
CITI Technical Report 99-3

Webcard: a Java Card web server
Jim Rees

Peter Honeyman

info@citi.umich.edu

ABSTRACT

Webcard is a TCP/IP stack and web server written in Java that runs on a Schlumberger
Cyberflex Access smartcard. In this report, we describe the architecture and implemen-
tation of Webcard and the constaints and assumptions that influenced its design. We also
include complete sources for the application and its supporting environment.

September 23, 1999

Center for Information Technology Integration
University of Michigan

519 W. William St.
Ann Arbor, MI 48103-4943

- 1 -

Webcard: a Java Card web server
Jim Rees

Peter Honeyman

info@citi.umich.edu

1. Introduction

The Program for Smartcard Technology at the
University of Michigan’s Center for Information
Technology Integration (CITI) is a research part-
nership with Schlumberger’s Austin Product
Center. The Program is actively engaged in re-
search projects that enhance and extend the ca-
pabilities of smartcards. Among CITI’s goals in
the Program, two stand out:

• innovative computer security applications of
smartcards, and

• new models of interaction with smartcards.

In this report, we describe Webcard, a web
server that is entirely contained in a commercial,
off-the-shelf smartcard.

Webcard accomplishes both of CITI’s objectives
in the categories of research stated above.
Webcard takes advantage of the inherent security
properties of smartcards, such as tamper resis-
tance and a programming interface appropriate
for security applications. While smartcards have
traditionally suffered from arcane, operating
system dependent applications, Webcard also
offers a radically new mode of interacting with
smartcards, one that is enabled by any Internet-
capable web browser.

2. Technical details

Webcard is a web server running on a Schlumber-
ger Cyberflex Access Java Card [Cyberflex]. The
card is programmed by the manufacturer to im-
plement a Java virtual machine (JVM), recog-
nizing a sizable subset of the Java programming
language. Specifically, Cyberflex implements
the Java Card 2.0 specification [JavaCard]. Java
Card is intended to support multiple applications
on a single card, as described in ISO 7816-4
[ISO 7816]and EMV 96 [EMV 96]. Webcard is
written as a single Java Card application (vari-
ously called applets or cardlets).

The Cyberflex Access card has 16 KB of
EEPROM and about 1.2 Kbytes of RAM. These
limited resources make it very difficult to im-
plement a full, standards-compliant version of
TCP/IP [RFC 791, RFC 793]. While that is our

ultimate goal, we must also accommodate the
size limitations imposed by current smartcards;
we find it useful and interesting to see how much
we can accomplish in as little space as possible.

As a first step toward implementing a standards
compliant TCP/IP stack, we elected to imple-
ment a minimal, functional server. Our main
“robustness” criterion is to produce a server that
responds to valid inputs and does not crash when
presented with invalid.

HTTP [RFC 1945], TCP, and IP specify many
requirements, many of which are rarely or never
used in practice. For our first implementation,
we elected to leave out those specifications that
are not required in normal operation. To deter-
mine which parts of the protocol are actually
used, we captured tcpdump traces of HTTP
transactions from several different clients against
an existing server. The assumptions described
below are based on the observed traces.

2.1. One Connection at a Time

The Webcard server is simplified by making the
assumption that only one connection is active at
any time. This allows the server to preserve state
for a single connection until a new request comes
in. This also eliminates the need to time out de-
funct connections and to respond to most state
change requests. However, most web browsers
run requests in parallel, so the server must not
return pages with inline content such as images.

It should not be difficult to relax this restriction.
The only connection state kept by the Webcard is
the file name; TCP state, which is remembered
but never used; and TCP port, to enforce the one
connection restriction. Connections can be dis-
carded in LRU order as new connection requests
arrive, eliminating the need for a timer, which is
unavailable on the Cyberflex Access platform.

2.2. HTTP

The server speaks a subset of the HTTP 1.0 pro-
tocol, which is simpler and easier to implement
than HTTP 1.1 or later. Earlier versions of
HTTP, such as HTTP 0.9, are unable to commu-
nicate with Webcard, but these clients are now

- 2 -

very rare. Modern web clients implement HTTP
1.1 or later, which are required to be backwards
compatible with HTTP 1.0.

Each request is handled as an individual TCP
connection. The HTTP status line, “HTTP/1.0
200 OK”, and the HTTP headers are stored in the
files being served, so the server itself does not
generate any headers or send any data other than
what is in the file.

