
Symmetric and Asymmetric Authentication:
A Study of Symmetric and Complementary Properties and

Their Effect on Interoperability and Scalability
in Distributed Systems

Olga Kornievskaia
aglo@umich.edu

A thesis proposal submitted in partial fulfillment
of the requirements for the degree of Doctor of Philosophy

(Computer Science & Engineering)
at the University of Michigan

June, 2002

Advisor:
Peter Honeyman

Committee Members:
Brian Noble
Atul Prakash
Paul Resnick
Carl Ellison

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Thesis Statement . 8

2 Background 9
2.1 Authentication: Protocols and Systems 9

2.1.1 Terminology and Notations 10
2.1.2 Symmetric Key Authentication 11
2.1.3 Asymmetric Key Authentication 11

2.2 Basis of Authentication . 14
2.3 Related Work . 14

2.3.1 Formalizing Authentication 14
2.3.2 Semantics of Authentication 15
2.3.3 Design Principles . 16
2.3.4 Attacks on Authentication Protocols 16
2.3.5 Timeliness . 16
2.3.6 Naming . 16

3 Symmetric and Asymmetric Authentication 17
3.1 Semantics of Authentication . 17
3.2 Dimensions of Comparison . 17

3.2.1 Naming: Identity Binding and Verification 17
3.2.2 Time: Lifetime and Freshness 18
3.2.3 Network Availability . 19
3.2.4 Granularity of Access . 19
3.2.5 Discussion . 19

3.3 Future Work . 21

4 Kerberized Public Key Infrastructure 23
4.1 Introduction . 23
4.2 Related Work . 24

4.2.1 Certificate Revocation . 25
4.2.2 Single Signon Systems . 26

4.3 Design . 28

3

4 CONTENTS

4.3.1 Design Criteria . 28
4.3.2 Protocol Description . 29
4.3.3 Security Analysis . 29

4.4 Implementation . 30
4.5 Future Work . 31

4.5.1 Performance . 32
4.5.2 Naming . 33
4.5.3 Attribute Certificates . 34
4.5.4 Key Management Service 35

5 Kerberized Credential Translation 37
5.1 Introduction . 37
5.2 Related Work . 39

5.2.1 Performance Studies . 40
5.3 Design . 41

5.3.1 Design Criteria . 42
5.3.2 Web Server . 43
5.3.3 Kerberized Credential Translator 45
5.3.4 Security Analysis . 46

5.4 Application: WebAFS . 47
5.5 Performance . 49
5.6 Future Work . 51

5.6.1 Security Policy Issues . 51
5.6.2 Extending Credential Translation 52
5.6.3 Performance . 53

6 Practical Distributed Authorization 55
6.1 Introduction . 55
6.2 Overview of GARA Architecture 56
6.3 Related Work . 58
6.4 Design . 58

6.4.1 GARA Web Interface . 58
6.4.2 Distributed Authorization Design 59

6.5 Implementation . 61
6.6 Future Work . 65

6.6.1 Implementation Issues . 65
6.6.2 Policy Management . 65
6.6.3 Controlled Delegation . 65
6.6.4 Namespace Management 66

7 Research Plan 67

Chapter 1

Introduction

1.1 Motivation

“There ain’t no such thing as a free lunch”
– Robert Heinlein

Authentication and authorization, the essential mechanisms for securing ac-
cess to resources, have been studied for years and many solutions have been pro-
posed, implemented, and widely used. While developing highly distributed au-
thentication protocols and authorization mechanisms, questions regarding user
autonomy, the growing size of systems, assumptions about authority and trust,
and accomodating unreliable networks have been considered. The uncoordi-
nated and unconstrained complexity as well as the spectrum of requirements of
distributed systems has led to the development of vast variety authentication
and authorization mechanisms: local login (OS-specific (e.g., UNIX), distributed
authentication (e.g., Kerberos)), secure remote login (SSH, Telnet, VPN), se-
cure data transfer (scp, https, kftp), secure email protocols (IMAP, POP, PGP,

S/MIME), secure file systems (AFS, NFS), secure directories (LDAP) to name a
few.

Interoperability and integration of individual, but potentially similar, com-
ponents of a distributed system is important because (i) it reduces and hides
complexity from the user, and (ii) it introduces a scalable form of reusability.
Applications, protected by the same distributed authentication protocol, are
often well integrated. For example, as a part of initial login, users get access
to a variety of Kerberos protected service: AFS file servers, IMAP or KPOP

email servers, PTS servers, LDAP directory servers; this single signon feature
is vital to building scalable and secure systems. However, many applications –
other password-based or public key base authentication services – are not well
integrated. For example, mutual authentication on the Web employs different
authentication methods: SSL for server authentication and Kerberos passwords
for user authentication. As the result, a user must deal with multiple credentials
and becomes painfully aware of the system’s complexity.

5

6 CHAPTER 1. INTRODUCTION

We outline the problems with the current, non-integrated approach.

• Credential management is hard.
• Users and security administrators have to manage multiple accounts

for each user. For example, a student at the University of Michigan
can easily have five different accounts: (i) a general university account
(umich), (ii) a particular school account (engin), (iii) a departmental
account (eecs), (iv) a specific lab account (citi), and (v) an account
on a specialized machine (e.g., with multimedia or parallel processing
resources).
• Multiple places store credentials: (i) Kerberos ticket cache, (ii) pro-

tected file system stores private keys for SSH and PGP, and (iii) Web
browser’s certificate cache stores SSL and S/MIME certificates.
• Users deal with multiple public/private key pairs: (i) email keys

(PGP), (ii) Web certificates (SSL), (iii) keys for secure remote login
(SSH).
• To provide user mobility and easy access to public key credentials,

a distributed file system or secure hardware (e.g., a smart card that
stores both public and private keys) is needed.

• No user certificates and no PKI present the following problems.
• Multiple, non interoperable authentication mechanisms on the Web.
• Protocols that require end entity certificates prove difficult to deploy

(e.g., IPSec).
• Proxying is an emerging solution to the complex infrastructure and the

result of developing and changing face of a distributed system.
• Architecture shifts. A shift from the client-server model to client-

proxy-server(s) introduces new challenges. Client requests are be-
coming more complex and require contact with multiple servers. A
proxy in front of multiple servers establishes a combined front. It
removes and hides complexity from the client. Lastly, a proxy is a
solution that integrates legacy applications – the ones that cannot be
modified to better fit the situation – into the ever-changing system.

Furthermore, we distinguish a shift from a simple proxy architecture
to client-server-server(s)...server(s) architecture that involves a chain
of servers, each of which can itself be a root of a subtree. A job in the
Grid environment serves as an example of such complex interaction.
• Proxied authentication. Web access to backend services such as

file servers, mail servers, and directories awoke considerable interest.
In this case, a Web server serves as a proxy server between the client
and the backend service. Backend services have predefined authenti-
cation protocols (e.g., Kerberos) that, in practice, are incompatible
with the client-server authentication protocol used by the proxy (e.g.,
SSL with certificates). The challenge then is to resolve the mismatch
in authentication.
• Authorization. Proxied authorization complicates access control

because applications often use ACL-based authorization mechanisms

1.1. MOTIVATION 7

and rarely support delegation. The two common ways of dealing with
the problem is to either modify the existing authorization mechanism
to handle delegated credentials (capabilities) or transfer identity cre-
dentials to the proxy and empowering it to act as the user.

We briefly outline some questions and concerns that arise from integration of
security mechanisms. Each one has a solution within a given system but in an
integrated environment it might require a different approach.
• Namespace. Each authentication mechanism is tied to a namespace

convention for users and resources. In an integrated environment with
multiple authentication systems and corresponding namespaces, the in-
tegration of namespaces presents a challenge. For example, to integrate
just two namespace, should a single, combined namespace be created or
should a mapping between the namespaces is created? First approach has
scalability issues and second might not be possible to achieve.
• Access control. For a complex (proxied) environment described above,

the control of server’s actions is important. In an integrated system, for
each available system resource access control policies have to be enforced;
whether or not policies have to change due to integration of other compo-
nents. Authorization is tightly connected with the namespace issue and
authentication credentials. In an integrated system where both autho-
rization credentials and identify certificates are used, access control would
require some sort of modification because the namespace of those systems
cannot be merged.
• Delegation. For a given authentication protocol, delegation of identity

credentials is a debated topic. How can we delegate across authentication
protocols?
• Transparency vs. control. How much should a client be involved? If

a client desires to maintain control of his actions, e.g., specifying a cus-
tomized security policy, allowing or disallowing delegation of credentials,
transparency has to be sacrified. The issue of control boils down to trust.
If all services are (some what) trusted, then does the client still need to
specify a security policy stating who is allowed to do what?
• Security policy. In an integrated environment, in addition to identifying,

specifying, and enforcing a security policy for a service, security policies of
the other services have to be accounted for. Furthermore, user-specified
security policy has to account for inability to know all the services for
any given request and must prevent the user from specifying a policy that
would compromise the system.
• Cost of integration. How much modification to already existing software

is allowed or needed? Would the administration of the integrated services
be harder, more complex, overall leading to a less secure system and how
can it be assessed? Would integration of the system lead to getting the
worst of each component? Integration could lead to either a simplified
solution or, if things go bad, to a more complex one.

8 CHAPTER 1. INTRODUCTION

1.2 Thesis Statement

The goal of this thesis is to identify structural symmetries in symmetric and
asymmetric authentication and show that interoperability between such sys-
tems is sound. We design, implement, and analyze the interoperability tools
leveraging off the similarities in properties such as time, network availability,
and granularity of access.

The rest of the thesis is organized as follows. In Chapter 2 we discuss the
background of authentication. In Chapter 3 we compare symmetric and asym-
metric authentication, develop taxonomy of authentication, and finally discuss
an interoperability framework based on the exposed symmetry. The following
chapters concentrate on specific interoperability tools. In Chapter 4 we intro-
duce a new public key infrastructure that is built on a basis of symmetric key
infrastructure. In Chapter 5 we introduce a mechanism for using public key
credentials to get Kerberos credentials in a proxied environment. In Chapter
6 we present an application of the Kerberized Public Key Infrastructure and
the Kerberized Credential Translation in the context of securing a reservation
request in the Grid environment.

Chapter 2

Background

This section is devoted to the discussion of previous work on authentication,
including an overview of basic concepts and a survey of related work.

2.1 Authentication: Protocols and Systems

In this section, we present background on authentication in distributed systems.
We start by providing a definition of an authentication protocol. We outline
the objectives and common properties of authentication protocols. We also give
a definition of an authentication system. Section 2.1.2 provides an overview of
a symmetric key authentication system. Section 2.1.3 gives an overview of an
asymmetric key authentication system.

An authentication protocol allows one or more participants to verify (i) the
identity of the other parties on the basis of at least one of the following: some-
thing known (e.g., a shared key), something possessed (e.g., smartcard), or
something inherent (e.g., biometrics) and (ii) the active presence of the other
during the process. The verification process should not allow the verifier to
reuse an authentication exchange with the goal of impersonating the entity. At
the same time, the process must provide the verifier with enough confidence
that an attacker is not trying to impersonate a legitimate entity. Different au-
thentication protocols might be categorized based on the following properties:
type of cryptography (symmetric vs. asymmetric), reciprocity of authentica-
tion (mutual vs. one-way), key exchange, computational and communication
efficiency, real-time involvement of a third party (on-line vs. off-line), nature of
trust required from a third party, nature of security guarantees, and storage of
secrets.

Authentication system is defined by (i) an authentication protocol, (ii) nam-
ing, (iii) security policy, and (iv) model.

A model refers to the architectural type that ties the system components
together. Two architectural models – centralized and distributed – have been
previously identified and currently widely used in existing systems. In a cen-

9

10 CHAPTER 2. BACKGROUND

tralized model, a single (possibly replicated) server is responsible for providing
certain services to predefined set of of principals. A principal is either a user or
a resource. The server is responsible for naming the principals. The authenti-
cation protocol used defines the level of trust given to the server ranging from
fully trusted server in the symmetric authentication protocol to partially trusted
server in the asymmetric authentication protocol. In a distributed model, the
space of participants is broken down into groups or domains. Each of the com-
ponents defines an internal architecture that could be centralized in the simplest
case or distributed. All the low-level components are then arranged in some way
and relationships among componentsare described. There are three most com-
monly used distributed architectures: hierarchical, peer-to-peer (mesh), and a
hybrid of both. While a hierarchical model requires a single trusted root and the
complexity of establishing relationships in the peer-to-peer model is O(N2), a
hybrid model combines the two model and tries to inherit the better character-
istics of each one: the scalability of the hierarchical approach and the flexibility
of the peer-to-peer model.

2.1.1 Terminology and Notations

This section describes the basic terminology, used in the literature and through-
out the thesis.
Encryption (decryption) is a function, E (D), that takes as an input a key,
Ke (Kd), and a message, M. The output of the encryption operation is called a
cipher text, C = E(Ke, M). The output of the decryption function is such that
M = D(Kd, E(Ke, M)).

Symmetric key encryption, also referred to as conventional or classical en-
cryption in the literature, is an encryption algorithm such that Ke = Kd and
written as K.

Asymmetric key encryption, also referred to as a public key encryption, is
an encryption algorithm where Ke 6= Kd. The relationship between the keys
is such that M = D(Kd, E(Ke, M)) = E(Kd, D(Ke, M)). To emphasize the
inverse relationship between the keys, Ke and Kd are written as K and K−1.

{M}K represents a message, M, encrypted under a key, K.

Trusted Third Party (T3P) is an entity involved in establishing a secure
channel between two participants. The nature of its involvement depends on
the type of cryptography used.

Authentication Server (AS) also referred to as a key distribution server
(KDC), is a trusted third party involved in a symmetric key authentication
protocol.

Certificate Authority (CA) is a trusted third party involved in a public key
authentication protocol.

2.1. AUTHENTICATION: PROTOCOLS AND SYSTEMS 11

2.1.2 Symmetric Key Authentication

In this section, we focus on authentication protocols that verify identity based
on a secret key shared between the participants. While many symmetric key
authentication protocols exist, we present the Needham and Schroeder proto-
col [91] because it serves as a foundation for the rest of the authentication
protocols, such as Kerberos [94, 117], the most commonly used symmetric key
authentication system. We choose Kerberos as a representative of symmetric
key authentication systems and describe its terminology and protocol.
Assumptions, Notations, and Objectives:
• Participants: Alice, (A), Bob, (B), and Authentication Server, (AS).
• Alice and AS share a secret, Ka.
• Bob and AS share a secret, Kb.
• Alice and Bob have no shared secrets.
• Bob wants to authenticate Alice. For simplicity, we consider one-way

authentication. Mutual authentication can be easily achieved with an
extra round of messages between Alice and Bob.

Needham and Schroeder protocol (with Denning and Sacco’s [26] correc-
tion):

1. A→AS: A, B, Na

2. AS→A: {T, Na, B, Kab, {T, Kab, A}Kb}Ka
3. A→B: {T, Kab, A}Kb

Kerberos, developed at the Massachusetts Institute of Technology, is a network
authentication system, and it is illustrated in Figure 2.1. Authentication is
achieved when one party proves to another knowledge of a shared secret. To
avoid quadratic explosion of key agreement requirements, Kerberos relies on a
trusted third party, referred to as a Key Distribution Center (KDC). Alice, a
Kerberos principal, and Bob, a Kerberized service, each establish a shared secret
with the KDC.

At login, Alice receives a Ticket Granting Ticket (TGT) from the KDC.
She uses her password to retrieve a session key encrypted in the reply. The
TGT allows Alice to obtain tickets from a Ticket Granting Service (TGS) for
other Kerberized services thus providing a single signon mechanism for such
services. To access a Kerberized service, Alice presents her TGT and receives a
service ticket, {Alice, Bob, KA,B}KB . To authenticate to Bob, Alice constructs
a timestamp-based authenticator, {T}KA,B , proving to Bob that she knows the
session key inside of the service ticket. If mutual authentication is desired, Bob
would reply back with an authenticator encrypted under the session key, in turn
proving to Alice Bob’s identity.

