
CITI Technical Report 99-4

The Linux Scalability Project
Peter Honeyman

Chuck Lever
Stephen Molloy

Niels Provos

linux-scalability@citi.umich.edu
http://www.citi.umich.edu/projects/linux-scalability

ABSTRACT

The Linux Scalability Project is adapting Linux for use in enterprise-scale networking
environments. We focus on kernel algorithms and data structures that scale poorly when
presented with thousands or tens of thousands of simultaneous service requests. For ex-
ample, we uncovered a “thundering herd” problem in the accept system call. A few
dozen lines of code corrects this behavior to awaken only one, instead of all, waiting
threads. This small change improves macro-benchmark performance by over 50% on
high-performance hardware.

Other examples include improving poll performance, adding read-ahead support for
sendfile and mmaped files, and identifying areas of significant kernel SMP lock con-
tention. The project is also implementing an open source, reference implementation of
NFSv4, a highly scalable evolution of the popular distributed file system.

Building relationships between academia, industry, and open source communities is a
primary goal of our effort. While our research-oriented, “cathedral” approach is some-
times at odds with the “bazaar” style of software development prevalent in the Linux
community, we find ways to build reputation and influence among Linux kernel develop-
ers and the growing Linux commercial sector.

November 11, 1999

Center for Information Technology Integration
University of Michigan

519 W. William St.
Ann Arbor, MI 48103-4943

– 1–

The Linux Scalability Project
Peter Honeyman

Chuck Lever1

Stephen Molloy
Niels Provos

1 Chuck Lever is a Sun-Netscape Alliance employee resident at CITI.

Introduction

The Linux operating system is an open-source
POSIX-compliant operating system that runs par-
ticularly well on commodity Intel-compatible PC
hardware. Linux is not only free, it also happens
to be very stable, crashing infrequently in a vari-
ety of environments. As such, it is widely de-
ployed as a platform for network services, e.g.,
mail and web servers. Despite high acclaim and
ultra-stability, Linux remains a work in progress:
Linux continues to be improved in many ways to
better position it for enterprise service.

For peculiar reasons, Linux has focused on the
desktop, paying special attention to hardware
compatibility, user interfaces, and application
development. These emphases are critical to Li-
nux’ broad acceptance by a worldwide community
of users, but have little influence on its usability
or appropriateness in an enterprise service envi-
ronment. The Linux Scalability Project (LSP) at
the University of Michigan’s Center for Informa-
tion Technology Integration (CITI) is adapting
Linux to meet the needs of enterprise-scale Inter-
net service providers.

LSP is specifically interested in finding immediate
and practical improvements to Linux that increase
the performance of commercial enterprise servers,
such as Sun-Netscape’s iPlanet server suite (a
collection of web, directory, messaging, and secu-
rity services). To achieve our goals, our strategy
is to select a handful of areas of potential im-
provement to the Linux operating system, priori-
tize the areas based on their estimated improve-
ment pay-off versus their implementation cost,
then implement the highest priority improve-
ments. We evaluate each improvement using
server and OS benchmarking methodologies that
are as close to standard as possible to allow scien-
tific comparison with other research in this area.

The specific areas in which we are interested are:

• Reliability — improving system recovery
mechanisms, backup/restore, and fault-
tolerance.

• Performance — getting the most out of high-
performance systems: fast CPUs, RAID sys-
tems, and high-speed networking such as
ATM and gigabit Ethernet.

• Scalability — improving system throughput,
overload characteristics, relieving architec-
tural constraints, and enhancing administra-
tion of large installations.

• Security — improving resistance to network
and local attacks, reducing or eliminating the
risk of buffer overflows, continuous security
testing of all bundled applications and utili-
ties.

• Standards compliance — assuring that net-
work implementations are well behaved and
that useful and common APIs maintain stan-
dards compliance (e.g., POSIX).

• Quality assurance — reducing defect rate
(and defect re-introduction).

Improving existing features and adding new ones
to an operating system to boost application-
specific performance via independent research is
an opportunity afforded by Linux’ open source
distribution. A major challenge for LSP is to find
the right ways to work with Linux developers so
that our kernel improvements can be easily incor-
porated into the baseline Linux source code. In
the following sections, we outline the areas where
we have had the most success and those where we
intend to continue our efforts. In addition to tech-
nical milestones, we discuss building collabora-
tive relationships among open source advocates,
and with system and software vendors.

– 2–

Prioritizing our work

To decide which improvements provide the most
benefit, we assess potential improvements in the
following categories.

• Measurable throughput, performance, scal-
ability improvements.

These are the most important gains we hope for.
We can estimate these benefits by using research
of preexisting literature and simple microbench-
marks.

• Added stability during overload.

While some improvements may provide little,
none, or even slightly negative performance or
scalability gains, they might offer significant en-
hancements of system behavior during overload
conditions.

• Synergy with other potential improvements.

Several potential improvements to Linux can be
accomplished in different ways. Choosing to im-
plement one improvement may make others much
simpler to implement.

• Estimated resource costs.

We want to make sure the work we plan is feasi-
ble for our developers, and can be completed suc-
cessfully with the resources available to CITI.

• Estimated complexity.

Complexity relates directly to the amount of test-
ing required, for example, and increases the likeli-
hood that improvements may introduce new bugs.
We are also concerned about introducing im-
provements that require significant changes to
applications, especially changes that are not
backward compatible.

• Potential introduction of security or scalabil-
ity problems.

While an improvement might be easily imple-
mented, it also might introduce other problems
that make it unsuitable, such as unstable overload
behavior or unacceptable security exposures.

• Amount of server re-engineering required.

We favor work that requires few modifications to
system interfaces. This lets everyone take advan-
tage of our changes immediately.

• Expectation of acceptance by Linux develop-
ers.

We want to see our patches applied to the distrib-
uted Linux kernel. Our improvements lose value
if they have to be installed or included separately.

• Coordination efforts

These efforts help build collaborative relation-
ships among research and corporate entities to
forward the mission of our research.

• Input from industry partner server product
teams

We consult with technical staff among our indus-
try partners, such as Netscape’s server product
teams, to itemize, prioritize, and coordinate LSP
plans and efforts.

• Collaboration with Linux development com-
munity

We cooperate with members of the Linux devel-
opment community to determine the current state
of Linux, and determine how that work affects
high-end server performance. We offer develop-
ment resources for work on scalability and per-
formance issues.

Network server performance issues

In this section, we summarize some of the per-
formance and scalability issues we have ad-
dressed.

File descriptor scalability

As the number of network users and clients grows,
the number of concurrent open file descriptors on
network servers can easily exhaust system limits.
The number of file descriptors maintained on
servers often grows proportionally with the num-
ber of concurrent clients served. For example,
IMAP servers need to maintain a socket to con-
nect with each client, and an open file descriptor
for each client's mailbox. Until recently, a sys-
tem-wide limit of 1024 file descriptors prevented
such a server from supporting more than about
500 concurrent users.