An HTTP 1.0 GET request consists of the string
“GET” followed by a single space character,
followed by a server-relative URL. (Webcard
does not support any other methods, such as
HEAD, POST, or PUT.) For now, URLs are
assumed to be three characters, with the last two
characters being the file name. (ISO 7816-4 file
names are two bytes.)

When the server receives a request, it selects the
requested file. It does not store any other state
that reflects the identity of the requested file.
This implies that only a single HTTP connection
can be active at any time, as described above.

2.3. TCP

The server has no configuration information.
The network connection is point-to-point, so all
incoming packets are assumed to be addressed to
the server. The TCP stack simply swaps the
source and destination addresses when it con-
structs a reply packet. No subnet or routing in-
formation is required.

Webcard discards any packets not addressed to
the HTTP port (TCP port 80). Any TCP options
are ignored.

The TCP state machine only has three states:
LISTEN, ESTABLISHED, and FIN-WAIT-1. It
is incapable of initiating a connection, and does
not have the corresponding SYN-SENT state. It
also does not have a CLOSED state. Although
Webcard keeps track of the TCP state, it makes
no use of this information.

The TCP stack never retransmits. This elimi-
nates the need for timers, which are unavailable
anyway, and for keeping track of (most) TCP
state. We assume the TCP peer retransmits when
necessary. In practice, packets are rarely
dropped.

The state machine responds to four types of
packets. A SYN elicits a SYN ACK reply and
transitions to ESTABLISHED, without waiting
for the peer to ACK the SYN. We assume that
the SYN ACK will not be dropped and will

eventually arrive. This assumption is benign: if
SYN ACK does get dropped, the peer will re-
transmit the SYN, allowing connection estab-
lishment to proceed.

HTTP 1.0 allows only one line of text to be sent
to the server; following our restrictions to HTTP
1.0 described above, any packet with data is as-
sumed to be a complete HTTP GET request.
Webcard URLs are exactly three bytes. We as-
sume that the seven bytes in a GET URL request
arrive in a single, unfragmented TCP segment.
The server extracts the URL from this request
and selects the given file in the ISO 7816-4 file
system. If the file does not exist, the server se-
lects a file named “nf”, which contains a “404
Not Found” error message. The data packet
elicits an ACK of the client's sequence number.

A FIN elicits an ACK and transitions the TCP
state machine to LISTEN. HTTP clients always
wait for the server to close the connection, so
there is no CLOSE-WAIT or LAST-ACK state.
If the client does try to close the connection pre-
maturely, it will wait in vain for FIN from the
Webcard and will be stuck in FIN-WAIT-2 in-
definitely. Most TCP clients eventually recover
from this.

An ACK with no data attached elicits data from
the currently selected file. There is no window-
ing -- data is sent when the ACK for the previous
segment arrives. Webcard sequence numbers
always start at zero, so the client's ACK number
gives the offset into the file.

Webcard does not check the client's checksum
and ignores the offered window, urgent flag and
pointer, and push flag. RST packets are ignored.
Outgoing packets always offer a small fixed
window. The actual size of this window is un-
important -- we assume the client will never
want to send more than 17 bytes.

2.4. IP

Incoming packets are assumed to contain no IP
options. It would not be difficult to ignore op-
tions, but in practice IP options are never used.
The IP header checksum must be done with 16
bit arithmetic because the card does not imple-
ment 32 bit arithmetic, but the checksum routine
can be simplified by noting that an IP header is
never long enough to overflow a 16 bit sum.

The MRU (incoming MTU) is limited by the
ISO interface to slightly less than 256 bytes.
Webcard does not implement IP reassembly,

- 3 -

because the only important incoming informa-
tion is the URL, which fits in the first 17 bytes.

2.5. Cardlet details

Cyberflex extends Java Card in a number of
ways. Cyberflex cardlets contain a main method
in addition to the Java Card methods. This al-
lows them to function as standalone programs,
but Webcard does not depend on this feature.

A cardlet must have at least three methods, “in-
stall,” “select,” and “process.” The install
method is invoked once at the time the card is
initialized. It creates and initializes the objects
needed by the applet. The select method is in-
voked at the time the cardlet is selected, usually
via the “select” application protocol data unit (or
APDU). A cardlet can be set as the default for
the card, in which case that cardlet is implicitly
selected whenever the card is used.

The process method does all the work. When an
APDU is sent to the card, that APDU is passed
to the process method of the currently selected
cardlet. IP packets are sent to the Webcard en-
capsulated in an APDU that gets passed to the
process method.