2.1.3 Asymmetric Key Authentication

This section looks at asymmetric, public key, based authentication protocols.
As in the previous section, to show the foundation of the asymmetric authen-
tication, we start by describing the Needham and Schroeder protocol, but this
time, we outline the public key version of it. Then, we present a widely used

12 CHAPTER 2. BACKGROUND

Login phase: once per session

1. Alice → KDC: “Hi, I’m Alice”
2. KDC → Alice: TGT = {Alice, TGS, KA,TGS}KTGS , {KA,TGS , T}KA
Accessing services: every time before accessing a service

3. Alice → TGS: Alice, Bob, TGT, {T}KA,TGS
4. TGS → Alice: TKT = {Alice, Bob, KA,B}KB , {KA,B , T}KA,TGS
5. Alice → Bob: “Hi, I’m Alice”, TKT, {T}KA,B

Figure 2.1: Kerberos authentication. Two phases are shown: initial authenti-
cation and service ticket acquisition. KDC is the Kerberos Key Distribution Center.
TGS is the Ticket Granting Service. Most implementations combine these services.
KTGS is a key shared between the TGS and KDC. KA is a key shared between Alice
and the KDC, derived from Alice’s password. KA,TGS is a session key for Alice and
TGS. KA,B is a session key for Alice and Bob. T is a timestamp used to prevent replay
attacks.

security mechanism called a Secure Socket Layer, SSL 1 [43, 44], that establishes
a secure channel using authenticated key exchange mechanisms. While the pro-
tocol supports different public key authentication mechanisms, we focus on the
certificate-based authentication mechanism and use it as a representative of the
asymmetric key authentication protocols.
Assumptions and Notations:
• Participants: Alice, (A), Bob, (B), and Certification Authority, (CA).
• Alice and Bob have each other’s public keys.

Needham and Schroeder protocol (with Lowe’s [71] correction):
1. A→B: {Na}Kb
2. B→A: {B, Nb, Na}Ka
3. A→B: {Na}Kb

Secure Socket Layer is a protocol that provides secure network connections,
addressing the need for entity authentication, confidentiality, and integrity of
messages in the Internet. SSL uses public key cryptography, in particular cer-
tificates, to accomplish authentication and secret key cryptography to provide
confidentiality and integrity of the communication channel. What makes this
protocol extremely attractive is that support for SSL is universal among Web
browsers and servers.

1SSL is renamed by IETF as Transport Layer Security, TLS [27]

2.1. AUTHENTICATION: PROTOCOLS AND SYSTEMS 13

Figure 2.2: SSL handshake protocol. The SSL protocol consists of a set of mes-
sages and rules about when to send each one. The client initiates a communication
and proposes a set of SSL options to use for the exchange. The final decision lies
with the server, who selects from the proposed options. To improve performance some
messages are sent together, e.g., 2-5. The protocol happens in two stages. The initial
negotiation and selection of security context for the session ends with ServerHel-

loDone. The Finished messages signify the end of the negotiation and is subject to
the negotiated cipher suite; messages are encrypted and authenticated according to
that suite.

SSL consists of two sub-protocols: the SSL record protocol and the SSL hand-
shake protocol. The SSL record protocol defines the format used to transmit
data. The SSL handshake protocol uses the record protocol to negotiate a
security context for a session. SSL supports numerous encryption and digest
mechanisms that the client and the server negotiate during the SSL handshake.
Figure 2.2 shows the exchange of messages in the handshake. Authentication
in SSL is based on a public key challenge-response protocol [28, 102] and X.509

[39] identity certificates. Certificates were introduced by Kohnfelder [65] as a
practical way of securely distributing public keys.

1. A→B: Na

2. B→A: Nb, {T, B, Kb}K−1
ca

3. A→B: {MACK(1,2)}K−1
a

, {T, A, Ka}K−1
ca

, {K}Kb ,

SSL supports mutual authentication. First, a user authenticates the server.
The user has the responsibility to assure that he can trust the certificate received
in the Certificate message from the server, the same applies to the server
during the client authentication step. That responsibility includes verifying the
certificate signatures, validity times, and revocation status. The user then sends
his public key certificate and the proof – a digitally signed cryptographic hash
of information available to patries – that he possesses the corresponding private
key.

14 CHAPTER 2. BACKGROUND

2.2 Basis of Authentication

In this section, we explore identification in more detail. One of the objectives of
authentication is to identify the entity through one of the following: something
known (e.g., a cryptographic key), something possessed (e.g., a smartcard), or
something inherent (e.g., biometrics). We focus on the first type of authentica-
tion.

Ways to represent a user range from a human readable name to a cryp-
tographic key. While at the protocol level identification is always key-based,
the system we call identity-based system represents identities in a more human-
readable form such as a name. Authentication and authorization in such systems
are based on the entity’s name. Alternatively, in a key-based system, a crypto-
graphic key itself is used to represent the entity, thus requiring an authorization
scheme to be based on a cryptographic key also. A mapping between the cryp-
tographic key and the name might still exist, but it would hold a different
meaning.

2.3 Related Work

In this section, we discuss the related work in the area of authentication. Au-
thentication is hard problem. Many protocols have been published and at a
later time weaknesses and flaws were discovered in them, leading the research
community to establish better guidelines for protocol designs and also turning
to formal reasoning and protocol analysis.

2.3.1 Formalizing Authentication

Meadows [80] identifies four major categories of protocol verification method-
ologies: (i) use of specification and verification tools, (ii) use of tools based
on experts systems to simulate different scenarios, (iii) model the protocol re-
quirements using logic, and (iv) use algebraic term-rewriting properties of cryp-
tographic protocols to model protocols. Many publications [61, 81, 105, 137]
survey the research literature on each of the methodologies.

1. Specification and Verification Method. Authentication protocols and
cryptographic protocols in general have been analyzed by using specifica-
tion languages and verifications tools. This approach aims at proving the
correctness of a cryptographic protocol by treating it like any other pro-
gram. One technique, suggested in [110, 132], is to represent a protocol as
a directed graph. Another technique [61] uses machine-aided verification
techniques to generate a proof that verifies the protocol expressed by state
invariants. Overall, the drawback in this type of analysis is that it proves
correctness but says nothing about security.

2. Using Experts Systems. Experts systems have been used to develop
and investigate different scenarios [70, 84]. This approach creates a model
of the authentication system described in terms of state and analyzes if

2.3. RELATED WORK 15

starting from an initial state, any of the undesirable states can be reached.
While this approach is shown effective to find given flaws in the specified
protocol, it cannot detect flaws of unknown types.

3. Logics of Authentication. The most popular approach to analyze
authentication protocols is through the use of logic. Formal logic en-
ables protocol designers to reason about authentication process by de-
scribing how participants’ beliefs or knowledge changes during the exe-
cution process. The first such logic is due to Burrows et al. [15, 16],
frequently called BAN logic. It uses predicate logic to analyze authen-
tication protocols. BAN logic has been extended in variety of ways by
[5, 46, 49, 59, 75, 113, 114, 120, 122]. The major criticism of the BAN

logic can be found in [75, 92, 113, 120]. Nessett [92] showed a weakness in
the logic by using it to prove correctness of a flawed protocol. Similarly,
Mao et al. [75] have shown that BAN logic proved Otway-Rees protocol
[95] to be correct while in reality it is flawed. Gaarder and Snekkenes [46]
extended the BAN logic to deal with public key crypto systems.
To evaluate a logic, it is necessary to study the its semantics and show its
soundness and completeness as its been done in [5, 121]. However, many
logics are either known to be incomplete or no proof has been provided on
the completeness of the logic. Thus, it is not known if a particular logic is
complete or not. Without the completeness property no formal proof of
correctness can be done.
Logics struggle with the subtle properties of protocols and formalization
of the protocol requirements.

4. Algebraic Modeling. Another approach, pioneered by Dolev and Yao
[33] and later studied by varies researches [82, 77, 78, 79, 80, 125, 135],
analyzes authentication protocols through formal models that are based
on the algebraic term-rewriting properties. Experts systems approach
is very similar to the algebraic modeling. The difference is that, while
formal modeling based on experts systems starts with an insecure state
and attempts to show that no path could have originated from the initial
state, the algebraic modeling tries to show that an insecure state cannot
be reached.

Some methodologies are good for pointing out flaws in the protocols and
some deal with formally proving either correctness of the protocol or that it
meets protocol specification. However, none of the methodologies can prove
that an arbitrary authentication protocol is secure. Meadows notes in [81] that
“it is unlikely that any formal method will be able to model all aspects of a
cryptographic protocol, and thus it is unlikely that any formal method will be
able to detect or prevent all types of protocol flaws.”

2.3.2 Semantics of Authentication

The meaning of authentication process has been explored in [3, 5, 48, 50, 73,
121, 135].

16 CHAPTER 2. BACKGROUND

2.3.3 Design Principles

By drawing on years of experience of building security protocols, several re-
searchers proposed an alternative approach to the formal analysis of authenti-
cation protocols and outlined design principles for building them [4, 7, 124, 134,
136].

Syverson [124] describes limitations of the principles proposed by Abadi and
Needham [4]. He shows that every rule always has an exception.

2.3.4 Attacks on Authentication Protocols

There is an extensive body of literature on attacking authentication protocols
[4, 7, 16, 19, 29, 56, 72, 123] starting from an attack on Needham and Schroeder
protocol by Lowe [71] targeting asymmetric key protocol and Dennings and
Sacco [26] attacking the symmetric key version.

2.3.5 Timeliness

Time plays a major role in authentication protocols. An authentication pro-
tocol is required to guarantee that the parties involved in the authentication
process are present during the execution of the protocol. Timestamps, sequence
numbers, and other types of nonces are generally used to assess freshness of
messages. BAN logic [15] as well as other logics [119] has a special construct to
reason about freshness.

As a solution to the attack on the Needham-Schroeder protocol, Denning
and Sacco [26] suggest to use timestamps. The version of the protocol with
timestamps is later adapted by Kerberos, creating a requirement for loosely
synchronized clocks. However, Davis [22, 23] relaxes the requirement for syn-
chronized clocks by slightly modifying the protocol.

In their design principles for authentication protocols, Abadi and Needham
[4] talk about timeliness and note that many protocols have failed because of
incorrect assumptions about the use nonces. Denning and Sacco [26] demon-
strated a flaw in the Needham and Schroeder protocol caused by the lack of
time constraints that allowed for an old session key to be reused after being
compromised.

2.3.6 Naming

As the binding between a session key and time is important, Abadi and Needham
[4] note that binding the identity to the message is also crucial, as demonstrated
by several different attacks [71, 4].

Naming is one of the components of authentication systems. Naming prin-
cipals in a scalable and secure manner has been attempted by many researchers
[2, 11, 18, 35, 53, 68, 126, 39]. The designs range from global namespaces (X.500

global namespace) to decentralized local namespaces (SDSI/SPKI local names-
paces).

Chapter 3

Symmetric and Asymmetric
Authentication

Over two decades ago, Needham and Schroeder noted “that protocols using
public-key cryptosystems and using conventional encryption algorithms are strik-
ingly similar” [91]. The goal of this chapter is to outline the similarities between
establishing identity through symmetric and asymmetric protocols and use it to
build an interoperability framework.

3.1 Semantics of Authentication

In this section, we discuss the semantics of authentication. The meaning of
authentication does not depend on the cryptography used to achieve it. In both
cases, symmetric key and asymmetric key protocols have the same objectives.
However, to formally reason about the two types of authentications we require
slightly different aspects of formal logics. Also, at the end of an authentica-
tion process, the beliefs and knowledge of the participants in symmetric and
asymmetric authentication differ.

3.2 Dimensions of Comparison

In this section, we present taxonomy of authentication protocols and identify
symmetric and complementary properties of symmetric and asymmetric identi-
fication.

3.2.1 Naming: Identity Binding and Verification

A credential, C, binds a name, A, to the key, K, and a lifetime, T, and can be
represented as a triple, C = {A, K, T}. From then on, whoever can prove the
knowledge of the key (or the corresponding inverse) is assumed to correspond

17

18 CHAPTER 3. SYMMETRIC AND ASYMMETRIC AUTHENTICATION

Symmetric Asymmetric
Credential {T, A, K}K′ {T, A, Ka}K−1

ca

Proof {T}K {T}Ka

Table 3.1: Representation of authentication credentials. Symmetric and
asymmetric credentials are cryptographic bindings of an identity to a key. A
credential without the corresponding proof is useless.

to the name stated inside of the credential. Table 3.1 demonstrates structural
similarities between credentials.

In the triple, the identifier can either be the name, A, or the key, K. If the
key is used as an identifier, then it automatically provides a global namespace,
assuming cryptographic keys are unique. In asymmetric authentication, a chal-
lenge for the public key is presented; upon success, a binding between the key
and the name is considered. Given a public key, a name is looked up.

In identity-based systems, names serve as identifiers. In general, names lack
uniqueness and, thus, require additional mechanisms – a naming convention –
to establish this property. In symmetric authentication, given a name, a key is
looked up. However, as in asymmetric authentication, a session key is verified
first, then the name included inside the credential is retrieved.

Semantics of binding are the same. We consider authentication between
distrusting parties that, first, are not assumed to prior known each other’s
identities, and second, require a trusted third party to provide identity proof.
Thus, in symmetric and asymmetric authentication alike, credentials have to be
vouched by an outsider.

Semantics of verification are the same. A credential can be verified by any
entity that possesses the key (or the corresponding inverse key, in the asym-
metric case) used to encrypt the credential. However, an asymmetric key-based
credential is verifiable by anybody who has and trust the public key that signed
the credential; a symmetric key-based credential is verifiable by a single entity.

3.2.2 Time: Lifetime and Freshness

Regardless of the cryptographic type, a credential has a validity period, or
lifetime, associated with it. While short-lived credentials have to be periodically
refreshed, long-lived credentials have to be checked whether or not they are still
valid or have been revoked. This shows how the dimension of time is connected
to network availability that is discussed later.

In the password-based (symmetric) authentication systems, while a password
has a comparatively long lifetime, traditionally, each instance of an authenti-
cation protocol generates and uses short-lived credentials after verifying user’s
password in order to reduce the exposure of the long-lived key generated from
the password. When a trusted third party generates a credential for the en-
tity, it associates a short lifetime with the credential. Since credentials have

3.2. DIMENSIONS OF COMPARISON 19

a relatively short lifetime the risk of compromise is small and thus credential
revocation is not considered to be a problem.

In the public key (asymmetric) authentication systems, traditionally, the
entity’s credentials have long lifetimes and, thus, revocation mechanisms are
required. The credential validity period is not (cryptography) type specific. A
symmetric key authentication would have to face the same problem – dealing
with revoked credentials – if it used long-term credentials.

3.2.3 Network Availability

A protocol is considered to be an on-line protocol if the protocol completion
requires contact with a third party. Symmetric key authentication protocols
are traditionally considered to be on-line and asymmetric key authentication
is viewed to be off-line. First, we argue that asymmetric key authentication
cannot be classified as off-line. When long-term credentials are used because, the
validity status of those credentials has to be verified by revocation mechanisms
requiring an interaction with a trusted third party. Second, the on-lineness
property depends more on the timeliness property than cryptography type.

3.2.4 Granularity of Access

The granularity of access of the authentication protocol depends on whether
or not a credential binds the key to two entities (sender and receiver) or just
one (sender). We say granularity is fine-grained when a key uniquely defines
the participating entities. We say granularity is coarse-grained when a key only
identifies one party. Dynamic fine-grained granularity of access requires on-line
system.

While in the symmetric authentication system a cryptographic key inside of
the credential binds it to both of the parties involved in the authentication pro-
cess, the credential for the asymmetric authentication binds the key to only one
entity. However, the session key that is established during the authentication
process uniquely represents the two participants. So the transcript of the asym-
metric authentication is equivalent to the fine-grained symmetric credential.

3.2.5 Discussion

Figure 3.1 shows the three dimensions we discussed above. We describe the
properties of each of the regions and demonstrate where the particular authen-
tication methods fit.

None of the protocols can fall into the regions 1 and 4 with short-lived
credentials and off-line server. To refresh short-lived credentials the trusted third
party server must be available on-line. Also since fine-grained access requires
involvement of an on-line server, the region 5 (off-line server and fine granularity)
is not possible.

Traditionally, symmetric key authentication protocols have short-lived cre-
dentials while asymmetric key authentication protocols have credentials with

20 CHAPTER 3. SYMMETRIC AND ASYMMETRIC AUTHENTICATION

ON−LINENESS

TIME

4

7

Asymmetric

Symmetric

Symmetric

Symmetric

Asymmetric

Asymmetric

GRANULARITY

short

long

fine

coarse

off−line on−line

Authentication
Symmetic key
Classic

Authentication
Asymmetic key
Classic

8

2

3 1

5 6

Figure 3.1: Dimensions: Time, On-lineness, Granularity. We show how
authentication protocols can be categorized based on the three dimensions. We provide
two valued ranges for each dimension. The time axis represents the credential lifetime.
We consider either short-lived or long-lived credentials. The on-lineness axis represents
the on-line property of the trusted third party. We consider off-line vs on-line. The
values for granularity of access range from coarse to fine. The shaded area signifies
that regardless of the granularity with the off-line scheme we cannot have short-term
credentials. We show how traditionally symmetric and asymmetric authentication
protocols fit into the proposed dimensions.

long lifetimes. The time property is more connected to the on-lineness than to
the type of the cryptography used. By that we mean, regardless of the crypto-
graphic type, time and on-lineness are tightly connected. Short-lived credentials
require the on-line server to periodically issuing new credentials. Long-lived cre-
dentials could be viewed as having off-line properties. However, if we were to
consider a reasonable threat model, where the potential for the credentials to
be compromised increases after a certain time interval and additional credential
validity checks or revocation checks needs to be enforced, some sort of an on-line
server needs to be present in the system.