Although the file descriptor limit was extended to
4096 open files, vestigial limits to poll and se-
lect precluded their use with more than 1000
file descriptors. When calling poll or select
each process must allocate a fixed size
wait_table that can be used by the underlying
device drivers to store information about the proc-
esses that need to be awakened when an event

– 3–

occurs. Each device driver adds information to
the wait_table via the poll_wait interface.
We extended the interface to allocate more storage
space dynamically for the wait_table if
needed.

We also encountered a performance problem for
applications that use a large number of file de-
scriptors. In applications with many open file
descriptors, the open system call searches a lin-
ear list in the form of a single bitmap to find a free
file descriptor. The result is that the time to find
an open file descriptor increases linearly with the
number of open files. Linux and *BSD memorize
the last closed file descriptor, which allows a sin-
gle open to return quickly. However, when
open and close system calls are interleaved,
performance degradation is apparent.

A solution to this problem was suggested by
Banga et al. [BM, BDM]: instead of using a single
bitmap, a two-bitmap structure is used to maintain
the list of free file descriptors. The first bitmap
points to free entries in the second bitmap, and the
second bitmap points to the free file descriptors
themselves. The graph shown below shows the
result of a micro-benchmark that opens 100,000
file descriptors and measures the time between
closing the first and the nth file descriptors and
two subsequent calls to open. There is a clear
difference between the single bitmap allocation of
file descriptors and the two-bitmap allocation.

Hints for select and poll

A process registers interest in file descriptor
events with the poll system call. The kernel
passes this information to all concerned device
drivers and puts the process to sleep until a rele-
vant event occurs. Even though the status of only
one file descriptor might have changed, when the
process awakens, poll is forced to examine all
of the selected file descriptors for status changes.

It would be useful if the device drivers could tell
— hint — each process as to which file descrip-
tors changed their status. To make this possible,
we extended poll to maintain a list of selected
file descriptors and their associated events and
processes. When a relevant event occurs, e.g., an
interrupt, the driver searches this list to find the
associated process and file descriptor. Poll then
sets the bitmap of changed file descriptors di-
rectly, obviating the need to check each driver
individually.

Because in general the hinting system requires
each device driver to be rewritten, each device
driver is given the ability to indicate whether it
supports hinting. This way, only the essential
drivers — generally speaking, the network devices
— need to be modified.

Memory management

Server applications make heavy use of shared
regions, anonymous maps, and mapped files.
Special features like locking down regions so they
aren't swapped, fast mmap, support for allocating
very large shared regions and memory areas, and
efficient memory allocation are especially useful.
Many modern network servers use multithreading
to take advantage of I/O concurrency and multiple
CPUs. As network services scale to tens of thou-
sands of clients per server, their architecture de-
pends more and more on the ability of the under-
lying operating system to support multithreading
efficiently. This especially true for library rou-
tines that are provided not by the applications'
designers, but by the OS.

An example of a heavily used programming inter-
face that needs to scale well with the number of
threads is the memory allocator, known in UNIX
as malloc. Malloc makes use of several im-
portant system facilities, including mutex locking
and virtual memory page allocation. Thus, ana-
lyzing the performance of malloc in a multi-

– 4–

threaded and multi-CPU environment can provide
important information about potential system inef-
ficiency. Finding ways to improve the perform-
ance of malloc can benefit the performance of
any sophisticated multithreaded application, such
as network servers.

To test malloc’s ability to divide its work effi-
ciently among multiple threads and processors, we
wrote a simple benchmark that drives multi-
threaded loads. In the next subsections, we dis-
cuss initial results of the benchmarks and analyze
the results with an eye towards identifying areas
of the implementation of malloc and Linux it-
self that can be improved.

A look at glibc’s malloc

Most modern distributions of Linux use glibc ver-
sion 2.0 as their C library. Glibc's implementers
have adopted Wolfgang Gloger's ptmalloc
[WG] as the glibc implementation of malloc.
Ptmalloc has many desirable properties, in-
cluding multiple heaps to reduce heap contention
among threads sharing a single C library invoca-
tion.

Ptmalloc is based on Doug Lea's original im-
plementation of malloc [DL]. Lea's malloc
has several goals, including improving portability,
space and time utilization, and adding tunable
parameters to control allocation behavior. Lea is
also greatly concerned about software re-use, be-
cause very often, application developers, frus-
trated by inappropriate behavior of memory allo-
cators, often write “yet another” specialized mem-
ory allocation scheme rather than re-use an exist-
ing one.2

Gloger's update to Lea's work retains these desir-
able behaviors, and adds multithreading ability
and some nice debugging extensions. Nonethe-
less, because the C library is pre-built on most
Linux distributions with debugging extensions and
tunability compiled out, it is necessary to rebuild
the C library or pre-load a separate version of
malloc to take advantage of these features.
Ptmalloc also makes use of both mmap and
sbrk on Linux when allocating arenas. Of
course, these system calls are essentially the same
under the covers, using anonymous maps to offer

2 One of the authors of this paper encountered this
frustration many, many years ago; see [HB].

processes large, pageable virtual memory areas.
Optimizing the allocation of anonymous maps and
reducing the overhead of these calls by having
malloc ask for larger chunks at a time are two
possible ways of helping performance in this area.

Benchmark description

We wrote a simple multithreaded program that
invokes malloc and free in a loop, and timed
the results on a dual processor 200Mhz Pentium
Pro with 128Mb of RAM and an Intel i440FX
mainboard. The operating system is Red Hat 5.1,
which comes with glibc 2.0.6. We replaced the
kernel with 2.2.0-pre4. Gettimeofday's reso-
lution on this hardware is 2-3 microseconds.
During the tests, the machine was at runlevel 5,
but was otherwise quiescent.

To measure the effects of multithreading on heap
accesses, we compare the results of running this
program on a single process with the results of
two processes running this program on a dual
processor, and one process running this test in two
threads on a dual processor. This answers several
questions:

• How well does thread scheduling compare
with process scheduling?

• How well does more than one thread in a pro-
cess utilize multiple CPUs?

• How well does malloc scale with multiple
threads accessing the same library and heaps?

• How heavyweight are thread mutexes?

If a malloc implementation is efficient, we ex-
pect that the two-thread run will work as well as
the two-process run. Typically, we find that a
poorly performing implementation uses a signifi-
cant amount of kernel time with a high context
switch count as a result of contention for mutexes
protecting the heap and other shared resources.

We are also interested in the behavior of malloc
and the system on which it's running as we in-
crease the number of threads past the number of
physical CPUs present in the system. We con-
jecture that the most efficient way to run heavily
loaded servers is to keep the ratio of busy threads
to physical CPUs as close to 1:1 as possible. We
would like to know the penalty as the ratio in-
creases.

– 5–

For each test, the benchmark makes 10 million
balanced malloc and free requests. It does
this because:

• Increasing the sample size increases the sta-
tistical significance of the average results.

• Short timings are hard to measure precisely,
so running the test over a longer time allows
elapsed time measurements with greater pre-
cision.

• Start-up costs (e.g., library initialization) are
amortized over the huge number of requests.

Specific tests and results

First, we compare the performance of two threads
sharing the same C library with the performance
of two threads using their own separate instances
of the C library. We hope to learn whether shar-
ing a C library (and thus “sharing” the heap)
scales as well as using separate instances of the C
library. On our host, the threaded test did almost
as well as the process test, losing only about 10%
of elapsed time. This indicates that malloc
scales well as the number of threads sharing the
same C library increases.

