/PKCS/.

[13] Marshall Kirk McKusick, Keith Bostic,
Michael J. Karels, and John S. Quarter-
man. The Design and Implementation of
the 4.4BSD Operating System. Addison-
Wesley Publishing Company, 1996.

Smartcard Filesystem 11

[14] SUN Microsystems. Java card technology.
http://java.sun.com:80/products/javacard/
index.html.

[15] Multos. http://www.multos.com/.

[16] Jim Rees. Iso 7816 library, 1997.
http://www.citi.umich.edu/projects/sinciti/
smartcard/sc7816.html.

[17] James F. Russell. Compatibility and con-
icts: Pc/sc, ocf, java card, multos ... In
CardTech/SecureTech'98, volume 1, pages
97{101, Washington, DC, April 1998.

[18] Assar Westerlund and Johan Danielsson.
Arla - a free afs client. In Proceedings of
USENIX 1998 Annual Technical Confer-
ence, pages pp. 149 { 152, New Orleans,
Louisiana, USA, June 1998. USENIX.
http://www.stacken.kth.se/projekt/arla.