Inherently, symmetric key authentication protocols have fine granularity of
access while asymmetric key have coarse-grained access. However, symmetric
key protocols could be made less fine-grained and asymmetric ones less coarse-
grained. If the same session key is used for all authentication (i.e., Kab = Kac =

3.3. FUTURE WORK 21

K), it makes the symmetric key protocols equivalent to the asymmetric protocol
on the dimension of granularity of access. Additionally, a new session key for
the following messages should be generated by one of the parties; the session
key included in the credential should not be used for securing the channel.

One the other hand, if a public/private key pair is generated for each of
the two participants and the binding between the public key and an identity
also specifies the destination entity, the resulting scheme is equivalent to the
symmetric protocol scheme on the dimension of granularity of access.

Needham and Schroeder (based) symmetric key authentication protocol(s)
has the following characteristics: short-lived credentials, on-line server, fine
granularity of access and fits into the region 3.

Needham and Schroeder (based) asymmetric key authentication protocol(s)
has the following characteristics: short-lived credentials, on-line server, coarse
granularity of access and fits into the region 8.

3.3 Future Work

The work of this chapter is the main focus of the future work. We need to provide
a solid foundation for the interoperability between symmetric and asymmetric
authentication systems. We outlined the major dimensions that we are going
to compare the systems against. We also liked to consider properties such as
trust and threat model. For the completion of the chapter we need to outline
an interoperability framework and discuss mechanisms for interoperability.

22 CHAPTER 3. SYMMETRIC AND ASYMMETRIC AUTHENTICATION

Chapter 4

Kerberized Public Key
Infrastructure

4.1 Introduction

Computer security is the practical application of cryptography. The two widely
used types – symmetric key and (asymmetric) public key cryptography – are
of the most interest and differ from each other, as the names suggest, on the
key and method used for encryption operations. Symmetric cryptosystems use
the same key (the secret key) to encrypt and decrypt a message. Asymmetric
cryptosystems use one key (the public key) to encrypt a message and a different
key (the private key) to decrypt it. In both cases, the fundamental tenet of
cryptography is the secrecy of the private key.

Symmetric key cryptosystems suffer from a key distribution problem. How
to securely communicate the secret key from the sender to the recipient in
a tamperproof fashion? If the secret key can be sent securely, then, in theory,
there is no need for the symmetric cryptosystem in the first place – because that
secure channel can simply be used to send the message. Frequently, trusted
entities are used to solve this problem. Public key cryptosystems provide a
different kind of a solution. To communicate securely in a public key world, if
message confidentiality is desired, a sender needs the receiver’s public key and,
if message authenticity is questioned, the receiver needs the sender’s public key.
The problem of key distribution is then reduced to managing public (vs. secret)
keys.

A Public Key Infrastructure (PKI) is a key management system defined by
the way it handles the following operations: certification, distribution, secure
storage, and revocation of public key values. A process of certification produces
a certificate that binds a public key to an entity, attribute, or permission. After
the public-private key pair is created, the private key is securely stored with
proper access control enforced. A distribution mechanism concerns with the
availability of the public key to the world. It could be as elaborate as a key

23

24 CHAPTER 4. KERBERIZED PUBLIC KEY INFRASTRUCTURE

management service that includes registering and querying of public keys or as
simple as just relying on certificates for distribution. The last and the most
difficult operation is the key revocation, frequently considered to a part of the
key distribution mechanism. Revocation is concerned with up to date validity
of public keys.

In theory, PKI offers great properties such as easy administration, better
security, better geographical reach, and does not need a trusted key management
infrastructure. On the other hand, end users must be disciplined in the art of
key management. In reality, they are unwilling or unable to perform such a
task since key management includes rigorous validation of every public key and
stringent security of the long-lived private key.

Most widely known applications that use public key credentials are Web
browsers and Web servers. In particular, secure connections on the Web are
established with the help of public key certificates, but only server-side authen-
tication is performed. In practice, client authentication on the Web is done with
passwords despite the fact that strong authentication mechanisms are available
but not used due to the difficulties associated with client certificates. Even in a
closed environment, where there is a well defined set of clients and servers but
where the number of clients is significantly larger than the number of services,
the feasibility of managing client side public key certificates with existing PKIs
is questionable.

In a traditional PKI, creation of a certificate requires an out-of-band com-
munication of the public key that is being certified and an out-of-band authen-
tication process such as a face-to-face meeting with an administrator issuing
the certificate. The organization does not have to build a PKI from scratch
but leverage of already existing infrastructure. We propose to extend Kerberos
single signon mechanism to PKI through a service that creates a short-lived
public key credentials based on Kerberos credentials and use these certificates
for client authentication on the Web. By bootstrapping from an already existing
authentication process, we eliminate the need for out-of-band communication.
The lifetime of certificates reduces the certificate revocation problem which can
further be handled by enforcing negative access controls.

The rest of this chapter is organized as follows. Section 4.2 discusses related
work. Section 4.3 presents the design criteria of the system, followed by the
protocol description and security analysis. Section 4.4 gives implementation
details. Section 4.5 describes future research.

4.2 Related Work

In this section, we review the literature on the problem of certificate revocation,
look at other single signon systems and general guidelines about public key in-
frastructures. The review of the research literature on the certificate revocation
is presented to demonstrate the depth and complexity of the key revocation and
to, indirectly, promote the use of short-term credentials as a solution to the
problem.

4.2. RELATED WORK 25

Client Server

revokes

CA

verifies

presents

issues

Figure 4.1: Simple Certificate Revocation Model. Three entities are shown:
certificate authority (CA), client, and server. The CA’s responsibility involves issuing
and revoking certificates. A client presents a certificate to a server. The server’s
responsibility is to make sure the certificate is valid by verifying the revocation status
of the certificate with the appropriate CA, or an entity – acting on behalf of the CA
– responsible for managing information regarding the revoked certificated.

4.2.1 Certificate Revocation

Once the certificate is issued it is assumed to be valid until the stated expiration
date. However, there are circumstances such as a loss or compromise of the pri-
vate key that require the invalidation of the certificate before its expiration time.
Revocation mechanisms specify who, how and when performs the process. Fig-
ure 4.1 shows a simple model of the revocation system. It contains three entities:
(i) a certification authority that creates and revokes certificates by generating
revocation lists, (ii) a client that uses certificates, and (iii) a server that verifies
certificates. The location of revocation lists and the retrieval method char-
acterize the type of revocation performed (on-line vs. off-line). Certification
authority hides possibly multi-layered and distributed storage architecture of
revocation information.

In [41] Fox and LaMacchia make a distinction between the meaning and the
mechanics of revocation. The problem of what it means to revoke a certificate
is shown by an example of how path validation during the certificate revocation
process can be confusing. Authors show two different certificate chains for the
same certificate where one of the certificates in the chain is revoked but the
validation process leads to the conflicting results. Authors speculate that it is
unclear what might the proper client’s behavior be in case of revoked certifi-
cates. Answers reside in the area of risk management and policy framework, the
discussion of which is beyond the scope of this work. In this section we discuss
the mechanics of revocation and review different certificate revocation schemes.

A comprehensive background about certificate revocation is presented in
[10], where a framework for comparison of revocation schemes is developed,
schemes are analyzed, and guidelines for selecting a revocation solution is pre-
sented. The schemes were compared against the following properties: perfor-
mance, timeliness, scalability, security, standards compliance, expressiveness,
scheme management, and on-line vs. off-line.

Certificate Revocation Lists (CRLs) scheme [52] is viewed as the traditional
certificate revocation scheme and it is based on the idea of black-listing credit
cards. In this scheme, CRL is a certificate, issued and signed by the CA. It

26 CHAPTER 4. KERBERIZED PUBLIC KEY INFRASTRUCTURE

contains a list of serial numbers of revoked certificates along with a timestamp
and some other information. CRLs are issued periodically and distributed to
interested parties that cache the information. As more and more certificates
are revoked, the size of the CRL grows and becomes expensive to manage and
distribute. To improve on the size of the CRLs other mechanisms were proposed:
• CRL Distribution Points: the CRL is divided into segments and distributed

between distribution points. Now, only a relevant part of the whole CRL

is downloaded.
• Delta CRL [51]: only the incremental changes are digitally signed and

posted.
In order to reduce the cost of CRL processing, our researchers proposed

that not all CRL is retrieved. Instead, a proof of validity is issued about the
individual certificate on per request basis.
• Micali’s Certificate Revocation System (CRS) [83]: each certificates is

signed, stating its validity using the on-line/off-line signatures. This token
can either be used directly by clients as a proof of validity or retrieved by
the verifier.
• Kocher’s Certificate Revocation Trees (CRTs) [64]: instead of singing each

individual certificate, a tree structure is created. Each leaf in the tree is a
statement regarding the validity of a particular certificate. Parent nodes
are computed as a hash of child nodes. A path from the root to the leaf
is used as a short proof.
• Naor’s and Nissim’s authenticated dictionaries [90]: extends CRTs scheme

by using 2-3 trees instead of binary trees so that all pathsfrom the root
to the leaves have the same length and node operations are done in loga-
rithmic time.

The main problem with all of CRL-based techniques is low timeliness. Some
researchers argue that in face of high-valued financial transactions an on-line
verification is needed [42, 88]. In general, systems cannot tolerate the revo-
cation delay inherent in CRL schemes and require real-time revocation check-
ing. Alternative solutions to CRLs include On-Line Certificate Status Protocol
(OCSP) [89] and Simple Certificate Verification Protocol (SCVP) [74]. In on-line
approach, a client queries the server for a validity status for each certificate it
needs to verify.

McDaniel and Rubin [76] investigate CRL usability in multiple environments
and show where CRLs are appropriate and where other revocation mechanisms
are needed. They state that revocation will remain a necessary part of any PKI.

Previous work acknowledge that use of short term certificates reduce the
problem of revocation but argue that it is too expensive to re-issue certificates,
thus they continue to work on revocation mechanisms. We show that in our
system creation of short term certificates is easy.

4.2.2 Single Signon Systems

The growing popularity of public key cryptography has produced the desire for
its integration with Kerberos. As a result, a protocol PKINIT [131] allows a user

4.2. RELATED WORK 27

to use public key credentials in the initial Kerberos authentication thus boot-
strapping Kerberos from PKI. Public key distributed authentication (PKDA)
[112] goes a step further and proposes for Kerberized services to support PK

authentication mechanisms. Such integration requires modification of already
existing software and seems unlikely to be adapted.

Schiller and Atkins [108] proposed to use Kerberos to sign PGP keys and to
help build the Web of Trust. Individual PGP keys are signed by the Kerberized
Key Signer Service. All users trust the public key of the Key Signer. It is
used as the introducer between untrusted users. It provides and vouches for the
binding between the name and the PGP public key. By using the Key Signer,
one-level hierarchy is introduced as opposed to the original mesh structure of
trust relations.

The most relevant to our work is a project at MIT and, then following their
example, other institutions have a scheme to create long term client certificates
by interfacing with Kerberos as the registration authority to issue the initial
client certificate. As we mentioned before, the biggest problem with long term
certificates is revocation. If certificates live long enough to be comprised, due
to a lost or compromised private key, currently no efficient and satisfactory way
is known to revoke such certificate.

A different type of single signon is used for Web authentication and is based
on the idea of using a single user id and password to login to multiple Web
site. Passport [96] is a protocol developed and deployed by Microsoft. It is an
example of a password-based single signon scheme that leverages of existing Web
technologies such as HTTP redirects, Javascript, cookies, and SSL. Kormann et
al.[66] discovered several security flaws and attacks against the service such
as incorrect logout procedure that failed to remove user’s credentials, bogus
merchant and login servers that trick users giving away their authentication
information, and misuse of cookies.

Netscape also provides a single signon scheme described in [111]. In this case,
single signon means entering user id and password to unlock the database where
the private key is store and then use the key and the corresponding certificate
during authentication on the Web. A few other products (e.g., eTrust1, Novell2,
Okiok3, i3sp4) exist that with a single entry of a password allow users access
multiple services without re-authentication for each one. In general, the main
problem with password-based schemes is that users choose weak passwords.

A single signon environment for NetWare and Kerberos users is created by
[6]. The goal of that work is to join the two realms such that administrators are
relieved from managing multiple user sets. Both administrative domains require
a user to present a password in order to receive services. Relationship between
the two password databases has been reviewed. Two schemes were presented to
provide a single signon. The first scheme is based on keeping both passwords the
same. The other scheme used Kerberos password to derive NetWare password

1http://www.etrust.com
2http://www.novell.com
3http://www.okiok.com
4http://www.i3sp.com

28 CHAPTER 4. KERBERIZED PUBLIC KEY INFRASTRUCTURE

so that, at the login time, the user is signed in two both domains.
Recommendations and general properties of certification infrastructure has

been studied in [39, 62, 103, 104, 129]. It’s been shown that setting up a CA

infrastructure is a complex task due to numerous technical and policy issues.

4.3 Design

4.3.1 Design Criteria

In our design we follow two of the three objectives for the certification authority
services that were provided in [103]. We agree that (i) it is important to ensure
that a certificate will only be issued if the requestor proves that he knows the
corresponding private key. We question but apply the same solution to the
other objective that is (ii) to limit the adverse consequences of malicious action
by a CA. The last objective is to ensure that CA can be held accountable for
malicious behavior and is beyond the scope of our work.

We state the design goals, general security principals, and design choices for
our certification infrastructure.
• Goal(s): The main goal can be stated as to create a public key infras-

tructure that avoids the inherent naming and key management issues of
previously proposed architectures. We strive to provide a lightweight solu-
tion that enables a single signon to two authentication domains: Kerberos
and Public key based systems (e.g., SSL).
• Principle(s): To achieve previously stated objective (i) public keys must

be transmitted to the CA in such a way that the CA can be sure that
the key has not been modified in transit, and that the user requesting
the certificate is the same person who caused the key to be generated
(corresponding private key is known to the identified user); and (ii) private
key should be stored locally and should never be divulged to any other
entity.
• Choice(s): To achieve the goals we chose to (i) build the infrastructure

from already existing system – Kerberos – and, thus, avoid management
of a new global namespace; and (ii) issue short-term certificates, thus
reducing the problem of certificate management to: secure creation and
store of certificates.

One of the concerns noted in the literature is the creation and manage-
ment of the global namespace [18, 20, 68, 101]. In particular, CA must ensure
uniqueness of distinguished names used in the certificates. In our design, by
building the infrastructure from Kerberos, we also off load the naming to Ker-
beros. Since within Kerberos domain client ids are assumed to be unique, then
by using the same identities in the certificates we also guarantee the uniqueness
of distinguished names.

As in case of a regular certification authority, a care must be taken to keep
the CA’s private key secure.

4.3. DESIGN 29

1-4 Kerberos login

5. Alice → KCA: TKT, Auth, Kpub, MACKA,KCA(Kpub), (Auth)Kpriv
6. KCA → Alice: X.509 certificate, MACKA,KCA(X.509 certificate)

Figure 4.2: KX.509 protocol. Steps 1-4 from Kerberos are not shown. Steps 5
and 6 give the details of messages in KX.509. Alice sends a service ticket (TKT), an
authenticator (Auth), a public key (Kpub), and its MAC. To prove that she knows the
corresponding private key (Kpriv), Alice uses it to sign the authenticator included in
the Kerberos part of the message. A keyed digest is based on the session key, KA,KCA

and prevents modification of the data.

4.3.2 Protocol Description

We propose a Kerberized service that creates a short-lived X.509 certificate
[34, 67]. The exchange of messages and other details of the protocol are shown
in Figure 4.2. As in Kerberos, Alice gets a TGT from the KDC. To acquire an
X.509 certificate, she first requests a service ticket for a Kerberized Certification
Authority, KCA. At the same time, Alice generates a public/private key pair and
prepares a message for the KCA. Along with the public key, she sends the KCA

service ticket, {Alice, KCA, KA,KCA}KKCA , and an authenticator, {T}KA,KCA .
To ensure that the public key has not been tampered with, the MAC of the
key is sent in the same message. The session key, KA,KCA, is used to compute
the MAC of the key. To insure that Alice has the corresponding private to the
public key used in the message Alice signs the timestamp already present as the
Kerberos authenticator, {T}Kpriv .

The KCA authenticates Alice by checking the validity of the ticket and the
authenticator. It verifies that the public key has not been modified. The KCA

then generates an X.509 certificate and sends it back to Alice. The certificate
is sent in the clear; to prevent tampering, the MAC of the reply is attached.
The lifetime of the certificate is set to the lifetime of the user’s Kerberos cre-
dentials. The user’s Kerberos identity is included inside the certificate, creating
the necessary binding.