On reset, the Cyberflex Access default loader
waits for an incoming APDU and passes it to the
ip7816 cardlet. If the APDU is an IP packet
(INS=0x12), the cardlet processes the APDU;
otherwise the cardlet passes the APDU back to
the default loader.

The Webcard cardlet extracts the data length,
destination port, and several other fields from the
IP and TCP headers, then enters the TCP state
machine. It then constructs a reply packet if
needed, optionally attaches outgoing data to it,
computes TCP and IP checksums, and sends the
reply packet as outgoing 7816 data.

At several points in this process the cardlet calls
apdu.waitExtension() to send a 7816 no-
op to the card terminal. This prevents the termi-
nal from timing out while the card is processing.

The Webcard cardlet is about 1200 bytes of Java
byte code, leaving about 14 Kbytes of space for
web content.

2.6. Card Management

Content is loaded onto the Webcard using SCFS
[Itoi], CITI’s extension to the UNIX operating
system, which mounts any ISO 7816-4 smartcard
file system into the UNIX file system name
space.

Cardlets can be written in any Java development
environment; we tend to use standard UNIX
editors and Sun Microsystem’s JDK [JDK] for
compiling into byte code. A Cyberflex-specific
tool called MakeSolo converts the class file into
a cardlet ready for downloading with another
tool from the Cyberflex developers kit.

2.7. Host Interface

The Cyberflex Access card includes an ISO
7816-3 interface. We use this framing protocol
instead of implementing a more conventional
serial protocol such as SLIP or PPP. IP packets
are encapsulated in a 7816 APDU, with no addi-
tional headers. The maximum size of an APDU
is 256 bytes. A simple daemon running on
OpenBSD (or potentially any system with a tun-
nel device) forwards packets to the card. The
daemon does not implement IP fragmentation,
and truncates any packet too big to fit in an
APDU. The source code for the OpenBSD tun-
nel device is included in an Appendix.

Each incoming packet results in at most one re-
ply packet. Cyberflex Access supports 7816-3
T=0 protocol, so the reply packet is retrieved by
the daemon with a “get response” APDU.

Routing packets to the Webcard requires external
advertisement of the existence of the tunnel. At
CITI, we assign the Webcard an otherwise un-
used IP address from the local subnet’s address
space and install a static route on our upstream
router. On the host to which the card reader is
attached, we configure with the following com-
mands:
configure the tunnel
ifconfig tun0 141.211.169.2 smarty
route through the tunnel
route add smarty 141.211.169.2
start the tunnel daemon
ip7816d 141.211.169.2

2.8. Physical Characteristics

The physical dimensions of Webcard correspond
to ISO 7810 ID-1: 85.6 x 54 x .76 mm. Of this,
roughly 10 x 12 mm is chip carrier. The chip
itself is less than 25 square mm. in size.

3. Discussion

Webcard performance is less than spectacular:
approximately 130 bytes per second. We believe
this can be accounted for in the main by code
path through the JVM. We plan to address per-
formance issues when we are satisfied with
functionality.

- 4 -

We intend to extend the functionality of
Webcard in many directions, but are mostly con-
cerned with providing better HTTP, TCP, and IP
compliance. Our first priority is to address
“hosts requirements” such as ICMP functional-
ity, which proves useful in remotely diagnosing
problems with IP.

With a more functional TCP/IP stack in hand, we
plan to investigate the potential of remote
method invocations from host applications. We
are also interested in investigating IPv6 and mo-
bile IP for the flexibility they offer to the highly
mobile computers embedded in smartcards.

References

[Cyberflex] Schlumberger, Inc., “Cyberflex
Access Programmer’s Guide” (1998).

[EMV 96] Europay International S.A.,
MasterCard International Inc., and Visa Interna-
tional Service Assoc., “EMV ’96 – Integrated
Circuit Card Specification for Payment Systems”
(May 1998).

[ISO7816] International Organization for
Standardization, “International Standard
ISO/IEC 7816: Integrated circuit(s) cards with
contacts.”

[Itoi] N. Itoi, P. Honeyman, and J. Rees,
“SCFS: A UNIX Filesystem for Smartcards,” in
Proc. USENIX Workshop on Smartcard Tech-
nology, Chicago (May 1999).

[JavaCard] Sun Microsystems, “Java Card
2.0 Programming Concepts” (October 1997).

[JDK] Sun Microsystems, “Java Card Applet
Developer’s Guide” (July 1998).