Next, we examine the behavior of malloc as we
increase the number of working threads past the

number of physical CPUs in the system. The re-
sults are summarized in the following graph.

So far, so good: the average elapsed time in-
creases linearly with the number of threads, with a

constant slope of 1/N * M, where N is the number
of processors (N = 2 in our case) and M is the
number of seconds for a single thread run (23 sec-
onds in our case).

Next, we examine the linearity over a much
greater number of threads. This tells us how the
library scales with increasing thread count.

The graph shows that the increase in elapsed time
is approximately linear with increasing thread
counts for counts much larger than the number of
configured physical CPUs on the system.

Discussion

We are satisfied that the malloc implementation
used in glibc 2.0 effectively handles increasing
numbers of threads with low overhead, even for a
comparatively large number of threads. We found
performance to respond linearly to increased of-
fered load.

In the future, we'd like to examine the multi-
threaded capabilities of a commercial vendor's
malloc implementation, e.g., Solaris 2.6 or So-
laris 7. Initial tests on single and dual processor
Ultra 2s indicate that the Solaris pthread imple-
mentation serializes all of the threads created by
the malloc-test program.

We are also examining the performance relation-
ship between the C library's memory allocator and
OS primitives such as mutexes and sbrk. We
recently removed a global kernel lock from sbrk,
allowing greater concurrency in memory-intensive

– 6–

multi-threaded applications. (This patch is incor-
porated in the 2.3.6 kernel.)

We would like to study the effects of allocating in
one thread while freeing the same area in another.
In addition, we would like to investigate whether
memory allocator performance benefits from
knowledge about level-2 cache and main memory
characteristics. Page coloring or alignment re-
finements could help promote cache-friendly heap
storage behavior.

Buffer management

This section describes a bug in the buffer cache
that was identified and corrected by LSP staff.
Recent releases of Linux feature the ability to self-
tune system parameters, such as buffer cache size,
according to offered system load. Part of this self-
tuning ability is implemented in a varying parti-
tioning of physical RAM between the traditional-
style buffer cache and the virtual memory system.
However, allowing the buffer cache to grow and
shrink on-demand introduces some interesting
design problems, and, in this case, a significant
bug.

In this section, we describe the bug and how it
was identified. We provide performance meas-
urements to show the significance of the problem.
Finally, we detail the fix as we proposed it and as
it was adopted into the Linux kernel, and report on
the performance improvement.

Along with several other developers, we noticed
that early releases of Linux 2.2.x were experienc-
ing a memory leak of some kind under heavy file
system and VM loads. Symptoms included poor
system performance after copying or removing
large files, sporadic “out of memory” errors, and
performance degradation on long-running jobs.
To stress the system and help identify the cause of
the problem, we used the SPEC S-DET bench-
mark suite [SDM] to generate significant loads on
a 4-way Dell PowerEdge 6300-450 with 512M of
RAM and an 18G Ultra2 LVD SCSI hard drive.

The SPEC S-DET benchmark consists of a script
that is designed to emulate a software developer
by running programs such as cc, nroff, cpio,
and ed. The software developer workload
stresses many aspects of an operating system, in-
cluding the file and VM subsystems. Multiple
concurrent instances of the script can run to
simulate reproducible and increasing amounts of
system load. The S-DET benchmark is carefully

designed to provide a consistent workload across
runs, and to error-check the output of each script
to quickly catch problems.

It became quickly apparent that running S-DET
with a large number of scripts could reproduce the
performance degradation scenario quickly, as il-
lustrated in the following graph, representing per-
formance of consecutive runs of 128 scripts on
Linux 2.2.3.

We observed (using vmstat) that the buffer
cache continues to grow without bounds during
the benchmark runs. Eventually, the buffer cache
causes the system to begin flushing pages unnec-
essarily. This pressure on the VM system results
in, among other things, pages being stolen back
from the buffer cache. Remarkably, the buffer
cache doesn't have any aging or replacement pol-
icy, so any buffer can be stolen, even buffers for
heavily-used data. The system doesn't usually
recover from this condition until it is rebooted.

Other features of this scenario include low CPU
utilization and a large number of blocked proc-
esses. The size of the buffer cache and the size of
the free memory list are continually fluctuating,
suggesting a high flow of pages into and out of the
buffer cache.

After some number of unsuccessful guesses at
what might be the problem, it was noticed that the
rate at which blocks were being read was low
during benchmark runs with good performance,

– 7–

but increased significantly during poorly per-
forming runs. This suggested that the buffer
cache was somehow becoming ineffective over
time. Linux prioritizes read requests over write
requests, assuming that a read request is usually
more time-critical, so the elevated read rate inter-
feres with disk write bandwidth.

LSP staff and Andrea Arcangeli, a European Li-
nux developer working for SuSE, independently
discovered that buffers were being orphaned.
Many buffers were ending up unlinked from the
hash, so that they would not be found during a
subsequent find_buffer request. Each time a
buffer is orphaned, another buffer is allocated for
the same logical block of data, and another read
operation is requested to pull the same data in
from the disk. This also causes the buffer cache to
grow in size as more and more copies of the same
data blocks appear in the cache.

A review of the source that manages buffers (li-
nux/fs/buffer.c) revealed that the bfor-
get function, used by ext2 when files are trun-
cated or deleted, removes buffers from the hash
table, but then abandons them without recycling
them.

In Linux 2.0, refile_buffer was probably
responsible for ensuring that the buffer was prop-
erly added to the free list. However, rewrites of
the VM and buffer cache subsystems in Linux
have since removed that functionality from re-
file_buffer.

A patch was proposed by LSP and Andrea Arcan-
geli, subsequently modified slightly by Linus
Torvalds. The revised bforget ensures that a
buffer's usage count is zero before inserting it into
the free list. In general, a non-zero usage count
prevents try_to_free_buffers from re-
leasing pages containing buffers. If buffers with
non-zero usage counts do appear in the buffer free
lists, they are skipped over by
try_to_free_buffers in favor of buffers
that may still have useful data. Having a large
number of these buffers in the free list can even
cause a severe system-wide memory shortage.

The revised bforget corrects the performance
degradation observed in the buggy version.
Vmstat confirms that CPU utilization is maxi-
mized, few processes are blocked, block read rate
is low, and the buffer cache size expands to a rea-
sonable working set, then remains at a steady size.

The following graph shows that performance is
flat for each consecutive run of the 128-script
benchmark.

The corrected version of bforget is contained
in Linux 2.2.5 and later.

Kernel hash table analysis

Hash tables are a venerable and well-understood
data structure favored for high-performance appli-
cations because of their excellent average search
time. The Linux kernel relies on hash tables to
manage pages, buffers, inodes, and other data ob-
jects. Several hash tables in the Linux kernel are
in performance-critical paths. As hardware size
and offered load increases on servers, proper allo-
cation of resources to kernel hash tables becomes
important to overall system performance and scal-
ability.