4.3.3 Security Analysis

The security of this protocol is based on the security of the Kerberos authen-
tication protocol, the security properties of one-way hash functions, and the

30 CHAPTER 4. KERBERIZED PUBLIC KEY INFRASTRUCTURE

signature scheme used. In our design, we decided to address the following po-
tential threats (presented in [103]):
• Masquerade: occurs when a user requests a certificate or a CA issues

a certificate and pretends to be a different entity than it really is. We
rely on Kerberos authentication of both parties to detect and prevent
impersonation.
• Modification of data: prevent unauthorized modification of certificate

contents.
• problem: modification of certificate contents during transmission.

solution: use an integrity protection mechanism, e.g., cryptographi-
cally secure hash functions.
• problem: modification of stored certificates.

solution: employ the protection mechanisms of the underlying stor-
age, e.g., file system protection (ACL).
• problem: modification of security attributes prior to being packaged

in a certificate, e.g., LDAP identity lookup.
solution: use secure mechanisms (e.g., Kerberos protected LDAP ser-
vice).

• Loss of confidentiality: anyone in possession of a user’s private key can
authenticate as that user. Thus, it is important to generate the private
key on the client machine and not at the CA site. Also, it is vital to pre-
serve the confidentiality of private keys. This is related to the previously
stated threat of modification of stored certificates and same protection
mechanism applies. Loss can occur if the key generation process is com-
promised. To protect against this threat a good source of randomness has
to be present on the client machine.

Threats considered in [103] but not discussed here include false repudiation
and exceeding authority. The issue of repudiation comes up when a private key
is used to sign some information. Since in our system the lifetime of the keys is
short, the notion of reputable actions is not well defined. The case of exceeding
authority refers to when the CA either issues or revokes a certificate it has not
been authorized to do so. While the issue of revocation is not relevant in the
proposed system, an unauthorized issue of certificates is not addressed by our
design.

The man-in-the-middle attack is prevented by the use of Kerberos and MAC.
The denial of service attack is a serious threat and an extensive research has
been done in this area. We do not attempt to guard against such attacks.

4.4 Implementation

We implemented the KX.509 protocol to work for both Netscape Navigator (on
UNIX, Windows, and Mac OS) and Internet Explorer (on Windows). The kx509
client and the KCA server are the two basic components involved in issuing
user certificates. Navigator maintains a private cache of certificates, but the
implementation is platform dependent, undocumented, and version dependent.

4.5. FUTURE WORK 31

$: klist

Ticket cache: FILE:/tmp/krb5cc 500

Default principal: aglo@CITI.UMICH.EDU

Valid starting Expires Service principal

02/01/02 09:51:43 02/01/02 19:51:44 krbtgt/CITI.UMICH.EDU@CITI.UMICH.

EDU

02/01/02 09:51:47 02/01/02 19:51:44 kca service/zingara.citi.umich.

edu@CITI.UMICH.EDU

01/31/02 10:51:50 02/01/02 20:51:44 kx509/certificate@CITI.UMICH.EDU

Figure 4.3: Output of klist. KX.509 certificate and the private key are stored in the
Kerberos V ticket cache under the service names of kx509/certificate. kca service

is the service ticket for the KCA. The other entry is the service ticket for the TGS.

Thus, we elect to save certificates in user’s Kerberos ticket cache, which requires
the user to add a cryptographic module to the browser. No such modification is
required for Explorer. Instead, in order to support both browsers on Windows
environment, user certificates are stored in the registry.

Typically, a ticket cache stores a user’s TGT and service tickets. MIT’s
implementation of Kerberos on UNIX allows for variable size tickets, allow-
ing us to store any data of size up to 1250 bytes, which is sufficient to store
a certificate and a private key. Figure 4.3 shows the output of the klist
command, which displays the current contents of a ticket cache. The entry
kca service/zingara.citi.umich.edu is the service ticket for the KCA.
kx509/certificate contains the user’s certificate and private key. Storing cer-
tificates in a ticket cache has the advantage that when a user logs out from the
computer the data stored in the ticket cache is destroyed.

As we mentioned, Navigator needs help to find our certificates. To this end,
we use the browser’s standard interface to add a cryptographic module that
we call kpkcs11. When client authentication is required, kpkcs11 looks up a
certificate in the ticket cache and gives it to Navigator.

In our implementation, the user identity information that KCA includes in
the certificate is retrieved from a naming service (an X.500 directory). Given
a Kerberos principal, KCA looks up the user’s first and last name. Addition-
ally, at the end of the distinguished name we attach an email field with the
principal name in the local part and the realm in the remote part, for example,
aglo@CITI.UMICH.EDU.

4.5 Future Work

In this section we outline the scope of future research. For completeness a per-
formance study of the KCA is needed, discussed in Section 4.5.1. Section 4.5.2
proposes to address the problem of namespace management. Section 4.5.3 pro-
poses to extended current functionality of the KCA to issue attribute certificates.

32 CHAPTER 4. KERBERIZED PUBLIC KEY INFRASTRUCTURE

Total num IMAP reqs Dialin reqs Web reqs
605,477 452,773 (74.78%) 63,529 (10.49%) 8,786 (1.45%)

Table 4.1: Kerberos logs. For the day 10/13/99 we identify how many
AS REQs were made. Out of the total number of request, we show how many
requests came from the following servers: IMAP server, Dialin server, and Web
login server.

Finally, Section 4.5.4 proposes to create a comprehensive key management ser-
vice that includes registration and revocation options.

4.5.1 Performance

Problem statement: We propose to study the performance of the KCA service.
We intend to evaluate the usefulness, to test and point out possible problems

with the current design and implementation of the system. Two questions to
be answered are: (i) what is the throughput of the server, and (ii) what is the
client response time. The intended use of the KCA is one request per day per
user. University of Michigan has about 50,000 users, so we need to be able to
support that. For a better estimate, we retrieved logs from the umich KDC

and measured the number of AS REQs that correspond to ticket granting ticket
requests. Table 4.1 shows a summary of AS REQs from one of the umich KDCs.
Just as an example, on 4/13/99, we counted 605,477 AS REQs. Not all all those
requests correspond to users’ initial login. We have to separate users’ TGT

requests from the TGT requests issued by services that use user’s passwords
to complete the requests. For example, a total of 525,088 requests come from
email (IMAP), Dialin, and Web login servers. Requests that come from IMAP

servers are due to misconfigured email client applications that run on Windows
and Macs. They are configured to prompt the user for his password and then
send the password in the clear to the IMAP server. UNIX email applications are
Kerberized. Assuming proper behavior from email clients and the use of X.509

authentication on the Web, the KCA needs to handle 143,918 AS REQ requests
per day. By looking at the logs, we can show the distribution of AS REQ through
out the the day.

We will compare the performance of the KCA to the performance of a KDC.
We will also compare the performance of the KCA to the performance of another
certification authority, understanding that it is often difficult to compare against
commercial version of the software (and the majority of CAs happen to be
commercial products).

We predict that public key operations to be the bottleneck in the KCA

performance. In this case, hardware accelerators can be used to boost the
performance. Additionally, to better handle the load replication of the service
should be considered. Both issues will not be considered in this work as they
have been thoroughly studied elsewhere.

4.5. FUTURE WORK 33

Protection Service
10

8

9

7

Name Service

1
2

KDC

Alice

4

5
KCA

63

1-4 Kerberos login

5. Alice → KCA: KCA TKT, Auth, Kpub, MACKA,KCA(Kpub),
(Auth)Kpriv

6. KCA → Name Service: Kerberized LDAP query for Alice
7. Name Service → KCA: Identity Attributes (e.g., full name)
8. KCA → Prot Service: Kerberized PTS query for Alice
9. Prot Service → KCA: Group membership, Credentials
10. KCA → Alice: Certificate(s), MACKA,KCA(certificate(s))

Figure 4.4: Extended KX.509 protocol. The basic protocol presented in Figure
4.2 is extended to query additional identity information from a naming service (e.g.,
LDAP database), and query a protection service (e.g., AFS PTS) for group member-
ship or authorization information. Steps 6-9 are Kerberos authenticated.

4.5.2 Naming

Problem statement: How can we accommodate differences in the namespace
format between PKI (X.509 format) and Kerberos (UNIX id)?

Naming of entities is a crucial component of a secure distributed system.
Entities in a system require a naming convention and a mechanism to verify or
establish identity. The format and verification process go hand in hand. We
propose to investigate namespace management problem by evaluating the cur-
rent scheme, looking for alternatives, and extending the scheme to include more
flexible and expressive namespace. We noted earlier that instead of creating a
new namespace, we borrow one from Kerberos. This solution offers the least
amount of flexibility. Thus, a more PK-like identity format might be desired
for the certificate. Figure 4.4 shows an extension to the KX.509 protocol that
makes use of other services to create a client certificate. The solution that
we currently implement is: upon receiving a request from the client, the KCA

contacts a directory service and retrieves additional information about the Ker-
beros principal. The KCA Kerberos authenticates to a directory service and
using LDAP retrieves (world-readable) information about the principal.

KCA’s responsibility is to bind a public key to an identity. However, since
we are starting from a Kerberos identity, the binding between Kerberos identity
and PK identity might be provided by a service different other than KCA. We
propose to separate the two binding processes allowing for greater flexibility,
separation of responsibilities, and reducing the complexity and load of the KCA.
So, another possible solution that we plan to explore is to allow the client to

34 CHAPTER 4. KERBERIZED PUBLIC KEY INFRASTRUCTURE

present the identity information to be included in the certificate. Here, the
client’s identity information is vouched for by some other service, e.g., it might
be signed by a naming service. In this case, a security policy must exist at the
KCA to enforce the trust relationship between the naming service and the KCA.
This solution allows for greater user information privacy. Users should be able
to set a policy that specifies who has access to their personal information.

Questions to consider:
• As a solution, building and populating a new database with information

allows us greater flexibility in choosing security options. However, bringing
up a new database has many disadvantages: duplication of work, keeping
the information in both databases consistent, expensive and, in practice,
unrealistic to deploy.
• Access control mechanisms of the existing directory services support re-

stricted access. For a given attribute, a list of users or applications is
specified along with access level and the authentication method required
to access this attribute. However, the directory service does not support
the functionality of certifying the identity information. Making modifica-
tions to a complex software is not an easy task.

Alternatively, we might make no assumptions about the meaning of the iden-
tity information present in the certificate, the client’s self identity (nickname)
could differ from the registered identity.
Problem statement: What is the relationship between the Kerberos and PK

credentials? Should a Kerberos realm correspond to a (Kerberos defined) PK

domain or should a more complex structure be considered?
In an environment such as University of Michigan, a single KCA can serve

multiple administrative domains. Issues to be considered include: uniqueness
of user ids. It is assumed that uniquenames are unique within the university,
e.g., aglo@engin.umich.edu and aglo@umich.edu are the same principal. It is
not clear if this property should be assumed in general. In this case, the KCA’s
client identification responsibilities should be clearly identified by the security
policy. From the authentication step, the KCA is aware of the client’s originating
domain. This domain might be either used in the certificate, or a generic domain
(e.g., umich.edu). The two policies reflect different threat models. Using the
latter adds to the KCA’s responsibilities to check for uniqueness of principal
identifiers but relieves services that use the certificates from this burden. This
presents an advantage of enforcing the check at one place rather than having
each of the end services do it. On the other hand, this precludes fine-grained
access control based on the user’s actual domain. In effect, a generic domain in
the certificate provides a single signon to multiple domains which might not be
desirable in all cases.

4.5.3 Attribute Certificates

Problem statement: Issuing general attribute certificates is well understood.
However, issuing certificates with protected (i.e., encrypted) information and

4.5. FUTURE WORK 35

specifying a way to revealing that information securely to authorized parties is
not so well studied.

We propose to extend the KX.509 protocol to issue other types of public key
based credentials, e.g., attribute and role-based certificates, KeyNote assertions
[12, 13, 14], and SPKI/ SDSI certificates [20, 36, 101]. An application that
requires attribute certificates is described in Chapter 6, where authorization
decision is based on a signed group membership statement received with the
request. We propose to investigate the feasibility and usefulness of protected
certificates.

In some cases, the user’s identity is confidential and needs to be protected
during transmission. For example, in SSL, both user and server certificates
travel in the clear. But suppose we produced a secret identity certificate whose
subject field is encrypted with a key that is revealed only when needed. The
KCA encrypts the identity with a symmetric key which is in turn encrypted
with the client’s public key and returned to the client along with the certificate.
We propose to investigate the ability to use such certificates by Web browsers
and servers and how the symmetric key can be revealed to the server. Two
possibilities suggest themselves. First, a client can reveal the key. Second, a
server can present this special certificate to a server and request that the identity
be revealed.

Other confidential attributes might need to be protected by encrypting the
information. Imagine an attribute certificate in which some of the attributes
are encrypted, possibly under different symmetric keys. The same certificate
can be presented to different services and different keys can be disclosed to
get access to resource while not disclosing full capabilities to each of the in-
dividual services and not requiring users to acquire, store, and use multiple
certificates/capabilities.

4.5.4 Key Management Service

Problem statement: Is it feasible and practical to do short-term key man-
agement operations other than key creation?

Another possible avenue for future work is to extend the work to provide
a comprehensive public key management service that includes registration, re-
trieval, private key recovery and key escrowing. The architecture for such service
is not straightforward. It would a mistake use short-lived certificates for digital
signature because of the short lifetime. Their usefulness is further impaired by
the fact that the user’s public key might have not yet been registered if the user
has not logged in that day. Also, to make sure old keys are not used during the
retrieval query, the logout procedure must always request that the current keys
be revoked.

With short-lived certificates it is hard to send secure email. If a certificate is
only valid for a day, then the recipient will be unable to verify the signature or
unseal encrypted message after the certificate expires. We propose to investigate
solutions to solve this problem. One idea could be to have long term public and
private keys stored at a server and retrieved when needed with the use of short

36 CHAPTER 4. KERBERIZED PUBLIC KEY INFRASTRUCTURE

term keys. The drawback of this solution is that the certification authority has
to be trusted in the same manner as the KDC and eliminates non-repudiation
because the assumption about the private key has changed. We propose to
investigate the potential of this design as a solution for long term keys and
digital signatures. The question of where and how the long term private key is
used needs to be address. Public keys could be retrieved from the server and
used to verify signatures or encrypt data. Decryption and verification could be
by the server, so that private keys do not have to leave the protected server.
Such a server may become a bottleneck and an attraction for hackers.

A different solution we propose to explore is to build long term keys from
short term keys by reusing the same public and private key and re-validating
them each time a user logs in. A created certificate still has a short lifetime but
the public key could be registered with a server and used. A key server can assign
a probable life to the key-based on its previous status. Then when somebody
queries the server for the public key, the CA issues a certificate with this probable
lifetime and returns back to the requestor. This presents a dilemma: should a
client elect to reuse the same key pair, where should those keys be stored?

Another idea is to have a key server provide multiple keys that differ in their
security properties. For example, one type could be short-term keys which are
the most secure keys. Every time the user logs in, he registers the new junk
keys. These keys can only be used when a user is logged in. They have the
highest value of freshness and are least likely to have been compromised. On
the other hand, the server can store a pair of long term keys which are least/less
secure keys depending on where the private key is stored and how frequently it
is used.

Chapter 5

Kerberized Credential
Translation

5.1 Introduction

Access control for Web space is often viewed in terms of gating access to Web
pages where the job of the Web server is limited to simple file reads. The func-
tionality provided by Web servers has grown considerably making it the most
popular technology on the Internet. With the expansion of the Internet, many
new kinds of services are accessible from the Web, increasing Web servers’ im-
portance and scope. For example, a Web server may serve information stored in
backend databases. A Web interface to backend services is considered to be more
user-friendly and accessible compared to predominant text-based interfaces.

The possibilities opened by the use of a Web server to access a variety of
backend services pose challenging questions on how to retain access control of
backend services. A Web server could potentially become another access control
decision point, increasing the burden on the server and its administrators. It
would have to comply with the same security requirements as all of the backend
services it fronts, increasing its potential as a place for system compromise.

A solution that provides end-to-end authorization would allow the end ser-
vice to retain control over the authorization decisions. Furthermore, it would
obviate constructing and maintaining consistent replicas of authorization poli-
cies.

In practice, authorization mechanisms are tied to authentication mecha-
nism: end-to-end authorization requires end-to-end authentication. A mismatch
in authentication mechanisms prevents a Web server from using authorization
mechanisms provided by backend servers. While Web servers support SSL au-
thentication with certificates, this does not provide credentials for access to AFS

file servers, LDAP directory servers, and KPOP/IMAP mail servers, which use
Kerberos for client authentication. To provide end-to-end authorization, we
address the problem of end-to-end authentication.