[RFC 791] J. Postel (ed.), “Internet Proto-
col – DARPA Internet Program Protocol Speci-
fication,” USC Information Sciences Institute
(September 1981).

[RFC 793] J. Postel (ed.), “Transmission
Control Protocol – DARPA Internet Program
Protocol Specification,” USC Information Sci-
ences Institute (September 1981).

[RFC 1945] T. Berners-Lee, R. Fielding, and H.
Frystyk, “Hypertext Transfer Protocol –
HTTP/1.0,” USC Information Sciences Institute
(May 1996).

- 5 -

Appendix: Webcard sources
// Copyright (c) 1999
// The Regents of The University of Michigan
// All rights reserved

// Permission is granted to use, copy and redistribute this software
// for noncommercial education and research purposes, so long as no
// fee is charged, and so long as the copyright notice above, this
// grant of permission, and the disclaimer below appear in all copies
// made; and so long as the name of The University of Michigan is not
// used in any advertising or publicity pertaining to the use or
// distribution of this software without specific, written prior
// authorization. Permission to modify or otherwise create derivative
// works of this software is not granted.
//
// This software is provided as is, without representation as to its
// fitness for any purpose, and without warranty of any kind, either
// express or implied, including without limitation the implied
// warranties of merchantability and fitness for a particular purpose.
// The Regents of The University of Michigan shall not be liable for
// any damages, including special, indirect, incidental, or consequential
// damages, with respect to any claim arising out of or in connection
// with the use of the software, even if it has been or is hereafter
// advised of the possibility of such damages.

// Contact: info@citi.umich.edu

// A very small tcp stack and web server for Schlumberger Cyberflex Access

import javacard.framework.*;
import javacardx.framework.*;

public class ip7816 extends Applet
{

static final byte CMD_IP = (byte)0x12;

static final byte FL_ACK = 0x10;
static final byte FL_PSH = 0x8;
static final byte FL_RST = 0x4;
static final byte FL_SYN = 0x2;
static final byte FL_FIN = 0x1;

static final byte ST_LISTEN = 0;
static final byte ST_ESTAB = 2;
static final byte ST_FW1 = 3;
static final byte ST_FW2 = 4;

static final short CD = ISO.OFFSET_CDATA;
static final short MTU = 248; // Fits in a 256 byte apdu

// "TCB"
// In a full tcp implementation we would keep track of this per connection.
// This implementation only handles one connection at a time.
// As a result, very little of this state is actually used after
// the reply packet has been sent.

byte src[], dst[];
short id, tcb_port; // ip id, tcp port
byte tcb_st; // state

- 6 -

private ip7816() {
src = new byte[4];
dst = new byte[4];
register();

}

public static void install(APDU apdu) {
new ip7816();

}

public boolean select() {
id = 1;
tcb_st = ST_LISTEN;
return true;

}

public static void main(String args[]) {
ISOException.throwIt((short) 0x811F);

}

public void process(APDU apdu) {
short i, len, port, rcvnxt0, rcvnxt1, sndnxt, offset, datlen, ck, d0, d1;
byte pkt[] = apdu.getBuffer(), fl;

switch (pkt[ISO.OFFSET_INS]) {

case CMD_IP:
// Incoming IP packet
len = apdu.setIncomingAndReceive();
if (len < 40)

ISOException.throwIt(ISO.SW_WRONG_LENGTH);
// Packet may have been truncated by ip7816d; find real len
len = Util.getShort(pkt, (short)(CD+2));

// If it's not http, just drop it
if (Util.getShort(pkt, (short)(CD+22)) != 80)

break;

// Get source and destination address and source port
Util.arrayCopy(pkt, (short)(CD+12), src, (short)0, (short)4);
Util.arrayCopy(pkt, (short)(CD+16), dst, (short)0, (short)4);
port = Util.getShort(pkt, (short)(CD+20));

// Get the sender's sequence and ack
// XXX Note this is 16-bit; we don't handle overflow
rcvnxt0 = Util.getShort(pkt, (short)(CD+24));
rcvnxt1 = Util.getShort(pkt, (short)(CD+26));
sndnxt = Util.getShort(pkt, (short)(CD+30));

// Find the payload
offset = (short) (((pkt[CD+32] >> 2) & 0x3c) + 20);
datlen = (short) (len - offset);

len = 40;
fl = FL_ACK;

apdu.waitExtension();