For example, on a small machine with 32M of
physical RAM, a page cache hash table with 2048
buckets is probably enough to hold all the pages
that could be hashed, in chains of less than three.
However, this hash table couldn't possibly hold all
the pages on a large machine with, say, 512M of
physical RAM and continue to maintain short
chains to keep lookup times quick. This is an
issue for older Linux kernels because these hash
tables are statically allocated in fixed sizes for all
hardware types.

It is important to understand why hash tables are
used in preference to a more sophisticated data

– 8–

structure, such as a tree. Insertion into and dele-
tion from a hash table is O(1) if the hashed objects
are simply maintained in LIFO order in each
bucket. A tree insertion or deletion is O(log(n)).
Hash table lookup operations are often O(n/m)
(where n is the number of objects in the table and
m is the number of buckets), which is close to
O(1), especially when the hash function has
spread the hashed objects evenly through the hash
table and there are more hash buckets than objects
to be stored. Finally, if we are careful about our
hash table design, we can keep the average lookup
time for both successful and unsuccessful lookups
low — i.e., less than O(log(n)) — by using a large
hash table and a hash function that does a good
job of distributing the hash key.

Hash tables depend on good average behavior to
perform well. This average behavior relies on the
actual input data more often than we like to admit,
especially if simple shift-add hash functions are
used. Therefore, statistical examination of spe-
cific hash functions, in combination with specific
real world data, can reveal surprising behavior,
and can expose opportunities for performance
improvement.

Our analysis focuses on several aspects of kernel
hash table behavior:

• Statistical “goodness” of hash functions.

• Size of hash table relative to the number of
objects it must store.

• Lookup and insertion efficiency.

• Overall system throughput as it changes with
hash table parameters.

• Worst-case behavior, which can expose de-
nial-of-service vulnerabilities.

Our methodology measures standard benchmark
throughput, as well as statistical behavior of the
various hash tables, via instrumentation we added
to the Linux kernel. We used the SPEC S-DET
workload described above to offer fixed load lev-
els to the system as we varied specific parameters
of each hash table. For each table we are inter-
ested in, we recorded hash table histogram infor-
mation to measure the number empty buckets, the
percentage of hashed objects contained in small
buckets, the largest bucket size, and the bucket
size. We are also curious about how hash func-
tion randomness changes as table sizes change.
We want to demonstrate the positive effects of

using dynamic table sizes determined by hardware
characteristics, while keeping the simplicity and
compute-efficiency of existing hash functions.

There are four hash tables we were especially in-
terested in measuring:

• page cache

• buffer cache

• inode cache

• dentry cache

In Linux, the page cache holds data in active use
by processes. The buffer cache holds data moving
to and from disk. The inode cache holds VFS
inodes (file system metadata), and the dentry
cache is a tree representing the file system direc-
tory structure. Our analysis shows that increasing
the size of these tables significantly improves
scalability on large-memory hardware.

We also studied hash function behavior and com-
pare the results of benchmarks where we fix the
size of the hash table but vary the hash function.
Hash function alternatives include:

• Untransformed key.

• Modulus hashing.

• Multiplicative hashing.

• Shift-add hash function.

• Random table-driven hash function.

• Architecture-specific hash functions.

The result of our work is that the page and buffer
caches in the Linux 2.3 kernel are now dynami-
cally sized during system initialization, and the
buffer cache hash function has been significantly
enhanced to improve the distribution of buffers in
the hash table. The inode and dentry caches are
undergoing some evolution in the 2.3 kernel and
have yet to be retrofitted with dynamic hash table
allocation.

Accept scalability

This section explores the effects of a “thundering
herd” problem associated with the Linux imple-
mentation of the POSIX accept system call.
We discuss the nature of the problem and how it
affects the scalability of the Linux kernel. In ad-
dition, we identify candidate solutions and consid-
erations to keep in mind. Finally, we present a

– 9–

solution and benchmark it, giving a description of
the benchmark methodology and the results of the
benchmark.

Offered loads on network servers that use TCP/IP
to communicate with their clients is rapidly in-
creasing. A service may elect to create multiple
threads or processes to wait for increasing num-
bers of concurrent incoming connections. By pre-
creating these multiple threads, a network server
can handle connections and requests at a faster
rate than with a single thread.

In Linux, when multiple threads call accept on
the same TCP socket, they get put on the same
wait queue, waiting for an incoming connection to
wake them up. In the Linux 2.2.9 kernel (and
earlier), when an incoming TCP connection is
accepted, the wake_up_interruptible
function is invoked to awaken waiting threads.
This function walks the wait queue and awakens
everybody. All but one of the threads, however,
will go back to sleep, waiting for the next connec-
tion. This unnecessary awakening is commonly
referred to as a “thundering herd” problem and
creates scalability problems for network server
applications.

In the remainder of this section, we explore the
effects of the thundering herd problem associated
with the accept system call as implemented in
the Linux kernel. We then discuss the nature of
the problem and how it affects the scalability of
network server applications running on Linux.
Finally, we benchmark the solutions and give the
results and description of the benchmark. All
benchmarks and patches are against the Linux
2.2.9 kernel.

Current practice

The socket structure in Linux contains a virtual
operations vector, similar to VFS inodes, that lists
six methods (referred to as callbacks in some ker-
nel comments). These methods are initially
pointed at a set of default functions for generic
sockets. Each socket protocol family (e.g., TCP)
has the option to override these default functions
and point the method to a function specific to the
protocol family. TCP provides only one of these
for TCP sockets. The four most commonly used
socket methods for TCP are:

sk->state_change
 bound to sock_def_wakeup

sk->data_ready
 bound to sock_def_readable
sk->write_space
 bound to tcp_write_space
sk->error_report
 bound to sock_def_error_report

Each of these methods invokes the
wake_up_interruptible function. This
means that extra tasks may be unnecessarily
awakened in other sections of the TCP code dur-
ing the processing of other system calls or proto-
col states. In fact, while processing accept,
three methods — tcp_write_space,
sock_def_readable, and
sock_def_wakeup — are invoked every time,
essentially tripling the thundering herd problem.

Because the most frequently invoked socket
methods use wake_up_interruptible, the
thundering herd problem extends beyond the ac-
cept system call into the rest of the TCP code.
In reality, it is wasteful for most of these methods
to awaken the entire wait queue. Thus, almost any
TCP socket operation unnecessarily awakens tasks
and returns them to sleep. This inefficient prac-
tice robs valuable CPU cycles from server appli-
cations.

Methodology

Our focus is on improving system throughput by
eliminating unnecessary kernel state CPU activity.
Two metrics can be used to evaluate our solution.
The first is the amount of time it takes from the
initiation of the TCP connection until all tasks are
back on the wait queue. The second is a meas-
urement of throughput under a high load macro-
benchmark.

Guidelines

Don't break any existing system calls

If the changes affect the behavior of any other
system calls in an unexpected way, then the solu-
tion is unacceptable.

Preserve “wake everybody” behavior for calls that
rely on it. Some calls — notably select — rely
on the “wake everybody” behavior of
wake_up_interruptible. Without this
behavior, select does not conform to POSIX
specifications.

Make the solution as simple as possible without
adding too much new code in too many places.