37

38 CHAPTER 5. KERBERIZED CREDENTIAL TRANSLATION

We motivate the end-to-end authentication problem by considering the fol-
lowing scenario:

Alice attends the University of Michigan, where she enjoys access to a variety of
computing services. One of the most commonly used services is AFS file service, which
is protected by Kerberos. Alice, being a very private person, does not want others to
have access to her files. Through the access control mechanisms provided by AFS, she
limits access to specific users. But if these users prefer to access Alice’s files through
the Web, then the flexibility of AFS access controls disappear.

Web presence for other Kerberized services also suffers. For example, Alice would

like to manage her umich.edu X.500 directory entry from a browser. The directory

is stored in an LDAP directory that uses Kerberos authentication to control read and

write access. Alice would also like to read mail from a browser; this too requires that

the Web server authenticates as Alice to the Kerberized mail server.

If an AFS client is running on Alice’s workstation, a simple solution presents
itself. Instead of making an HTTP request, a user can access AFS file space
directly with file://localhost/afs/· · ·. But it is fair to say that most machines
do not run AFS. Also, the solution fails to provide a general mechanism for
accessing services from the Web; browsers cannot anticipate all possible service
access types.

In this scenario, end-to-end authentication presents the question of how to
convey Kerberos credentials to the Web server. One solution is for the client
to acquire the needed credentials and delegate them to the Web server. A
frequently used solution is to send a Kerberos identity and password through
SSL, but this gives unlimited power to the Web server to impersonate users, a
significant risk. It is also hazardous to expect a user to know when it is safe to
give her password to a Web server.

Kerberos supports a mechanism for delegation of rights. However, browsers
do not support any form of delegation. A practical solution is needed that works
with existing software and is easy to deploy, administer, and maintain. The
process should demand minimal interaction with a user, providing transparent
access to resources. To limit misuse of user’s credentials, the Web server must be
constrained in its actions. Furthermore, a central, easily administered location
for enforcing security policies controlling the Web server’s actions is required.

While many backend services use Kerberos for authentication, Web servers
use SSL to authenticate with public key cryptography. We address the mismatch
of authentication credentials between the Web server and Kerberized service by
introducing a new service that translates PK credentials to Kerberos tickets.
The Web server engages in proxy authentication. The process consists of SSL

client authentication, a request to a credential translation service, and finally
authentication to the Kerberized service on a user’s behalf.

This chapter is organized as follows. Sections 6.2 and 5.2 provide back-
ground material and discusses related work in the area of web access control.
Section 6.4.1 presents an architecture for access to Kerberized services through
a browser. Section 5.3.4 gives a security analysis of the systems. Section 5.4
gives implementation details. Section 5.5 describes performance.

5.2. RELATED WORK 39

5.2 Related Work

This section describes related work on distributed authorization and interoper-
ability among authentication mechanisms. Many efforts have focused on creat-
ing formal systems that allow reasoning about delegated (restricted) rights and
express (general) authorization statements. Many researchers have focused on
creating powerful and expressive languages for making and verifying security as-
sertions efficiently. Among them are SPKI/SDSI [20, 36, 101], PolicyMaker, and
its successor KeyNote [12, 13, 14], GAA API [106], Akenti [128], and Neuman’s
proxied authorization [93]. Applications that lack an authorization mechanism
of their own greatly benefit from these mechanisms. However, our goal is to
make use of already existing authorization mechanisms at the backend services.

Authors of capability file names [100] propose to create and distribute to
potential users capabilities that include the name and rights to the file given.
In order to get access to a file, a user submits the received capability that is
verified by a proxy daemon that gates access to the file systems. They do not
carefully discuss the issue of initial distribution of capabilities. Instead they
assume an out-of-band secure mechanism such as secure email would be an
acceptable solution.

There is a simple alternative solution to enable the Web server to act on a
user’s behalf. A user can send his password (securely, of course) to the Web
server. The solution has been implemented as an Apache module [8, 118, 115].
In this case, the Web server is given an unlimited power to impersonate users,
a significant security risk.

There are several projects that propose to use Kerberos for Web authenti-
cation without sending user passwords. Minotaur [85] depends on a client side
plugin to acquire a service ticket for a Web server. However, it has been shown
that, in its current design, Minotaur’s handling of HTTP POST is insecure. An-
other system, called SideCar [99], achieves Kerberos authentication by talking
to a dedicated process on a client’s machine. Failure to start the daemon pro-
cess prevents the client from being able to do Web authentication. Yet another
solution makes use of the extension to TLS cipher suites that includes Kerberos
as an authentication mechanism [55].

Kerberos authentication to a Web server is not enough for end-to-end au-
thorization. There must be support for delegating Kerberos credentials after
the client authenticates to the Web server, which is addressed by Jackson et
al. in their proposal on how to delegate credentials (currently, Kerberos and
X509 certificates) in TLS [58]. There are a few problems with considering this
approach as a solution. First, no browsers currently support Kerberized TLS.
There is an implementation of Kerberized TLS [116] that relies on a local proxy,
but browsers are often limited to a single proxy, complicating system manage-
ment. Furthermore, the description of the exact content of the protocol is vague,
making it hard to validate the security of the protocol.

Tuecke et al. [130] propose a specific delegation mechanism that allows a user
to delegate an identity certificate to a third party. The receiver must engage in
a special verification process that validates these certificates to identify the real

40 CHAPTER 5. KERBERIZED CREDENTIAL TRANSLATION

sender. Authentication to a commodity server with these certificates cannot be
considered secure, as each entity in the delegated path serves as a certification
authority and can create a certificate under whatever identity it pleases.

The problem with delegation is that the client may be tricked into requesting
a ticket by a rogue server. It has been repeatedly demonstrated that we cannot
always trust a valid server’s certificate, most recently by the Microsoft/VeriSign
debacle [87]. Delegation places a large administrative burden on the client.
First, a client must be able to understand and apply security policies to de-
termine whether or not to forward his credentials. To avoid the hassle, users
frequently allow for unlimited and unchecked delegation. It is not reasonable to
assume that for each compromised Web server each user will update her security
policy to address the problem. Lastly, browser support for restricted delegation
always leaves us wishing for more.

5.2.1 Performance Studies

Apostolopuolos et al. [9] investigated the cost of setting up the SSL connection.
For small HTTP transfers the overhead from the SSL handshake is significant
but for large requests (1Mbytes or more), the overhead is mostly due to en-
cryption and authentication. Client authentication was omitted so the results
do not reflect an additional private key encryption operation. Furthermore, a
self-signed server certificate was used as opposed to a certificate signed by a
certification authority. In this experiment the verification of the CA’s certificate
was not accounted for. SPECweb96 benchmark was used to assess the perfor-
mance. A regular Web server (Apache 1.3) can handle about 250 requests per
second while the a secured server can only handle about 85 (with 100% session
keys reuse). Caching of certificates and modified SSL protocol that reduces the
number of round trips is presented and evaluated.

Further improvements (15% to 50%) are achieved by caching and reusing
SSL session keys [47]. 10ms is required to establish a TCP connection and 40ms
for a new SSL connection or 10ms for the reused one. Distributions of time
spent on either TCP, non-cached SSL, cached SSL, or HTTP GETs connections
for several Web sites are presented.

To speed up performance several designs [25, 86] proposed to offload the
RSA operations to a dedicated server with specialized hardware.

Coarfa et al. [21] analyzed the performance of an SSL-secured Web server
(Apache 1.3 with mod ssl 2.7 based on OpenSSL 0.9.5a). The experiments
studied the effect of the CPU speed by varying the speed between 500MHz and
933MHz. Some of the results are summarized in Table 5.1. Two workloads
were studied. One trace was taken from an e-commerce Web server with the
mixed (secure and insecure) traffic of the average size of 7KB and with the
estimate of one full handshake to every twelve requests. The other trace was
from the departmental Web server assumed to serve only secure documents of
the average size of 46KB. Not surprisingly they note that overall performance
of the Web server is drastically reduced while servicing secure Web pages. In
the e-commerce trace the largest performance cost was due to the public key

5.3. DESIGN 41

operations. For this case hardware accelerators shown to be extremely effective
(over 100% improvement). However, in the data transfer trace while the crypto-
graphic operations were the dominant cost, there was a factor of 2 difference in
times spent doing the RSA and at the same time the amount of non-SSL related
costs were doubled. The effectiveness of the faster CPU also depends on the
workload. The data transfer trace benefits greatly from the increase the CPU

speed as opposed to the use of the accelerator.

Trace Apache (ops) Apache+SSL (ops) RSA (%) non-SSL (%)

e-com 1370 147 58 10

data 610 149 23 29

e-com 2200 261 57 12

data 885 259 20 32

Table 5.1: SSL Performance. The summary of results presented in [21] are
presented as two workloads (e-com and data) evaluated on 500MHz shown in the first
two rows and 933MHz in the other rows. The first two columns show the number of
hits serviced by the Web server. The second two columns represents the percentage
of time spent doing specified operations.

Other results state that SSL appears to be CPU bound, as optimizations
intended to reduce network traffic have little effect on the server throughput.
Also, the cost associated with setting up the SSL connection (TCP connection
establishment, data structure initialization used by SSL has greater impact on
the server throughput compared to the cost of the data transfer.

For none-SSL operations the throughput for the data transfer trace is lower
due its higher data transfer size. The interesting fact is that the throughput of
the SSL-secured Web server for both traces is about the same (148 hits/sec) but
the times spent on RSA operations is dramatically different. The e-commerce
trace is doing many more full handshake (equivalent to more RSA operations)
while at the same time the data transfer trace spends the same time encrypting
the reply.

5.3 Design

Our goal is to design, implement, and deploy a system that allows users ac-
cess to Kerberized services through a Web server while making use of existing
infrastructures and security policies. We define two different authentication en-
vironments: Kerberos space and PK space. We assume that all or some users
and services have identities in each of the spaces. For example, a user can have
both Kerberos and PK identity while a backend service has only Kerberos iden-
tity (both are implicit assumptions based on the stated goal of the system). The
system contains four components: a client (represented by a Web browser), a
Web server, a backend server, and a trusted third party (referred as a Kerber-
ized Credential Translator). Section 5.3.2 discusses client authentication and

42 CHAPTER 5. KERBERIZED CREDENTIAL TRANSLATION

the Web server’s responsibilities in meeting user requests. Section 5.3.3 intro-
duces our Kerberized Credential Translator, an extension to TGS that converts
PK credentials to Kerberos tickets.

5.3.1 Design Criteria

The following considerations guide our design.
• Enable easy administration for both users and system administrators.

Administration and management of software is difficult and frequently
results in security compromise1 of the very systems that administrators
are trying to protect. Added features should not require user interaction.
For example, users should not be forced to actively (i.e., by typing in
passwords) or passively (i.e., running additional processes) obtain addi-
tional credentials. For example, configuring additional daemon processes
(e.g., like in SideCar described in Section 5.2) correctly and preventing
malicious and uneducated users from interfering with correct execution of
such processes makes the job of a system administrator more difficult and
thus overall hurting the security of the whole system.
• Use off-the-shelf software as much as possible. The modifications to

the components such as Web browsers and servers should use the provided
extensibility features of the products such as add-on modules. Modifica-
tions to the browser software is inadvisable for a couple of reasons. First,
the most widely deployed and used Web browsers (Internet Explorer and
Netscape Navigator) are commercial products thus changes to the code
not possible. Second, the difficulties with installing upgrades (or addi-
tional software) on a large number of client machines are well known and
recognized. Modifications to the server software are considered to be less
severe. Furthermore, the existence and wide use of the open source Apache
Web server 2 with its modular and easily extensible design makes it easy
to provide new features.
• Use existing security infrastructure and mechanisms for authenti-

cation and authorization, i.e., use SSL for secure Web connections, preserve
authentication (Kerberos) and authorization mechanisms of the backend
services.
• Restrict and control Web server actions through authorization mech-

anisms. The Web server is vulnerable to attacks, so it must be constrained
in the actions it is allowed to take on a user’s behalf. The system must pro-
vide a central, easily administered location for policy decisions regarding
Web server’s actions.

We make the following assumptions about the system as a whole and in partic-
ular about security of the system.

1For example, Fu et al. [45] showed how an incorrectly configured Web server allowed for
authorize users authenticate to the system

22001 Netcraft Web Server Survey found that 56% of the web sites on the Internet are
using Apache[8]

5.3. DESIGN 43

• Physical security of the services. We assume the Web server has an
adequate physical security. Also, we assume that the Kerberized Creden-
tial Translator, described in Section 5.3.3, has physical security compara-
ble to the KDC.
• Minimal PKI functionality. We are not trying to solve PKI problems

such as reliable and efficient key revocation. This leads to the following
additional assumptions.
• We assume the ability to instantiate a root certification authority, be

it a self-signed CA certificate or one signed by an acknowledged root
CA, such as VeriSign.
• We assume the CA certificate can be distributed efficiently and se-

curely. All the client machines need to have such a certificate in-
stalled in their Web browser CA certificate list (unless the certificate
is signed by one of the well acknowledged root CAs). All other servers
in the system need to possess the CA certificate.
• We assume the root certificate can be revoked.3 A mechanism is

needed that notifies all clients and servers.
• We assume the (long-lived) certificates issued to the services can be

revoked.

5.3.2 Web Server

This section describes the Web server’s role in processing a request for a Ker-
berized service. Our goal is to provide the Web server with a means to access
resources on a user’s behalf. We built a Web server plugin that engages in proxy
authentication by performing the following actions: (i) authenticates the user,
(ii) requests Kerberos credentials from a credential translator, and (iii) fulfills
the user’s request by accessing a Kerberized service.

Client authentication takes place in the SSL handshake. We assume Alice
possesses a certificate verifiable by the Web server, i.e., the certificate must
be issued by a certification authority trusted by the Web server. A client can
obtain such a certificate through the KX.509 protocol. However, the use KX.509

protocol is not required, a client can acquire an X.509 identity certificate through
other channels.

The Web server records a transcript of the handshake, then presents the cap-
tured transcript to a Kerberized Credential Translator (described in Section 5.3.3)
for verification, if successful, receives and caches Kerberos credentials, and fi-
nally uses them to access a Kerberized service.

The intuition behind capturing the handshake is to provide the evidence to
the KCT of the client authentication by the Web server. The details of the
captured handshake are shown in Figure 5.1. The SSL transcript contains all
the message up to and including CertificateVerify, which serves as the proof
of client’s knowledge of the private key. Other expects of the handshake such
as hello messages are used to prevent replayed attacks.

3We know it usually cannot.

44 CHAPTER 5. KERBERIZED CREDENTIAL TRANSLATION

1. Client → Server: Client Hello (CH):

Version, Random Num, SessionID, CipherSuites
2. Server → Client: Server Hello (SH):

Version, Random Num, SessionID, CipherSuites
3. Server → Client: Server Certificate (SC):

X.509 certificate
4. Server → Client: Server Certificate Req (SCR):

Cert Type, CA chain
5. Client → Server: Client Certificate (CC):

X.509 certificate
6. Client → Server: Client Key Exchange (CKE):

[Key material]KWSPK

7. Client → Server: Certificate Verify (CV):

[HashKMK (CH,SH,SC,SCR,CC,CKE,CV)]Kprivate

Figure 5.1: SSL transcript. The details about each of the SSL messages are
presented. Some of the message were omitted, such as ServerHelloDone and
ServerKeyExchange (and others). CertificateVerify messages contains a signed
hash of all the messages seen up to this step. (An abbreviation for each of the SSL
messages is used to identified each message.) This message is used to do client authen-
tication and is not present otherwise. We denote Kprivate to be the user’s private key.
KMK is the key generated from the key material sent by the client in ClientKeyEx-

change. We call it the SSL session key.

• ClientHello carries a version, random number (first four bytes occupied
by a timestamp), session id, which allows the user to resume a previous
session, and cipher suites.
• ServerHello confirms the version and either creates a new session id if

this is a new session or agrees to continue a previously established ses-
sion, thus forgoing the rest of the handshake. ServerHello states the
cipher suite to be used. A server sends its Certificate and requests the
user’s in CertificateRequest. ServerHelloDone specifies the end of the
negotiation phase.
• A client sends her public key certificate in Certificate. ClientKeyEx-

change message contains the session information encrypted with the server’s
public key, KWSPK . Key material included in this message depends on the
key exchange protocol. For example, in the case of RSA, a client generates
a premaster secret that both parties use to generate key (encryption and
digest) material, including the master key, KMK , some times also referred
to as the SSL session key. A client also sends CertificateVerify, which
includes a key-based digest of all the messages prior to this one signed with
the client’s private key. The server uses the public key from the client’s
certificate to verify the client’s identity.