- 7 -

// Figure out what kind of packet this is, and respond
if ((pkt[CD+33] & FL_SYN) != 0) {

// SYN
sndnxt = 0;
rcvnxt1++;
fl |= FL_SYN;
tcb_st = ST_ESTAB;

} else if (datlen > 0) {

// incoming data
rcvnxt1 += datlen;

// Get the url (two chars after "GET /")
if (pkt[CD+offset+5] == 0x20)

// Turn "/" into "in"
d0 = 0x696e;

else
d0 = Util.getShort(pkt, (short)(CD+offset+5));

// select the file and get its size
// if file not found, try "nf" then "in"
if (CyberflexFile.selectFile(d0) != ST.SUCCESS

&& CyberflexFile.selectFile((short)0x6e66) != ST.SUCCESS)
CyberflexFile.selectFile((short)0x696e);

len += (short) (CyberflexFile.getFileSize() - 16);
fl |= FL_PSH;
tcb_port = port;

} else if ((pkt[CD+33] & FL_FIN) != 0) {

// FIN
rcvnxt1++;
// Don't bother with FIN-WAIT-2, TIME-WAIT, or CLOSED
tcb_st = ST_LISTEN;

} else if ((pkt[CD+33] & FL_ACK) != 0) {

// ack with no data
if (tcb_port == port && sndnxt > 1) {

// calculate no of bytes left to send
i = (short) (CyberflexFile.getFileSize() - 16 - (sndnxt - 1));
if (i == 0) {

// EOF; send FIN
fl |= FL_FIN;
tcb_st = ST_FW1;

} else if (i > 0) {
// not EOF; send next segment
len += i;
fl |= FL_PSH;

} else {
// ack of FIN; no reply
break;

}
} else

break; // No reply packet

} else

break; // drop it

apdu.waitExtension();

- 8 -

// Send reply packet
if (len > MTU)

len = MTU;

// Read next segment of data into buffer
if (len > 40)

CyberflexOS.readBinaryFile(pkt, (short)40, (short)(sndnxt - 1),
(short)(len - 40));

apdu.waitExtension();

for (i = 0; i < 40; i++)
pkt[i] = 0;

// Fill in IP header
pkt[0] = 0x45; // version, header len
Util.setShort(pkt, (short)2, len);
Util.setShort(pkt, (short)4, id);
pkt[8] = 60; // ttl
pkt[9] = 6; // protocol (tcp)
Util.arrayCopy(dst, (short)0, pkt, (short)12, (short)4);
Util.arrayCopy(src, (short)0, pkt, (short)16, (short)4);

apdu.waitExtension();

// Calculate IP header checksum
ck = d0 = d1 = 0;
for (i = 0; i < 20; i += 2) {

d0 += (short) (pkt[i] & 0xff);
d1 += (short) (pkt[i+1] & 0xff);

}
// This works because IP header is too short to overflow high byte
ck = (short) ~(((d0 >> 8) & 0xff) + (d0 << 8) + d1);
pkt[10] = (byte) (ck >> 8);
pkt[11] = (byte) ck;

apdu.waitExtension();

// Fill in TCP header
pkt[21] = 80; // Source port
Util.setShort(pkt, (short)22, port);
Util.setShort(pkt, (short)26, sndnxt);
Util.setShort(pkt, (short)28, rcvnxt0);
Util.setShort(pkt, (short)30, rcvnxt1);
pkt[32] = 0x50; // data offset = 20 (no options)
pkt[33] = fl; // flags
pkt[34] = 0x0a; // window = 2680
pkt[35] = 0x78;

apdu.waitExtension();

// Calculate TCP checksum
ck = d0 = d1 = 0;
pkt[len] = 0;
for (i = 12; i < len; i += 2) {

d0 += (short) (pkt[i] & 0xff);
d1 += (short) (pkt[i+1] & 0xff);

}

- 9 -

d1 += 6 + len - 20;
ck = (short) ((d0 & 0xff) + ((d1 >> 8) & 0xff));
ck = (short) ~(((d0 >> 8) & 0xff) + (d1 & 0xff)

+ ((ck >> 8) & 0xff) + (ck << 8));
pkt[36] = (byte) (ck >> 8);
pkt[37] = (byte) ck;

// Send return packet
apdu.setOutgoingAndSend((short)0, len);

break;

}
}

}

- 10 -

Appendix: Tunnel daemon sources
/*
Copyright (c) 1999
The Regents of The University of Michigan
All rights reserved

Permission is granted to use, copy and redistribute this software
for noncommercial education and research purposes, so long as no
fee is charged, and so long as the copyright notice above, this
grant of permission, and the disclaimer below appear in all copies
made; and so long as the name of The University of Michigan is not
used in any advertising or publicity pertaining to the use or
distribution of this software without specific, written prior
authorization. Permission to modify or otherwise create derivative
works of this software is not granted.