– 10–

The more complicated the solution, the more
likely it is to break something, or have bugs. In
addition, we want to keep the changes local to the
TCP code insofar as possible so other parts of the
kernel don't have to worry about tripping over the
changed behavior.

Do not change any familiar/expected interfaces.
Do not add extra arguments to existing function
calls.

Make the solution general so that it can be used by
the entire kernel.

Solutions

One proposed solution to this problem was sug-
gested by the Linux community after the accept
thundering herd problem was brought to their at-
tention. The idea is to add a flag in the kernel's
task structure and change the handling of wait
queues in the __wake_up and
__add_wait_queue_tail functions. First, a
bit in the state variable of the task structure is re-
served for an “exclusive” marking. The accept
system call is then responsible for setting the “ex-
clusive” flag in the task's state variable and calling
add_wait_queue_exclusive to add the
task to the wait queue.

In handling the wait queue, __wake_up walks
the wait queue, waking tasks as it goes until it
runs into its first “exclusive” task. It wakes this
task and then exits, leaving the rest of the queue
waiting. To ensure that all tasks that are not
marked exclusive are awakened,
add_wait_queue is complemented by
add_wait_queue_exclusive, which adds
an exclusive task to the end of the wait queue, past
all non-exclusive waiters, to ensure that all “nor-
mal” tasks are considered first.

The solution developed at CITI stems from the
idea that deciding whether a task should be exclu-
sive should not occur when the task is put on a
wait queue. The process or interrupt that awakens
tasks on the wait queue is better able to determine
if it wants to awaken one task or all of them. With
these considerations in mind, we added new calls
to complement wake_up and
wake_up_interruptible. These new calls
are wake_one and
wake_one_interruptible. They are #de-
fined macros, just like wake_up and
wake_up_interruptible, and take exactly

the same arguments. The only difference is that
an extra flag is sent to __wake_up, indicating
“wake one” as opposed to the default “wake all.”
This way, it's up to the waker whether it wants to
wake one (e.g., to accept a connection) or wake all
(e.g., to tell everyone the socket is closed).

For this “wake one” solution we examined each of
the methods used with TCP sockets and decided
which should call wake_up_interruptible
and which should call
wake_one_interruptible. Where we
elected to use wake_one_interruptible,
and the method was the socket default, we created
a small function just for TCP to be used instead of
the default. We did this so the changes would
affect only the TCP code, and not affect any other
working socket protocols. If at some point later it
is decided that wake_one_interruptible
should be the socket default, then the new TCP
specific methods can be eliminated. Based on our
interpretation of how each socket method is used,
we arrived at the following solution:

sk->state_change
 bound to tcp_wakeup
sk->data_ready
 bound to tcp_data_ready
sk->write_space
 bound to tcp_write_space
sk->error_report
 bound to sock_def_error_report

When the LSP patch is applied, all three of the
methods used in accept call
wake_one_interruptible instead of
wake_up_interruptible.

Benchmarks

We took two different approaches to benchmark-
ing the performance impact of the “wake one” and
“task exclusive” patches. The first is a simple
micro-benchmark that is easy to set up and quick
to run. We ran this to get an idea of the “best
case” performance improvement. To see if the
patch improves performance under high loads, we
also ran a large-scale macro-benchmark on the
patched kernels.

Micro-Benchmark

The micro-benchmark measures the time for wait
queue activity to settle down after a connection is
made. A server generates a large number of
threads and has each of them accept on the same

– 11–

port. A client program creates a socket and con-
nects to the server. We issue a printk from the
kernel every time a task is put on or removed from
the wait queue. After the client “taps” the server,
we examine the output of the printks and iden-
tify the point where the connection was first ac-
knowledged (in terms of wait queue activity) and
when all tasks finally settled back into the wait
queue.

The results are reported as an estimated elapsed
time for the wait queue to settle down after an
accept call. The measurements are not exact, as
we did not take any precautions with regard to
concurrency control in the printks. Each data
point is measured only once as we need only an
estimate of what it looks like.. The server was
running Linux 2.2.9 on a Dell PowerEdge 6300
with four 450 MHz Xeon processors and 512M of
RAM.

Macro-Benchmark

To set up the test harness for this benchmark, we
purchased four machines for use as clients against
the web server. The four machines are equipped
with AMD K6-2's running at 400 MHz and a 100
Mbps Ethernet card. The server is a Dell Power-
Edge 6300 with 4 Pentium II Xeon processors and
a 100Mbps Ethernet card. The clients and the
server are all connected to the server through a
100 Mbps Ethernet switch. All client machines
used in the test harness ran the stock 2.2.9 Linux
kernel. The server runs Red Hat Linux 5.2 with a
stock 2.2.9 kernel as well as our patched 2.2.9
kernel.

We elected to use the Apache web server on the
server host because it's open source and is easily
modified to make this test more useful. Stock
Apache 1.3.6 uses a locking system to prevent
multiple httpd processes from calling accept
on the same port at the same time, which is in-
tended to improve performance and reduce errors
in production web servers. For our purposes, we
want to see how the web-serving machine will
react when multiple httpd processes all call ac-
cept at once. So we modified Apache so that it
doesn't wait to obtain a lock before calling ac-
cept.

To stress test our web server, we used a pre-
release version of SPEC's SpecWeb99 benchmark,
courtesy of Netscape's web server development
team. Because we modified the benchmark's

static-dynamic content ratio specifically to ham-
mer the accept system call and because the
benchmark is pre-release, SPEC rules constrain us
from publishing detailed throughput results.
However, we are able to report statistically sig-
nificant throughput improvements.

Running the benchmark establishes n simultane-
ous connections to the web server from the client
machines. Each connection requests a web page
and then dies while new connections are generated
to take their place. These runs of the benchmark
request static pages as that will allow it to create
more TCP/IP connections per second rather than
consuming excess server cycles by running cgi-
scripts. This helps generate a higher stress on
accept. The Apache web server starts 1000
HTTP daemons and increases the number if it
deems necessary (which it does occasionally due
to lingering connections). All of these daemons
accept on the same port.

Benchmark Results

The following micro-benchmark result shows the
initial state of the thundering herd problem in un-
modified 2.2.9 kernels. The problem is evident:
as the number of threads increases, so does the
time required to process a call to accept.

– 12–

Running the micro-benchmark on a 2.2.9 kernel
with our patch produces the following graph:

The performance improvement is clear: the cost of
processing a call to accept is constant. We also
benchmarked the “task exclusive” approach, and
found similar improvements.

The micro-benchmark results show great promise
in improving Linux performance by addressing
the thundering herd problem in accept. How-
ever, we also elected to examine overall system
performance improvement by running an industry
standard macro-benchmark on the modified ker-
nel.

Macro-Benchmark

The results of the macro-benchmark are similarly
encouraging. Running with a stable load between
100 and 1500 simultaneous connections to the
web server, the number of requests serviced per
second increased dramatically with both the
“wake one” and “task exclusive” patches. While
the performance impact is not as powerful as that
evidenced in the micro-benchmark, a considerable
gain is evident in the testing. Whether the number
of simultaneous connections is at a low level, or
reaching the upper bounds of the test, the per-
formance increase due to either patch remains
steady at just over 50%. There is no discernable
difference between the two patches.