Web server to improve performance caches user’s Kerberos credentials. The

5.3. DESIGN 45

1-4 Original Kerberos done once per lifetime of a session

5. Web Server → KCT: TKT, Auth, SSL transcript, {MK, Service}KWS,KCT

6. KCT → Web Server: TKT={Alice, Service, KWS,Service}KService ,
{KWS,Service, T}KWS,KCT

Figure 5.2: Credential translation protocol. Steps 1-4, not shown, indicate
Kerberos authentication of the Web server. They are performed once per the lifetime
of a service ticket for the KCT service. Steps 5 and 6 show the conversation with the
KCT. Service is the requested backend service. Depending on the version of SSL, an
SSL secret key, MK is included in the request to the KCT.

lifetime of the service ticket issued by the credential translator should be short,
minimizing potential misuse of credential. At the same time, the service ticket
should have a lifetime long enough that multiple requests from the user do not
incur the cost of getting a service ticket each time. A compromise of the Web
server enables the intruder to use the currently cached credentials and to acquire
credentials on the user’s behalf for any of the requests to this compromised Web
server.

5.3.3 Kerberized Credential Translator

We define a Credential Translator (CT) as a service that converts one type of
credential into another. In this section, we introduce a Kerberized credential
translator (KCT) that converts PK credentials to Kerberos credentials.

Figure 5.2 shows the KCT protocol. The protocol depends on the version of
the SSL used due to differences in the format of the CertificateVerify message
between the SSL and TLS. Currently, most browsers and servers still use SSL,
thus we will describe the KCT protocol based on it. A discussion about the
impact of using TLS instead of SSL is provided later.

First, the Web server authenticates to the KCT by presenting a service
ticket, {Web Server, KCT, KWS,KCT }KKCT , and the corresponding authenti-
cator, {T}KWS,KCT

. Along with its Kerberos credentials, the Web server sends
the SSL transcript, the name of the service ticket being requested, and the SSL

session key. After validating the Web server’s credentials, the KCT performs
the following steps:
• Validates user and server certificates and checks that each was signed by

46 CHAPTER 5. KERBERIZED CREDENTIAL TRANSLATION

a trusted CA.
• Verifies client’s signature in CertificateVerify by recomputing the hash

of the handshake messages up to CertificateVerify and comparing it to
the corresponding part of the SSL handshake.
• Verifies that the identity inside of the server’s certificate matches the Ker-

beros identity. This step is needed to ensure that the Web server partici-
pated in the SSL handshake.
• Assures the freshness of the transcript, by checking the freshness of a

timestamp or a nonce present in the hello messages. In the latter case, the
Web server acquires a nonce from the KCT and includes it in ServerHello.
• Generates a service ticket for the user.
• Encrypts the session key included in the service ticket under the Web

server’s session key, KWS,KCT .
• Returns the ticket, authenticator, and encrypted session key to the Web

server.
• Logs the transaction for postmortem auditing.
We see that the KCT needs access to the database of service keys maintained

by the KDC. Consequently, the KCT requires the same physical security as
the KDC. In practice, we run the KCT on the same hardware as the KDC,
which achieves the physical security requirement and sidesteps the challenge of
consistent replication of the Kerberos database.

5.3.4 Security Analysis

In this section, we discuss the security of the design of the system. First, we
introduce a model of the system, then we sketch a threat model and attacks we
consider to be appropriate for the environment.
Threat Model that we consider has following assumptions. First, we state the
general threat assumptions such as communication medium is insecure. Any
threats that apply to SSL (e.g., man-in-the-middle) and Kerberos (e.g., key DB

compromise) protocols apply here. We list the sets of beliefs (trust assumptions)
each participants has about the system and how each can misbehave.
• Clients: are not trusted by the servers and thus required to authenticate

(in turn, mutual authentication is assumed). Clients trust the Web server
to acquire the appropriate credentials for a given request. Client machines
can be compromised.
• Web server: is not trusted by the client (or the trusted-third party)

to perform any requests on client’s behalf unless specifically asked by the
client in the form of initiated SSL-protected request. The Web server must
be constrained on the type of services it is allowed to ask. The Web server
must be prevented from mounting a (non-Kerberos related) replay attacks
against the reuse of client’s credentials.
• Backend server: provides services only to authorized clients, thus it

authenticates and checks for authorization for all requests.
• Trusted-third party: is a trusted entity by all other participants in the

Kerberos space. However, it is not assumed to be trusted in the PK space.

5.4. APPLICATION: WEBAFS 47

Figure 5.3: WebAFS architecture. We show details of architectural components
present in the implementation of the proposed system. The new components are:
kpkcs11, kx509, KCA, kct module, and KCT. The first three components are for cre-
dential translation from Kerberos to PK credentials. The last two effect translation
in the other direction.

• Adversary: can eavesdrop on all communications, thus able to capture
all SSL handshakes. We assume an adversary has valid Kerberos and PK

identities.
Attacks we are trying to defend against:
• Unauthorized user gaining access to a backend service.
• Web server reusing the SSL handshake.
• Web server requesting Kerberos credentials without client’s request.
• Web server requesting unnecessary Kerberos credentials.
• KCT eavesdropping on the communication between the Web browser and

the Web server.

5.4 Application: WebAFS

We have implemented a prototype that allows a user to submit requests to a
Web server that accesses a Kerberized AFS file server on the user’s behalf. An
overview of the system is shown in Figure 5.3. It combines both systems: KX.509

and KCT. We now look more closely at the problems that arise from differences
in the SSL protocol specifications and implementations, and from harsh browser
realities, which make the solution more complex and introduce delays.

To enable the server to act on a user’s behalf, we added a module to the
Apache Web server, under 2000 lines of code. The initial version of the system
was implemented to work with a version of the OpenSSL (versions 0.9.5 through
0.9.6c) library modified to save the SSL transcript. Modifications to the library
are minimal (under 200 lines of code) and include a new data structure and calls
to a function that saves the incoming and outgoing handshake messages.

OpenSSL version 0.9.7 (still unreleased version) includes a specialized callback

48 CHAPTER 5. KERBERIZED CREDENTIAL TRANSLATION

mechanism that allows us to listen on the handshake without actually modifying
the library. However, to be able to capture the on-going handshake Apache’s
mod ssl module (which is Apache’s implementation of an SSL server) requires
further (minor) modifications. There exist a solution that does not requires
additional modification to the existing code but it pays the penalty of engaging
in an additional SSL handshake.

In our prototype, we use timestamps present in SSL handshake to check the
freshness of the handshake. Unfortunately, SSLv2 does not include timestamps
in the hello messages. Worse yet, Navigator by default starts the SSL handshake
with an SSLv2 ClientHello message. Only after receiving the reply from the
Web server suggesting the use of SSLv3 does the browser switch to the higher
version. The resulting handshake is overall a valid handshake, but lacks an
SSLv3 client timestamp. To get the timestamp, we require the Web server to
request renegotiation.

Renegotiation is another special feature of the SSL protocol. To reduce the
risk of key compromise, the SSL protocol supports renegotiation of the security
context. If the server wishes to start a (new) SSL session (which not necessarily
corresponds to a new connection), it sends an empty ServerHello message to
the client. However, it is always a client’s responsibility or choice to actually
initiate a new handshake by sending a ClientHello message, i.e., a client can
refuse to engage in a new SSL handshake or just ignore the requests.

SSL specifications allow renegotiation only after the ongoing handshake is
complete, so two full SSL handshakes must take place.

In the KCT protocol based on SSL the SSL session key is revealed to the
KCT. It gives the credential translator the power to eavesdrop, so we require
the Web server to request renegotiation to establish a new session key, one that
is not known to the KCT. This is a trade-off between security and performance4.

Establishing an SSL session requires sophisticated cryptographic calculations
and numerous protocol messages. To minimize the overhead of these calcula-
tions and messages, SSL provides a mechanism by which two parties can reuse
previously negotiated SSL parameters. With this method, the parties do not re-
peat the cryptographic operations, they simply resume an earlier session. The
user proposes to resume a previous session by including that session’s SessionID
value in ClientHello. It is up to the server to decide whether to allow the
reuse of the session. We call this a partial SSL handshake. This feature of the
protocol requires special attention.

When a partial SSL handshake happens, the Web server checks if AFS creden-
tials are cached; if so, then the server proceeds with the AFS request. Otherwise,
the Web server forces an SSL renegotiation followed by a full SSL handshake.
After creating a transcript, the Web server, as before, submits a request to the
KCT for an AFS service ticket.

As of this writing, the MIT Kerberos libraries are not thread-safe, so the
KCT cannot be implemented as a multithreaded application. To improve per-

4One could argue that because the KCT is as powerful as the KDC and can impersonate
any user, then the KCT itself can place a request to a Kerberized service, and, thus, the KCT
can be trusted with the knowledge of the SSL session key.

5.5. PERFORMANCE 49

Figure 5.4: Timelines for WebAFS requests. We show the components of a
user request in four scenarios illustrated as timelines. The legend identifies each of
the components involved. We consider all the different versions of an SSL protocol,
v2, v3, TLSv1, and a partial handshake. Access to an AFS file server is used as an
example.

formance, we spawn a process to handle incoming requests. To achieve the
required physical security, we run the KCT on the same hardware as the KDC.
Implementation of the KCT is under 2000 lines of code.

5.5 Performance

In this section we discuss the performance of the system by examining the cost
of making a request to a Web server, which, in turn, requests a service from a
backend server on a user’s behalf. The experiments described in this section were
performed on an unloaded Intel 133MHz Pentium workstation running RedHat
Linux 6.2 (kernel version 2.2). Our focus is on understanding overhead induced
by the system, so all the components were executed on the same hardware to
avoid network and file access delays.

The software was tested against commodity browsers, but it is hard to glean
detailed measurements from commercial software, so we used OpenSSL tools to
mimic the browser’s actions. We used OpenSSL’s generic SSL/TLS client, called
s client. All requests were made for a 1K file. For each of the test cases 30
trials were measured and averaged.

We define a browser session to be the time from launch to termination of
the browser application. We define a server session to be the time from the first
request to a Web server until the termination of the browser application. Within
a browser session a user starts multiple server sessions. Requests for different
files from the same Web server fall into a single server session. Requests to
different Web servers are associated with different server sessions.

Figure 5.4 shows the breakdown of a user’s request into the basic compo-

50 CHAPTER 5. KERBERIZED CREDENTIAL TRANSLATION

nents. Four scenarios are illustrated as timelines. We describe each of the
scenarios in detail and point out which ones are more common. Table 5.2 sum-
maries the end-to-end delays seen by the user for different types of requests.
We divide requests into two groups, depending on whether user’s credentials
are cached at the Web server.
No cached credentials. First, we consider the cases where user’s credentials
are not cached. This happens when a user is making the first request to the
Web server or when her credentials have been evicted from the Web server’s
LRU cache.
• Once a day: SSLv2 hello no TGT and SSLv3 hello no TGT. In these

two scenarios, the Web server has stale credentials so the user’s request
gets penalized by the time needed by the Web server to get new Kerberos
credentials. The lifetime of our Web server’s TGT is 24 hours.
• Once per server session: SSLv2 hello 1st request. When contacting

a Web server for the first time, the default behavior of Navigator is to
start with an SSLv2 ClientHello message. Until the browser is restarted,
all subsequent requests will start with an SSLv3 ClientHello. This sce-
nario measures the overhead of the three handshakes and a KCT request.
The first additional handshake produces a valid timestamp in the Clien-

tHello message. The second additional handshake renegotiates the SSL

session key, which was revealed to the KCT.
• Most common request: SSLv3 hello request. Explorer starts with an

SSLv3 ClientHello. Any requests from this browser fall either into this
category or the partial handshake.

Cached credentials. We now review the scenarios where the user’s creden-
tials are cached at the Web server. Caching is important because it saves the
overhead of getting Kerberos credentials. Furthermore, no SSL renegotiation
plus handshake is needed at the end. The only overhead the system imposes is
that associated with token management.
• Frequent: Partial handshake cached credentials. The lifetime of the ses-

sion key negotiated in the full handshake is configurable by the web server.
If more than one request is made within five minutes of a full handshake,
a partial handshake takes place. (Five minutes is a default value used by
Apache Web servers). We can safely assume that user’s credentials are
already cached at that point. The time required for a partial handshake
is considerably smaller than for a full handshake. The frequency of these
requests depends on the user’s access pattern.
• Common: SSLv3/TLSv1 cached credentials. Once the user contacts a

Web server, her credentials are cached until they get evicted due to expired
lifetime or lack of space. When requests to the Web server are separated
by more than five minutes, a user experiences end-to-end delay presented
in last row of Table 5.2.
• Unlikely: SSLv2 hello cached credentials. The browser sends an SSLv2

ClientHello message to the Web server if it never contacted it within
the current browser session. However, it is still possible for the user’s
credentials to be cached at the Web server if the user restarted the browser

5.6. FUTURE WORK 51

within the lifetime of the cached credentials.

End-to-End Time(s)

SSLv2 hello no TGT 4.08

SSLv2 hello 1st request 4.04

SSLv2 cached creds 2.50

SSLv3 hello no TGT 2.86

SSLv3 hello request 2.80

SSLv3 cached creds 1.25

Table 5.2: End-to-end delays. Each of the scenarios represents a possible user
request. We measured end-to-end latency seen by the user.

To summarize, an SSL handshake costs 1.25 seconds. Delays associated with
refreshing a TGT and making KCT requests are small: 0.02 and 0.26 seconds,
respectively. In the most common case, credentials are cached and SSLv3 con-
nections are used, so the system incurs negligible overhead. Further testing in
more complex environments is necessary and will be done in the future. How-
ever, these preliminary results are encouraging.

5.6 Future Work

In this section we outline the scope of future research. Section 5.6.1 proposes
to enhance the KCT’s authorization policy and investigate how to allow users
control delegation. Section 5.6.2 proposes extensions of the design to other ap-
plications (e.g., Telnet) and other types of credentials (e.g., certificates). Section
5.6.3 proposes further performance studies to evaluate the design.

5.6.1 Security Policy Issues

The authorization model of the credential translator is primitive and is the focus
of our future work. The current model supports generic access control lists: for
each Web server there is an entry listing the Kerberized services for which it can
request tickets. We propose to investigate whether or not an ACL-based policy
is sufficient for the KCT.

It might be desirable to have access control based on the principal on whose
behalf the Web server is requesting credentials. For example, for some princi-
pals less (or more) services are available in this scheme. The policy must take
then into account three entities: the principal, the Web server, and the service.
Authorization could be based on the principal group membership, only if a prin-
cipal belongs to a particular group, the Web server is allowed to the specified
service, or the Web server’s group membership, only if it is a departmental Web
server, the Web server is allowed to request tickets to the specified service. The
authorization decision might depend on other attributes, e.g., time of day. In
this case, if the Web server is providing a registration service for the users, then

52 CHAPTER 5. KERBERIZED CREDENTIAL TRANSLATION

the KCT can enforce control over the time period this service is available for
specific users. This might be useful if registration is offered periodically, so that
the Web server does not need to be configured to handle the on and off periods.

Authorization could be based on specific attributes of the principals. It
might be desired to be able to make a decision about a principal from the a
different (but trusted) domain than that of the KCT. For example, a user with
the certificate given to aglo@engin.umich.edu is trying to access a resource (e.g.,
file) in the umich.edu domain. This is closely related to the namespace issue
discussed in Section 4.5.2. An more interesting scenario is to allow the user with
the certificate aglo@mit.edu to access a resource in the umich.edu domain. A
simple solution could be to have a policy that states: anybody from the mit.edu
domain is allowed access to the AFS file server with the predefined identity
(e.g., mituser). A question about general PKI to Kerberos identity mapping
needs further research.

Another interesting issue that requires further research and related to the
KCT authorization decision is whether or not and how to allow principals to
control which services the Web server is allowed to access on their behalf. One
solution could be for each request to prompt the user for his permission to let
the Web server act on user’s behalf and somehow propagate that decision over
to the KCT. However, as has already been shown with cookies, users do not like
to be bothered. Instead, browsers provide coarse-grained configuration options
to accommodate cookies. In theory, the same could be done for expressing rules
about Web servers’ actions. Two problems arise. First, we lack the means
to state such policies. Second, we lack the means to propagate policy to the
KCT securely. Major modifications to the browser and Web server software are
required to achieve both. An alternative solution could be to transfer policy
requirements inside the attribute certificate, or encoded as attributes inside of
the identity certificates. Only the identity certificate is used in the current
infrastructure, so a proper mechanism for transferring the attribute certificate
is required.

The KCT is the central place where junk keys are used. While short term
certificates eases revocation problems, the KCT offers a place to eliminate the
problem all together. When the need to revoke a certificate arises, it is simply
reflected at the KCT.