This software is provided as is, without representation as to its
fitness for any purpose, and without warranty of any kind, either
express or implied, including without limitation the implied
warranties of merchantability and fitness for a particular purpose.
The Regents of The University of Michigan shall not be liable for
any damages, including special, indirect, incidental, or consequential
damages, with respect to any claim arising out of or in connection
with the use of the software, even if it has been or is hereafter
advised of the possibility of such damages.

Contact: info@citi.umich.edu
*/

/*
* Read packets from tunnel device and send them to a smartcard
*
* Command line options:
* -[12] serial port to use, 1 is default
* -l log (to stdout) incoming connection requests
* -v log (to stdout) all apdus (but not their contents)
*/

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "scrw.h"

#define IP_CLA 0x4
#define IP_INS 0x12
#define GR_INS 0xc0

char tunneldevname[] = "/dev/tun0";

int vflag, lflag;

main(ac, av)
int ac;
char *av[];
{

extern int optind;
int scfd, ipfd, port = 0, i, d0, n, af, len, r1, r2;
char *s, buf[100];
static unsigned char pkt[1504];

- 11 -

while ((i = getopt(ac, av, "12lv")) != -1) {
switch (i) {
case '1':
case '2':

port = i - '1';
break;

case 'l':
lflag = 1;
break;

case 'v':
vflag = 1;
break;

}
}

setlinebuf(stdout);

/* open reader and reset */
scfd = scopen(port, SCODSR, NULL);
if (scfd < 0) {

printf("can't open reader\n");
exit(1);

}
screset(scfd, NULL, NULL);

/* open tunnel device */
if (optind < ac) {

sprintf(buf, "/sbin/ifconfig tun0 %s", av[optind]);
system(buf);

}
ipfd = open(tunneldevname, 2);
if (ipfd < 0) {

perror(tunneldevname);
exit(1);

}
/* why is this necessary? */
system("/sbin/ifconfig tun0 up");

while (1) {
n = read(ipfd, pkt, sizeof pkt);
if (n <= 0) {

printf("eof\n");
break;

}
if (n < 44) {

printf("short packet %d\n", n);
continue;

}

/* Save the address family, move the rest of the packet up */
memmove(&af, pkt, 4);
memmove(pkt, pkt + 4, n - 4);

if (pkt[0] != 0x45) {
printf("bad version or IHL %02x\n", pkt[0]);
continue;

}
len = (pkt[2] << 8) | pkt[3];
if (len < 40 || len > 1500 || len != n - 4) {

printf("bad len %02x\n", len);
continue;

}

- 12 -

if (lflag && pkt[9] == 6 && (pkt[33] & 0x2))
printf("SYN from %d.%d.%d.%d\n", pkt[12], pkt[13], pkt[14], pkt[15]);

if (len > 80)
len = 80;

scwrite(scfd, IP_CLA, IP_INS, 0, 0, len, pkt, &r1, &r2);

if (vflag) {
s = scr1r2s(r1, r2);
if (!s)

s = "";
printf("sent pkt len %d status %02x.%02x %s\n", len, r1, r2, s);

}

if (r1 == 0x90)
/* No return packet */
continue;

if (r1 != 0x61) {
s = scr1r2s(r1, r2);
if (!s)

s = "";
printf("get_response(0) status %02x.%02x %s\n", r1, r2, s);
continue;

}
len = r2;
if (len == 0)

continue;

/* Read the return packet */
n = scread(scfd, IP_CLA, GR_INS, 0, 0, len, pkt, &r1, &r2);
if (n != len) {

printf("bad len wanted %d got %d\n", len, n);
len = n;

}
if (vflag) {

s = scr1r2s(r1, r2);
if (!s)

s = "";
printf("rcvd pkt len %d status %02x.%02x %s\n", len, r1, r2, s);

}

/* Insert address family and write to tunnel */
memmove(pkt + 4, pkt, len);
memmove(pkt, &af, 4);
write(ipfd, pkt, len + 4);

}

scclose(scfd);
close(ipfd);
exit(0);

}

	Peter Honeyman
	Peter Honeyman