Discussion

We have shown that the thundering herd problem
in accept is indeed a bottleneck in high-load
server performance, and that both the “task exclu-
sive” and “wake one” patches significantly im-
proves the performance of a high-load server. It is
our opinion that the “wake one” patch has two
main advantages over the “task exclusive” ap-
proach.

First, “wake one” does not commit a task to “ex-
clusive” status before it is awakened, obviating
the need to handle special cases to completely
empty the wait-queue. In this regard, the “wake
one” patch can solve any thundering herd prob-
lems locally, while the “task exclusive” method
may require changes in multiple places.

Second, “wake one” is somewhat cleaner and
easier to incorporate into new or existing code.

Read-ahead for mmap and sendfile

To support applications that deliver streaming
media such as audio or video efficiently, an oper-
ating system must be aware of some of the unique
characteristics of streaming data:

• Usually each page of the stream is read once,
so data caching is unnecessary and wasteful.

• Pages are read sequentially from the begin-
ning of the stream to the end, in strict order.

• Streaming data is often larger than a server's
main memory.

• Delivery of the pages in a stream is often
time-critical.

Mail servers, web servers, and networked data-
base servers fall in the class of servers that can be
asked to serve streaming data.

Applications that serve streaming data often use
mmap to access the data to be streamed. On Li-
nux, the mmap implementation reads a cluster of
pages out of any file on 64-kilobyte boundaries,
but does no prediction about which pages might
be accessed next. Linux's read implementation
can read single pages at a time. Speculative read-
ahead helps minimize application latency; we are
engineering mmap to share this advantage.

Our focus is to provide speculative read-ahead
support in two places that can be of great benefit
to network server applications: in mmap, and in

– 13–

the new sendfile system call. It is obvious
from its definition that the sendfile system call
reads data from a file from beginning to end in
order, and thus can benefit from nonspeculative
read-ahead. The mmap system call can be used
both for random data access, and for sequential
access, thus some speculative heuristics must be
used to determine whether to read in small chunks
or use read-ahead to help improve read latency.
Our implementations should not increase the av-
erage latency overhead of mmap page faults, the
penalty of reading ahead when the data is not
used, nor cause significant pollution of the page
cache with pages read ahead too far in advance.

Applications that benefit from read-ahead, such as
database servers or specialized web servers, may
also directly exercise rather precise control over
data caching in the operating system. On some
POSIX-compliant UNIX systems, the madvise
and mincore system calls provide applications
access to information that was formerly exclu-
sively in the domain of operating system caching
algorithms. It is a short jump from teaching mmap
to recognize sequential page faults and invoke a
simple read-ahead mechanism, to providing these
POSIX APIs to applications.

So far, we've been able to implement mmap read-
ahead and madvise in several versions of the
Linux 2.3 kernel. Studying Linux's read-ahead
support and mmap implementation has allowed us
to provide the Linux kernel community with a
cleaner implementation of the generic mmap
logic, and this work appears in revisions of the 2.3
kernel series. Because of recent significant modi-
fications to this area of the kernel to provide sup-
port for large-memory hardware and the new
write-through page cache, we've been passing our
modifications to the Linux community at a rather
determined pace. Future work will include:

• Studying the improvement of web serving
using our modified kernels.

• Studying the behavior of our modified kernels
with artificially created malicious applica-
tions.

• Adding read-ahead and network transmission
scheduling to sendfile.

• Adding mincore support.

Scalable distributed filesystems

A related effort of the LSP is the implementation
of an open source, reference implementation of
the new version of the NFS distributed file sys-
tem, NFSv4. The NFSv4 protocol standard, under
development in the IETF at this writing, holds
great promise for highly scalable file systems.
Notably, NFSv4 provides a mechanism for multi-
ple requests to be issued in the same remote pro-
cedure call, which promises to reduce the latency
of many compound NFS requests. In addition,
NFSv4 includes scalable mechanisms for insuring
consistent access to shared data as well as ad-
vanced security features, based on GSS API
[GSS].

Our implementation effort is still young, but
interoperability testing at an NFSv4 “bake off” in
October, 1999 was very promising. Our NFSv4
reference implementation will be available in “al-
pha” form before the end of 1999; we anticipate a
fully functional, well-tested and -documented ver-
sion in 2000, as the IETF standardization process
moves forward.

Current work

Many of the issues discussed above require further
exploration. In addition, we have identified sev-
eral other challenging problems in Linux. In this
section, we briefly describe some of these issues.

Hybrid poll/interrupt device driver

We're formulating plans to implement a device
driver that intelligently switches back and forth
between interrupt mode and polling for work. We
intend to modify a stock gigabit-Ethernet driver
and create microbenchmarks to measure the im-
provement.

POSIX RT signals

Traditional methods of managing asynchronous
event notification in UNIX, such as select and
non-blocking I/O, are rapidly approaching, or
have passed, their limits of efficiency and useful-
ness in high-performance environments such as
today's network servers. Network server applica-
tion developers, as well as client developers, seek
alternatives to traditional paradigms to address
some of the challenges brought on by having to
support orders of magnitude more clients per
server than ever before.

– 14–

In UNIX-like operating systems, I/O-ready and -
completion events are accomplished via signals.
While traditional UNIX signals don't carry a data
payload, new POSIX real-time (RT) signals do.
This payload can indicate, for example, the iden-
tity of the file descriptor that just completed. This
would obviate an additional poll invocation in
order for an application to discover which file
descriptor is ready for more I/O. An added bene-
fit of RT signals is that they can be queued in the
kernel and delivered to an application in order,
one at a time, leaving an application free to pick
up the events when it is convenient.

Because the POSIX RT API is fairly new, it is
unfamiliar to many application developers. There
is significant apprehension, and even some mis-
understanding, about its capabilities and limita-
tions. We are studying the few existing applica-
tions that have successfully employed the POSIX
RT API and creating a primer or road-map for
mainstream application developers to use as they
discover and begin to use POSIX RT signals. We
are also measuring performance improvement,
and analyzing these new applications to see how
the new architecture compares to other types of
server architectures [HPS].

Socket efficiency

Currently it takes much longer to create sockets
than it does to simply open files. Furthermore, the
memory overhead per socket makes it prohibitive
to manage thousands and thousands of sockets per
server application. We are investigating ways to
make kernel socket management cheaper in terms
of CPU and memory resources so that applications
can open more sockets. This work extends what
we've done on thundering herds and poll.

SMP locking strategy

During the most recent kernel development cycle,
many areas of the kernel have been freed from the
global kernel lock. Consequently, some opera-
tions are no longer safe, resulting in new dead-
locks or incorrect behavior. In addition, perform-
ance is not consistent because of newly introduced
timing dependent behavior. We are investigating
inter-run performance variance as well as to dis-
cover new ways to debug and measure locking
problems in the kernel.

madvise

We're developing a Linux version of the POSIX
madvise system call and plan to compare its
performance and behavior to the same call on
other systems, e.g., Solaris. This will involve
developing test applications and microbenchmarks
to measure application behavior while using
madvise, as well as research into how mad-
vise behaves on other open and closed source
operating systems.

Future work

In addition to our current development activities,
we plan to address a number of critical scalability
issues in the Linux kernel. In this section, we
discuss some of these plans.