Several other issues need to be addressed. In the current model, the cap-
tured handshake does not reflect the type of request that comes after the secure
connection is established. Another issue is multi-staged request: a single request
from the user might require the Web server to perform multiple actions, possibly
communicate with multiple Kerberized services. It might be more efficient to
extend the protocol to request multiple credentials at once.

5.6.2 Extending Credential Translation

Credential translation need not apply only to Web traffic but can be extended
to any SSL-enabled client and SSL-enabled server communication, e.g., SSL-
enabled Telnet. Assuming a user has a certificate on his local computer, we can

5.6. FUTURE WORK 53

thus obviate the need to send his password over the network. A user can use his
certificate, mutually authenticate with the remote host (telnetd process), and
empower it to act on his behalf (e.g., acquire Kerberos tickets).

Furthermore, credential translation need not be limited to producing Ker-
beros credentials. For example, a Web server can request a certificate on client’s
behalf. A simple solution is presented in the next section where the Web server
requests Kerberos credentials to talk to the KCA and then initiates a kx509
protocol. The two steps could be combined into one.

5.6.3 Performance

We need to perform further performance studies measuring page-serving through-
put under trace-driven workloads. The throughput of the Web server can be
measure in terms of the number of connections or number of bytes transferred.
We already studied the end-to-end client delays imposed by the proposed sys-
tem. We need to study how the system effects overall performance of the Web
server.

54 CHAPTER 5. KERBERIZED CREDENTIAL TRANSLATION

Chapter 6

Practical Distributed
Authorization

6.1 Introduction

Reliable high speed end-to-end network services are increasingly important for
scientific collaborators, whether separated by large distances or located just
across campus. Our experience shows that long haul networks demonstrate
good performance (thanks to overprovisioning), but the last mile - from the
edge of the campus network to the desktop – is often a network bottleneck.

Quality of Service functionality is a common feature of network hardware.
Recent studies show the viability and usefulness of these features to control net-
work resources. Currently, configuration of network hardware is done by hand.
While several efforts [57, 109] are attempting to produce standard protocols
to enable automated configuration across network administrative domains, it is
not clear yet which protocol(s) will be embraced.

Our work aims to service the need for an automated network reservation
system to provide reliable last mile networking for video, audio, and large data
transfers. Reliable end-to-end network service between participants is achieved
by reserving network resources within the end point institution networks, cou-
pled with the demonstrated good performance of the interconnecting long haul
networks where no network resource reservation is needed.

In automating network configuration, security of all communications is vital.
Network hardware is a prime target for malicious hackers, because controlling
the routing and resource allocation of a network enables all other attacks. What
makes this security problem difficult is the cross-domain nature of end-to-end
network resource allocation. Requesting end-to-end network resource allocation
between the local domain and a remote domain, a user needs to be authenticated
and authorized in both domains before the request can be granted.

Our work is based on the Globus General-purpose Architecture for Reser-
vation and Allocation (GARA) system [30, 32, 31, 40]. The goal of the GARA

55

56 CHAPTER 6. PRACTICAL DISTRIBUTED AUTHORIZATION

architecture is to create a flexible solution that satisfies requirements of different
types of resources (networks, CPUs, disks, etc.), while providing a convenient
interface for users to create both advance and immediate reservations. GARA

uses the Globus Grid Security Infrastructure (GSI) [17] for authentication and
authorization. An attractive feature of GSI is that it performs cross-domain
authentication by rellying on a Public Key Infrastructure (PKI) and requiring
users to have long term public key (PK) credentials.

GSI provides coarse-grained access control. A flat file, called the gridmap
file, stores mappings from PK credentials (Distinguished Names, (DN)) to local
user names. A user is allowed access to Globus services if there is an entry
corresponding to this user in the gridmap file. This all-or-nothing access control
policy is extremely limiting. Authorization decisions in QoS are based on many
parameters such as the amount of available bandwidth, time of day, system
load, and others. We propose to control resource usage with a policy engine
and expressive security policies.

We introduce a practical system that shows a design and implementation
of GARA services that offer automated network reservation services to users.
We leverage solutions proposed in the previous two chapters and use GARA

services as an application of the proposed protocols. The contributions of this
systems are twofold. First, we provide a fine-grained cross-domain authorization
for GARA that leverages existing institutional security and group services, with
universal access for users. We identify and discuss issues involved. Second, we
eliminate the need for long term PK credentials and associated overheads that
are required by other systems. We describe the implementation of an easy and
convenient Web interface for making reservation requests.

The remainder of this chapter is organized as follows. Section 6.2 describes
the GARA architecture. Section 6.3 discusses related work. Section 6.4.1 de-
scribes the KX509 and KCT services described in Chapters 4 and 5, and shows
how they allow ubiquitous access to GARA by enabling a reservation to be made
via the Web, obviating the need to install Globus software on workstations. Sec-
tion 6.4.2 presents an architecture for distributed authorization that employs a
shared namespace, delegated authorization through secure and trusted channels
and a signed authorization payload, and the policy engine used to make the au-
thorization decision. Section 6.5 is a step by step description of the enhanced
GARA system. Section 6.6 identifies issues that require further research.

6.2 Overview of GARA Architecture

GARA relies on Globus GSI for security mechanisms, i.e., distributed authen-
tication and coarse-grained authorization. To support distributed computing
environments GSI relies on the public key cryptography. It requires users to
have long term PK credentials signed by a certification authority (CA). Long
term keys are used to create proxy certificates that are used for requesting ser-
vices. At each resource a global to local identity mapping is enforced to provide
limited authorization. It also allows for a resource to specify security policies

6.2. OVERVIEW OF GARA ARCHITECTURE 57

Gatekeeper Resource
Manager

Hardware
Resource

client GSS_API Nexus_API Telnet

Figure 6.1: GARA Architecture. This figure shows the process of reserving
local network resources with the GARA architecture. Long term user PK credentials
are stored in the client workstation file system. A Globus-Gara Service consists of a
gatekeeper and a resource manager all residing on a single machine. On each link a
communication mechanism is specified

based on locally defined principals. To secure communication, GSI uses GSS-

API [69] an authentication mechanism defined by the SSL protocol. Figure 6.1
shows a GARA reservation request step by step. It is assumed that the user has
already acquired the long term certificate.

1. The user generates a proxy certificate and signs it with his long term key.

2. The user runs the GARA client program and inputs reservation parameters
via a command line interface. A GSSAPI SSLEAY secured connection is
established between the user and the gatekeeper. The user is authenticated
with the proxy credentials generated in Step 1. The reservation request
parameters are passed in the RSL (Resource Specification Language) form
[127]:

&(reservation-type=network)(start-time=997212110)(duration=5)

(endpoint-a=141.211.92.130)(endpoint-b=141.211.92.248)

(bandwidth=5)(protocol=tcp)

3. The gatekeeper checks for an entry in the gridmap file that matches the
Distinguished Name field in the proxy certificate used to authenticate the
user. This file is GSI access control mechanism. A user is either authorized
to use the globus system and place any kinds of reservations or use the
resources or not. A fine-grained authorization mechanism is obviously
lacking here.

4. The gatekeeper in turn forwards the RSL to the resource manager using
the Nexus API [60, 63]1. diffserv manager is a specific type of a resource
manager responsible for a particular type of quality of service reservation.

5. The diffserv manager checks its configuration files for the two endpoints
(source and destination IP addresses) and on the availability of network
bandwidth.

6. The diffserv manager configures the routers. Currently, an Expect script
Telnet’s to the appropriate routers and sets up the flow 2. Expect [37] is

1Currently, Nexus protocol does not offer any security and becomes a security hole in the
request reservation path. Communication between the gatekeeper and a resource manager
should be secured using GSS API.

2Using Telnet between the resource manager and the resource is not secure and needs to be
replaced by secure protocol. We choose to use SSH to securely communicate with the routers.

58 CHAPTER 6. PRACTICAL DISTRIBUTED AUTHORIZATION

a tool for automating interactive applications such as telnet, ftp, passwd,
fsck, rlogin, tip, etc.

6.3 Related Work

The Globus MyProxy [98] initiative provides a trusted server to store user’s
delegated credentials, indexed by a tag and a password. Later, a service can
contact a MyProxy server, present a tag and a password and receive correspond-
ing credentials (e.g., certificate or Kerberos ticket) on a client’s behalf. Each
service requires a different tag and password, forcing users to manage many
passwords. This approach requires users to type in their passwords into HTML

forms. HTML forms are easily reproduced by a malicious hacker who collects
passwords. He can obtain a certificate, signed by one of the default Certificate
Authorities supported by browsers, and run a Web server, providing a spoofed
login HTML form. However, by examining the credential, an activity most users
do not bother doing, the user can tell the spoofed login form.

The Grid Portal Architecture [54] is a Web interface to Grid Computing
resources that uses MyProxy Services for client authentication. The GARA

Web interface differs from the Grid Portal in several important ways. Access in
our scheme is via done an https stream and requires mutual SSL authentication,
which in turn requires a user certificate, thus obviating the need for users to
type passwords in HTML forms, as it is done in the Grid Portal.

The Community Access Service (CAS) [97] is a proposed Grid authorization
service that the user calls prior to making a request for Grid resources. CAS

returns a signed capability to indicate a successful authorization request. The
capability is then added to the Grid resource request.

The GARA client is designed to contact each end domain GARA service. In
the future, GARA client will contact the first GARA service, which in turn will
contact other bandwidth brokers (BB), needed for the end-to-end reservation.
Sander et al. discusses the bandwidth broker to bandwidth broker protocol
in [107]. The Simple Inter-Domain Bandwidth Broker Specification (SIBBS)
[109] is a simple request-response bandwidth broker to bandwidth broker broker
protocol being developed by the Internet2 QBone Signaling Design Team. It is
anticipated that GARA will be an early development code base for SIBBS.

Authentication Authorization Accounting and Auditing (AAAA) research
group produced Internet drafts on distributed authorization requirements [38],
framework [133] and architecture [24].

6.4 Design

6.4.1 GARA Web Interface

Many sites, such as the University of Michigan, lack a PKI, but they do have an
installed Kerberos [94] base. The University of Michigan has developed a service
that allows users to access Grid resources based on their Kerberos credentials.

6.4. DESIGN 59

client

KDC KCA KCT

GatekeeperWeb
Server

SSL GSI GSI GARA SSH Network
Hardware

Figure 6.2: KX509 GARA Web Interface. This figure how local network
resources are reserved with the GARA Web interface. KX509 junk keys replace long
term PK credentials.

The KX509 [34, 67] system translates Kerberos credentials into short-lived PK

credentials, or junk keys, which in turn can be used by browsers for mutual SSL

authentication or by GSI for Globus authentication.
Junk keys have several advantages over traditional long-lived PK credentials.

They have short lifetimes, so the revocation problem [10] is largely obviated.
While, in a traditional PKI, long term credentials put the ease of user mobility
in question, KX509 users can obtain new junk keys at each workstation.

KX.509 creates a new public/private keypair and sends the public key to a
Kerberized Certificate Authority (KCA) over a Kerberos secured channel. Using
the presented public key, the KCA creates and signs a short term X.509 identity
certificate.

In order to make network resource reservations convenient for users, we built
a GARA Web Interface. A user makes a reservation by filling out a GARA net-
work reservation Web form. All requests are SSL protected and require mutual
authentication. As oppose to a traditional password-based user authentication,
we use short-lived user certificates, priorly acquired with KX.509. After the Web
server authenticates the user, it contacts a Kerberized Credential Translation
(KCT) [67] server, presents appropriate credentials, and requests Kerberos cre-
dentials on the user’s behalf. Next, the Web server runs KX509 on the user’s
behalf, which creates a new junk key for the user on the Web server. This junk
key is then used to create Globus proxy credentials. GARA client code resides on
the Web server and uses Globus proxy credentials. Figure 6.2 gives an overview
of the GARA Web Interface.

6.4.2 Distributed Authorization Design

In a cross domain distributed authorization scheme, authorization decisions are
made even if the requestor and resources reside in separate domains. Often
authorization decisions are made by a policy engine that applies policy rules to
a set of input attributes. These attributes might include user attributes such as
group membership or environmental attributes such as time of day. Attribute
information can come from a variety of sources: local services, environment,
configurations, or attached to the resource request. We separate the authoriza-
tion process into two phases: gathering of attributes and running of the policy
engine.

60 CHAPTER 6. PRACTICAL DISTRIBUTED AUTHORIZATION

In designing the distributed authorization system, we must address the lo-
cation where the authorization decision takes place. We discuss how the use of
shared namespace and delegated credentials are the key to creating a practical
authorization scheme. We also believe in utilizing existing local authorization
services to require as little replication of information as possible.
Location of authorization decision: The question that needs to be answered
is: where is the best place in GARA to make the authorization decision? Three
possible locations exist: Web server, gatekeeper, and resource manager.

Prior to initiating any contact with the desired resource, the Web server
can contact an authorization service and provide user’s identity and resource
request information. Having such an authorization service would perforce need
to have a policy for each resource and information about each user. However,
this choice presents extra communications when the resource is not available,
or when fine-grained authorization is not required.

The gatekeeper is expected to handle numerous requests, so performing the
authorization decision at the gatekeeper could have an impact on the gate-
keeper’s performance. At the gatekeeper, it is still unknown if the resource is
available, so as above, the extra communication and work to make an autho-
rization decision could be wasted effort. We conclude that adding authorization
at the gatekeeper would be counter productive.

The best place to enforce authorization in the GARA architecture is at
the resource manager where each service is capable of stating, enforcing, and
modifying its policies without depending on the administration of the Globus
architecture at large.
Shared namespace. Central to any authorization service design is the forma-
tion of an attribute namespace that is understood by policy engines. Frequently,
the primary concern in the authorization decision is related to a group mem-
bership question: does this user belong to appropriate groups? Consequently,
a security policy would enforce the restricted membership for specific actions.
Within a domain, the statement of group membership is well defined. Both user
identity information and a group namespace are available locally.

A shared group namespace, presented to policy engines in multiple domains
and used to control access to resources in multiple domains, is defined by a num-
ber of groups with common names across domains. In its existing group service,
each domain creates groups with these names and manages user membership as
any local group. Other attributes presented to the distributed policy engines
such as the amount of requested bandwidth or start-time of the request are al-
ready encapsulated in a shared namespace in that they are coded as name,value
pairs in the request.
Signed authorization payload. At the remote service, we do not add a
callback to the local group service to determine group membership, instead
authorization information is added to the existing resource request.

The local GARA resource manager queries the local group membership ser-
vice for the subset of shared namespace groups in which the requestor is a
member, and passes the group list along with the request parameters to its pol-
icy engine to make an authorization decision. If the request succeeds, the local

6.5. IMPLEMENTATION 61

client

KDC KCA KCT

Gatekeeper

Gatekeeper

Policy
Engine

Policy
Engine

Web
Server

1 4

3

SSL

52

GSI GSI

6 7
GARA SSH Network

Hardware

GSI GARA SSH Network
Hardware

GSI

local domain

remote domain

8 9

10

11

12

13

14

PTS

Figure 6.3: Network Resource Reservation Data Flow. KDC is a Kerberos
Key Distribution Center. KCA is a Kerberized Key Signer. KCT is a Kerberized
Credential Translator. KDC and KCT must share hardware because both require
access to the Kerberos database. Steps 1,2,4 and 5 use Kerberos authentication.

GARA resource manager creates an authorization payload consisting of the
requestor’s distinguished name and the group list. To secure the authorization
payload, we require the local GARA resource manager to sign the authorization
payload before adding it to the reservation reply returned to the GARA client
running on the Web server. The reservation request is forwarded to the remote
GARA who validates the signature on the received authorization information
before passing the group list as input to its policy engine. Thus we piggy-back
the group membership information on the existing reservation request commu-
nication.
Policy Engine. After all the requestor’s attributes such as group membership
and request parameters have been established, the fine-grained authorization
decision can be made. In general, policy engines accept attribute-value pairs
as input, compare the input attributes to a set of policy rules, and return a
pass/fail response. The granularity of the authorization decision is embodied in
the complexity of the policy rules that must be satisfied by the input attribute-
value pairs. To allow different policy engines, the authorization callout has a
generic API that passes information about the requestor and the action to the
policy engine. We chose KeyNote [12, 13, 14] for our policy engine because of
its flexibility and easy availability.

6.5 Implementation

We successfully demonstrated our modifications to GARA by reserving band-
width for a video application running between the University of Michigan and

62 CHAPTER 6. PRACTICAL DISTRIBUTED AUTHORIZATION

CERN3. Bandwidth is reserved by filling in a Web form served by a modified
Apache Web server that runs the GARA client. The GARA client communicates
with separate GARA services at each endpoint domain, as shown in Figure 6.3.
The GARA services use KeyNote authorization policies configured to require
bounded request parameters for bandwidth, time and duration. Group mem-
bership is also required. We demonstrated that if any of the policy parameters
are not satisfied, e.g. too much requested bandwidth or incorrect AFS PTS

group membership, the reservation fails.
A successful reservation results in configuring the end domain Cisco ingress

routers with the appropriate Committed Access Rate (CAR) rate limit, which
marks the packets and polices the flow. The participating routers are statically
configured with WRED, Cisco’s implementation of the Random Early Detection
(RED) class of congestion avoidance algorithms.