Data throughput

Service scalability depends on the ability of net-
work servers to deliver more and more data at
higher and higher rates. Operating system archi-
tecture and implementation can have significant
effects on data bandwidth. To improve a server's
effectiveness, we need to address issues in the
operating system and application that limit the
amount and rate of data flowing from the server's
disk to the network.

On some types of network servers, such as mail
servers, the disk read-write ratio is significantly
skewed towards writes. Metadata updates and
data writes are among the most expensive disk
and file system operations. Careful analysis of
these operations is of great benefit.

Memory bandwidth is also important in this re-
gard. Memory allocation and system memory
management can be optimized to make good use
of hardware memory caches. As well, maintain-
ing I/O data cached in main memory can improve
overall server efficiency.

Network traffic generated by heavily used net-
work servers exhibits unique characteristics not
easily reproduced when analyzing server perform-
ance. Clients are often situated behind high la-
tency network connections, resulting in a high
degree of server packet retransmission. Packet
retransmission creates unnecessary levels of net-
work congestion. Furthermore, servers often
maintain an increasingly large number of concur-
rent connections because most clients are slow to

– 15–

retrieve data, and thus maintain their connection
for a longer time.

Research has suggested ways to improve TCP
congestion management and startup behavior.
The good news is that these changes can be im-
plemented on the server, benefiting server net-
work data throughput without dependencies on
client networking software.

Specific OS issues

Lock contention

Locks are used extensively in server applications,
so the performance of an operating system's lock
primitives is very important. In addition, support
for mutexes that can be shared among processes is
required.

Multi-processor scalability

To provide more processing power to a server
application, we can add more CPUs to a server.
First, we must be sure that the operating system
and the server application can take full advantage
of more than one or two CPUs at a time.

Network servers are generally I/O bound, but in-
creasing the number of CPUs while not directly
increasing the I/O bandwidth of a system may
have other benefits, such as increasing the amount
of CPU available for handling interrupts and proc-
essing network protocols. The very latest versions
of Linux use MP hardware significantly more
efficiently than some earlier versions do. How-
ever, there is still room to improve.

Asynchronous events and thread dispatching

Network servers require an integrated approach to
asynchronous I/O and thread dispatching. Most
modern server architectures make heavy use of
both asynchronous I/O and threads. Asynchro-
nous I/O support helps keep the amount of kernel
resources and number of outstanding read buffers
to a minimum. Having an asynchronous I/O
model that is easy to program and allows reuse of
server software among various OS platforms is a
big win. Most importantly, an OS-provided inte-
grated asynchronous I/O and event-dispatching
facility has been shown by researchers to be criti-
cal to the performance and scalability of Internet
servers.

More flexible and efficient system call inter-
faces

Under some circumstances, enterprise server
products appear to perform better on Windows NT
than on UNIX platforms. Many have conjectured
that NT has better system call interfaces for net-
work servers than UNIX. A way of improving
server performance and scalability is to help the
server application itself make more efficient use
of the operating system and the resources it pro-
vides.

We can do this by adding improved interfaces, or
by making the current interfaces, such as poll,
more efficient. System interfaces should also
support 64-bit files and filesystems, as well as
very large address spaces and more than a few
gigabytes of physical RAM.

Improving memory bandwidth

We plan to implement and measure new versions
of memset and memcpy in the kernel and in the
C run-time library that can approach hardware
memory bandwidth limits. We will also tune
malloc in the kernel and the C run-time library
to help mitigate latencies in underlying system
resource providers, and to help these routines lay-
out memory in a more hardware cache-friendly
way.

Improving TCP bandwidth

Several interesting innovations, such as TCP Ve-
gas [BP], can help boost TCP throughput, and
reduce latency due to lost packets. We will im-
plement and study a new mechanism that connects
recovery processing on one connection to all other
connections between the server and a particular
client. We will also hope to tune and improve
current TCP recovery mechanisms, including
SACK [MMF], duplicate ACK, slow start, and
fast retransmit. Finally, we plan to analyze Li-
nux's current TCP implementation to check its
compliance with TCP standards, e.g., to verify
that its congestion behavior is neighborly.

Continuing to extend and benchmark our test
harness

To measure our improvements accurately and
reproducibly, we will need to extend our test har-
ness to meet the needs of experiments that stress
and benchmark Linux and the various network
server applications.

– 16–

Implementing a caching sendfile

A Linux implementation of sendfile exists,
but there may be room for improvement. For ex-
ample, integrating sendfile with the kernel
network buffers may improve sendfile per-
formance significantly. There may also be op-
portunities to improve sendfile throughput by
adjusting the scheduler to process short jobs first
[CFH].

Discovering Linux scalability limits

Linux may have some unfortunate system limits
that we will need to discover in order to address
them within enterprise server software. Examples
of such limits might be:

• Small process address space size.

• Small kernel address space size.

• Inability to page most kernel data structures.

• Fixed limits on kernel data structure size.

• 32-bit limits on file system interfaces (like
VFS).

This work will attempt to stress various parts of
the Linux kernel to determine where its limits lie.
We will also engage in research and communica-
tion with Linux developers to uncover architected
limits, and find ways to relieve the limits.

High-performance filesystems

In the near future, Linux is expected to have a
journaling file system, as well as support for 64-
bit files. It is important that the underlying file-
system implementations can realistically scale to
provide these features. Some such areas might
include boosting the ability to create many files in
the same directory, providing support for swap-
ping memory-based filesystems, improving the
efficiency of metadata operations and data writes,
and supporting very large filesystems via variable
block sizes (for use with RAID subsystems).

Optimizing PCI performance on multiple buses

This work will require a server configuration with
high memory bandwidth and multiple PCI buses.
We will study the interaction between the operat-
ing system and multiple PCI buses, and try some
improvements based on our analysis. In addition,
we will explore ways of improving the efficiency
of SCSI drivers by increasing the capacity of the
device driver to handle overlapped I/O and RAID.

Linux device driver support for ATM cards

ATM networking can help increase server
throughput over and above FDDI or fast Ethernet
technologies. Therefore, we can explore much
further the edges of server performance with
ATM. It is not clear, though, how well ATM and
other types of high-performance networking are
supported in the Linux kernel.

Improved interrupt handling

This work will combine SMP enhancements with
the addition of a hybrid polling/interrupt-driven
interrupt model to the kernel to allow device driv-
ers to handle batches of interrupts rather than one
interrupt at a time. Such support already exists for
serial devices; we may find that it significantly
improves the performance of disk and high-
bandwidth network devices, too.

Zero-copy networking

Reducing or eliminating data copy operations that
result from processing a network packet can help
improve application data and request bandwidth
[MZA]. Mechanisms for improving networking
efficiency include checksum caching, reducing the
number of data copy operations, and moving data
directly from one driver to another without con-
text switches (using a mechanism such as IO-Lite
[PDZ]). Some of these changes are easy, but
something like IO-Lite would be a significant
undertaking.

Benchmark methodologies

To provide truly useful measurements of perform-
ance and scalability, we endeavor to select
benchmarking systems that academic researchers
and industrial engineers use most often. This
permits comparison and repetition of our work,
increasing its value over time. At the same time,
we recognize that no benchmark is able to meas-
ure all types of performance problems, so we use
other benchmarks as well, usually crafted locally.

There are also cases where we need to examine
directly the effects of certain modifications to
operating system features. For analyzing OS-
specific modifications, McVoy's microbench-
marks and the Byte Linux Benchmarks are very
useful. File system benchmarks, such as Bonnie,
the Modified Andrew Benchmark, and SPEC’s
SDET and KENBUS benchmarks, provide cross-
sections of overall system performance.

– 17–

We are especially interested in application per-
formance, so application-specific benchmarks are
typically used to measure our progress. Webstone
and SPECweb96 appear to be the standard web
server benchmarks. However, S-client and httperf
have features that exercise pathological network
behavior, and are often useful in judging net-
working improvements.

For several reasons, we have a strong bias towards
web-server benchmarks:

• Using freeware web servers and benchmarks
means LSP and others can remain without
nondisclosure agreements while still making
significant contributions.

• Many web server performance issues are
common to other types of network services .

• There are numerous web servers and web
server benchmarks available, as well as a
body of research literature describing the
challenges and pitfalls of measuring web
server performance.

• Hardware.

High-speed networking technologies are an inte-
gral part of our test harness. Currently, switched
fast Ethernet comprises our test harness network.
We are preparing to install gigabit Ethernet, and
hope to experiment with ATM.

We have multiprocessor CPU hardware on hand
to implement and test SMP changes. It may be
advisable to use the more powerful machines to
drive server loads on smaller machines in the test
harness to approach server performance limits
more quickly and repeatably.

Testing and evaluation of large-scale server con-
figurations is beyond the scope of this project.
We can go as far as understanding compatibility
and Linux-specific performance issues with large-
scale and esoteric configurations, but our expertise
is focused on software optimization. We believe
that our operating system optimizations will bene-
fit moderate and large-scale server deployments.
Moreover, as our work progresses, we will be
better positioned later to investigate large-scale
server performance issues.

LSP and the Linux community

As universities and businesses increase their reli-
ance on information technology products and

services, the cost of providing infrastructure serv-
ices also increases, especially as technologies
reach the limit of their scalability. Linux offers
new hope to many service providers because it
provides paradigms that escape the conventional
models of software licensing and technical sup-
port.

Building relationships between academia, indus-
try, and open source communities is a primary
goal of our effort. Yet, our approach is character-
istic of academic researchers: we are “cathedral”
people [ESR], “individual wizards or small bands
of mages working in splendid isolation, with no
beta to be released before its time.” Recognizing
that our academic approach is in many ways at
odds with the “bazaar” style of software develop-
ment prevalent in the Linux community, we are
pressed to reach beyond the technical challenges
and establish a mechanism that influences the
design and implementation of Linux in areas
where our goals dovetail with those of the Linux
core.

LSP nurtures its involvement in the Linux devel-
opment community by serving as a source of good
ideas and by backing up its faith in and respect for
open source with source code, patches, and de-
tailed benchmark results. To best serve the Linux
community, LSP is forced to take certain risks.
For example, when we undertook our analysis of
malloc, we recognized that the results might not
provide LSP opportunities for improvement, as
indeed they did not. Yet, our detailed analysis and
confirmation of a sound implementation have in-
herent value to us as researchers and to the
broader Linux community.

Similarly, LSP was able to contribute to address-
ing the thundering herd issue in accept by
helping to identify the existence and severity of
the problem. Although a patch was suggested and
integrated by the Linux core almost immediately,
we continued to study the problem. Our analysis
serves as a means of documenting the issue for
current developers and educating future develop-
ers. Furthermore, the LSP-suggested patch has
architectural features not present in the patch that
was adopted, and we continue to press (lightly) to
see our solution embraced by others.

In other instances, LSP has succeeded in inte-
grating improvements into the formal Linux dis-
tribution channel by applying focused efforts that
address specific performance and scalability

– 18–

problems. LSP also serves as a focal point for
industry's and academia's mutual agendas by
forming a coalition of interested parties that bene-
fit from the leverage gained by our open source
policy. Still young, LSP has established and con-
tinues to grow a strong reputation for its funda-
mental contributions to Linux.

Acknowledgements

We gratefully acknowledge input and contribu-
tions from many members of the Linux developer
community, especially Andrea Arcangeli, Linus
Torvalds, and Stephen C. Tweedie. We thank
Charles Antonelli and Gary Tyson for providing
access to hardware.

This work was partially supported by the Sun-
Netscape Alliance, Intel, and Sun Microsystems.

References

[BDM] G. Banga, P. Drushel, J.C. Mogul,
“Better operating system features for
faster network servers,” in Proc.
SIGMETRICS Workshop on Internet
Server Performance (June 1998).

[BM] G. Banga, J. C. Mogul, “Scalable ker-
nel performance for Internet servers
under realistic load,” in Proc. of
USENIX Annual Technical Conference,
New Orleans (June 1998).

[BP] L.S. Brakmo, L.L. Peterson, “TCP Ve-
gas: End to End Congestion Avoidance
on a Global Internet,” IEEE Journal on
Selected Areas in Communication 13(8)
(October 1995).

[CFH] M. Crovella, R. Frangioso, M. Harchol-
Balter, “Connection Scheduling in Web
Servers,” in Proc. USENIX Conference
on Internet Technologies (October
1999)

[DL] D. Lea, “A Memory Allocator,”
unix/mail, December 1996. See also
http://g.oswego.edu/dl/htm
l/malloc.html.

[ESR] E.S. Raymond, The Cathedral & the
Bazaar, O’Reilly & Assoc. (October
1999).

[HB] P. Honeyman and S. Bellovin,
“PATHALIAS or The Care and Feeding

of Relative Addresses,” in Proc. Sum-
mer USENIX Conf., Atlanta (June 1986).

[HPS] J.C. Hu, I. Pyarali, D.C. Schmidt,
“Measuring the Impact of Event Dis-
patching and Concurrency Models on
Web Server Performance Over High-
Speed Networks,” in Proc. 2nd IEEE
Global Internet Conference (November
1997).

[MMF] M. Mathis, J. Mahdavi, S. Floyd, A.
Romanow, “TCP Selective Acknowl-
edgment Options,” RFC 2018 (October
1996).

[MZA] B.J. Murphy, S Zeadally, C.J. Adams,
“An Analysis of Process and Memory
Models to Support High-Speed Net-
working in a UNIX Environment,” in
Proc. USENIX Technical Conference
(January 1996).

[PDZ] V.S. Pai, P. Druschel, W. Zwaenepoel,
“IO-Lite: A Unified I/O Buffering and
Caching System,” in Proc. 3rd Sympo-
sium on Operating Systems Design and
Implementation (February 1999).

[SDM] Standard Performance Evaluation Cor-
poration, System Development Multi-
task Benchmark,
http://www.spec.org/osg/sd
m91, (1991).

[WG] W. Gloger, “Dynamic memory alloca-
tor implementations in Linux system li-
braries,”
http://www.dent.med.uni-
muenchen.de/~wmglo/malloc-
slides.html.