What follows is a step by step description of an end-to-end network reserva-
tion using the enhanced GARA, also illustrated in Figure 6.3.

1. User (locally) executes kinit and acquires Kerberos credentials.

2. User (locally) executes kx509 and acquires junk keys.

3. Using a browser, a user makes an https request for the network resource
reservation page. The junk key, obtained in Step 2, is used for mutual
SSL authentication. Network reservation parameters such as source and
destination IP address, desired bandwidth, start time are entered into a
form and sent to the Web server.

4. The Web server kct module makes a Kerberos authenticated request to
the KCT and acquires a service ticket for the KCA service on the user’s
behalf.

5. The Web server kx509 module acquires and caches junk keys on behalf of
the user as in Step 2. Then, the Web server globus proxy init module uses
the newly created keys to create user’s Globus proxy certificate.

6. The Web server gara module constructs a reservation request to the local
gatekeeper using the Globus GSSAPI SSLEAY protocol and the proxy cer-
tificate. The local GARA gatekeeper looks for an entry in the gridmap file
that matches the corresponding distinguished name – a field in the Globus
proxy certificate (from Step 5). The DN and local id are attached to the
RSL (Resource Specification Language) string.

&(reservation-type=network)(start-time=997212110)(duration=5)

(endpoint-a=141.211.92.130)(endpoint-b=141.211.92.248)

(bandwidth=5)(protocol=tcp)(client-name=aglo)

(client-dn=287f42c19122ec08ddc679ba259070f9)

The last two attribute value pairs (client-name and client-dn) are the two
fields not present in the original GARA RSL reservation request. DN is a
considerably long string, so we use a hashed value of the DN instead.

3European Organization for Nuclear Research

6.5. IMPLEMENTATION 63

7. Using the Nexus API for interprocess communication, the local gatekeeper
forwards the RSL to the resource manager (diffserv manager).

8. The local id is passed to the group membership function, which performs
one of several actions, depending on configuration and on whether the
request is from a local or remote user. If the authorization data in this
RSL is null, the request is from a user in the local realm. In our settings,
group membership function queries a Protection Server (PTS) – a part
of AFS. The call can be easily replaced by a query to any local group
service such as an LDAP service or a flat file. The call is performed over
an authenticated channel using the diffserv manager’s identity. Prior to
accepting any connections, diffserv manager acquires AFS tokens needed
to authenticate with the PTS server.

9. The group membership information acquired in the previous step, the
reservation parameters, and a policy file are passed to the KeyNote policy
engine that makes an authorization decision. If the request does not satisfy
the current security policy, an error is returned back to the client and the
rest of the steps are not executed.

We now describe the basic pseudocode for the KeyNote policy engine
call with a group membership action condition. Figure 6.4 shows the
main actions of the resource manager. Figure 6.5 provides details of the
authorization decision function.

• requester: the requesting principle’s identifier.

• action description: the data structure describing an action contains
attribute value pairs that are included in the request. For example,
“system load ≤ 70” specifies an environment condition stating that
the current system load must not exceed 70%.

• SN groups: the groups in the action description, also added as at-
tribute value pairs describing the action. For example, “umich staff
= yes” states the request is a member of the umich staff group.

• policy: the data structure describing local policy, typically read from
a local file.

• credentials: the data structure with any relevant credentials, typi-
cally sent along with the request by the requesting principal. Before
making use of these credentials, their validity must be confirmed by
verifying a signature included in the credential data structure.

Figure 6.4 shows the main actions of diffserv manager.

Figure 6.5 provides details of the authorization decision function.

Figure 6.6 shows an example of a KeyNote top level security policy that
allows the action if the following conditions hold: an application domain
is called gara and the requested operation is reservation for the resource
of type bandwidth. Furthermore, if this is a local request, then bandwidth

64 CHAPTER 6. PRACTICAL DISTRIBUTED AUTHORIZATION

SN_groups = retrieve_group_membership(requestor);

result = authorization_decision(requestor, action_description, policy,

credentials);

if(result == "allowed") do the requested action

else report action is not allowed

Figure 6.4: Pseudo-code for the authorization mechanism in diffserv manager
.

session_id = kn_init();

retrieve_policy(&policy);

kn_add_assertion(session_id, policy);

for all attribute/value pairs

kn_add_action(session_id, attr, value);

result = kn_do_query(session_id);

Figure 6.5: Pseudo-code for the call to the KeyNote Policy Engine

for more than 100Mb is not allowed. If the request is from a remote user,
then amount greater than 10Mb is not allowed. If the current time is after
hours, then no restriction on bandwidth is enforced. The requestor must
be a member of grid bw group.

keynote-version: 2

local-constants: ADMIN_UM = "x509-base64:MIICrzCC"

authorizer: "POLICY"

licensees: ADMIN_UM

conditions: app_domain == "gara" &&

operation == "reservation" &&

type == "bandwidth" &&

((location == "local" && @amount <= 100) ||

(location == "remote" && @amount <= 10) ||

time == "night") && grid_bw == "yes");

Figure 6.6: Trusted assertion stating KeyNote top level security policy. Note
that the value of the key has been truncated.

If the KeyNote policy engine states that the action is not allowed, no
reservation is made by the local diffserv manager and an authorization
failure is returned to the Web server. As the result, the reservation pro-
tocol returns an authorization error back to the client. A success value
is returned to the client only if both local and remote authorization have
succeeded.

6.6. FUTURE WORK 65

10. Same as Step 7.

11. Same as Step 9.

12. Same as Step 10.

This design lets us express many policies, including who can request which
network resources and when such requests are valid. In the example we pre-
sented, the authorization payload is signed by one certificate, the remote GARA

diffserv manager. More broadly, a site may require the authorization payload
to contain assertions from other services. For example, a site might require that
users be U.S. citizens, verified by some specific Certificate Authority. Signed
assertions can be added to the authorization payload to accommodate such
requirements.

6.6 Future Work

In this section we outline the scope of future research.

6.6.1 Implementation Issues

In the current implementation, the size of the RSL string is fixed. We might
need to send a chain of certificates, where the size of one certificate is usually 1
KB. Because the size of the chain is not known in advanced, the size of the RSL

should be variable.

6.6.2 Policy Management

Writing KeyNote assertions is not intuitive. Furthermore, there is no assertion
management provided by the KeyNote library. Support for dynamic configura-
tion of KeyNote policies is needed.

6.6.3 Controlled Delegation

In Section 5.6.2 we mentioned that credential translation can be extended to
create credentials other than Kerberos ones. We propose to study the benefit
of combining the KCT and KCA steps into one. Undoubtedly, it will improve
a performance by reducing the request latency seen by the client. Doing so
also allows us to exercise additional control over the certificate that is being
created. A special certificate can be issued that prohibits delegation. In the
current scheme, the Web server gets a certificate equivalent in power to the
ticket granting ticket in Kerberos. The Web server has unlimited power to
impersonate the user in the public key environment. KCT was the solution to
restrict the Web server from having the unlimited power. A similar scheme is
required in this new environment.

66 CHAPTER 6. PRACTICAL DISTRIBUTED AUTHORIZATION

6.6.4 Namespace Management

We need to investigate the feasibility of the common namespace management.

Chapter 7

Research Plan

In this chapter, we summaries the future work and outline a schedule for com-
pleting the thesis.
• August 2002: Complete the performance study of the KCA. Complete

the investigation of alternating naming and corresponding KCA’s security
policies and propose an adequate design. Complete the investigation and
propose the design for issuing attribute certificates.
• October 2002: Complete the implementation and performance study of

the extended KCA. Complete the investigation of the appropriate KCT’s
authorization scheme. Complete the investigation and propose a design
of the key management scheme for short-term certificates.
• December 2002: Complete the implementation and evaluation of the au-

thorization scheme for the KCT. Complete the extended functionality of
the KCT. Complete the implementation of the key management scheme.
• February 2003: Complete policy management of KeyNote assertions. Com-

plete the investigation of the symmetry between the symmetric and asym-
metric authetiation protocols.
• May 2003: Complete the thesis.

67

68 CHAPTER 7. RESEARCH PLAN

Bibliography

[1] A Digital Library Authentication and Authorization Architecture.
http://www.ucop.edu/irc/cdl/tasw/Authentication/Architecture-3 W95.pdf.

[2] M. Abadi. On SDSI’s linked local name spaces. In Proceedings of the 10th
IEEE Computer Security Foundations Workshop, 1997. 16

[3] M. Abadi. Two facets of authentication. In Proceedings of the 11th IEEE
Computer Security Foundations Workshop, pages 27–32, 1998. 15

[4] M. Abadi and R. Needham. Prudent engineering practice for crypto-
graphic protocols. Software Engineering, 22(1):6–15, 1996. 16

[5] M. Abadi and M. Tuttle. A semantics for a logic of authentication. In Pro-
ceedings of the 10th Annual ACM Symposium on Principles of Distributed
Computing, August 1991. 15

[6] W.A. Adamson, J. Rees, and P. Honeyman. Joining security realms:
Single login for NetWare and Kerberos. In Proceedings of 5th USENIX
Security Symposium, June 1995. 27

[7] R. Anderson and R. Needham. Robustness principles for public key pro-
tocols. In Proceedings of ”Advances in Cryptology – EUROCRYPT’95”,
Lecture Notes in Computer Science, August 1995. 16

[8] Apache web server. http://www.apache.org. 39, 42

[9] G. Apostolopuolos, V. Perris, and D. Saha. Transport layer security:
how much does it really cost? In Proceedings of the 8th Conference on
Computer Communications, March 1999. 40

[10] Andre Arnes. Public Key Certificate Revocation Schemes. PhD the-
sis, Norwegian University of Science and Technology, Kingson, Ontario,
Canada, February 2000. 25, 59

[11] A. Birrell, B. Lampson, R. Needham, and M. Schroeder. A global authen-
tication service without global trust. In Proceedings of IEEE Symposium
on Security and Privacy, April 1986. 16

69

70 BIBLIOGRAPHY

[12] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote
trust management system version 2. RFC 2704, September 1999. 35, 39,
61

[13] M. Blaze, J. Feigenbaum, and A. Keromytis. Keynote: Trust management
for public-key infrastructure. In Proceedings Cambridge 1998 Security
Protocols International Workshop, April 1998. 35, 39, 61

[14] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance checking in the
PolicyMaker trust management system. In Proceedings of Financial Cryp-
tography, February 1998. 35, 39, 61

[15] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8(1):18–36, February 1990. 15, 16

[16] M. Burrows, M. Abadi, and R. Needham. A logic of authentication,
from proceedings of the royal society, volume 426, number 1871, 1989. In
William Stallings, Practical Cryptography for Data Internetworks. IEEE
Computer Society Press, 1996. 15, 16

[17] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, and J. Volmer. A
national-scale authentication infrastructure. IEEE computer, 33(12):60–
66, December 2000. 56

[18] D. Cheriton and T. Mann. Decentralizing a global naming service for im-
proved performance and fault tolerance. ACM Transactions on Computer
Systems, 7(2):147–183, May 1989. 16, 28

[19] J. Clark and J. Jacob. On the security of recent protocols. Information
Processing Letters, 56(3):151–155, 1995. 16

[20] D. Clarke, J. Elien, C. Ellison, F. Morcos, and R. Rivest. Certificate chain
discovery in SPKI/SDSI. To be published, November 1999. 28, 35, 39

[21] C. Coarfa, P. Druschel, and D. Wallach. Performance analysis of TLS
web servers. In Proceedings of the 8th Network and Distributed System
Security Symposium, February 2002. 40, 41

[22] D. Davis and D. Geer. Kerberos security with clocks adrift. In Proceedings
of the 5th USENIX Security Symposium, June 1995. 16

[23] D. Davis and D. Geer. Kerberos security with clock adrift: History, pro-
tocols, and implementation. Computing Systems, 9(1):29–46, 1996. 16

[24] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence. Generic
AAA architecture. RFC 2903, August 2000. 58

[25] D. Dean, T. Berson, M. Franklin, D. Smetters, and M. Spreitzer. Cryptol-
ogy as a network service. In Proceedings of the 7th Network and Distributed
System Security Symposium, February 2001. 40

BIBLIOGRAPHY 71

[26] D. Denning and G. Sacco. Timestamps in key distribution protocols.
Communications of the ACM, 24(8):533–536, August 1981. 11, 16

[27] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC 2246, January
1999. 12

[28] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
action on Information Theory, 22:644–654, November 1976. 13

[29] W. Diffie, P. van Oorschot, and M. Weiner. Authentication and authenti-
cated key exchange. Designs, Codes and Cryptography, 2:107–125, 1992.
16

[30] Documentation: A Guide to GARA. http://www-fp.mcs.anl.gov/qos/

qos papers.htm. 55

[31] Documentation: Administrators Guide to GARA.
http://www-fp.mcs.anl.gov/qos/qos papers.htm. 55

[32] Documentation: Programmers Guide to GARA.
http://www-fp.mcs.anl.gov/qos/qos papers.htm. 55

[33] D. Dolev and A. Yao. On the security of public-key protocols. Commu-
nications of the ACM, 29:198–208, 1983. 15

[34] W. Doster, M. Watts, and D. Hyde. The KX.509 protocol. Technical
Report 01-2, Center for Information Technology Integration, University
of Michigan, February 2001. 29, 59

[35] C. Ellison. Establishing identity without certification authorities. In Pro-
ceedings of the 6th Annual USENIX Security Symposium, July 1996. 16

[36] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
SPKI certificate theory. RFC 2693, September 1999. 35, 39

[37] Expect. http://expect.nist.gov. 57

[38] S. Farrell, J. Vollbrecht, P. Calhoun, L. Gommans, G. Gross, B. de Bruijin,
C. de Laat, M. Holdrege, and D. Spence. AAA authorization requirements.
RFC 2906, August 2000. 58

[39] ITU-T (formerly CCITT) Information Technology Open Systems Inter-
connection. Recommendation X.509: The directory authentication frame-
work, December 1988. 13, 16, 28

[40] I. Foster, A. Roy, and V. Sander. A quality of service architecture that
combines resource reservation and application adaptation. In Proceedings
of the 8th International Workshop on Quality of Service (IWQQOS 2000),
June 2000. 55

72 BIBLIOGRAPHY

[41] B. Fox and B. LaMacchia. Certificate revocation: Mechanisms and mean-
ing. In Proceedings of Financial Cryptography, February 1998. 25

[42] B. Fox and B. LaMacchia. Online certificate status checking in finan-
cial transactions: the case for re-issuance. In Proceedings of Financial
Cryptography, February 1999. 26

[43] A. Freier, P. Karton, and P. Kocher. Secure Socket Layer 3.0. Internet
Draft, March 1996. 12

[44] A. Freier, P. Karton, and P. Kocher. The SSL protocol version 3.0, March
1996. Netscape Communications Corporation. 12

[45] K. Fu, E. Sit, K. Smith, and N. Feamster. Dos and don’ts of client au-
thentication on the web. In Proceedings of the 10th USENIX Security
Symposium, August 2001. 42

[46] K. Gaarder and E. Snekkenes. Applying a formal analysis technique to
the CCITT X.509 strong two-way authentication protocol. Journal of
Cryptology, 3:81–98, 1991. 15

[47] A. Goldberg, R. Buff, and A. Schmitt. Secure web server performance
dramatically improved by caching SSL session keys. In Proceedings of the
Workshop on Internet Server Performance, June 1998. 40

[48] D. Gollmann. What do we mean by entity authentication? In Proceedings
of the IEEE Symposium on Security and Privacy, May 1996. 15

[49] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryp-
tographic protocols. In Proceedings of the IEEE Symposium on Security
and Privacy, May 1990. 15

[50] R. Gorrieri and P. Syverson. Varieties of authentication. Panel Discussion
during the 11th IEEE Computer Security Foundations Workshop, June
1998. 15

[51] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 public key
infrastructure, certificate and CRL profile. Internet Draft, June 1998. 26

[52] R. Housley, W. Ford, W. Polk, and D. Solo. Internet x.509 public key
infrastructure certificate and certificate revocation list (CRL) profile. RFC
2459, April 2002. 25

[53] J. Howell. Naming and sharing resources across administrative boundaries.
PhD thesis, Darthmouth College, 2000. 16

[54] Grid Computing Portal: http://hotpage.npaci.edu/cgi-bin/

hotpage top.cgi. 58

[55] M. Hur and A. Medvinsky. Kerberos cipher suites in Transport Layer
Security (TLS). Internet Draft, May 2001. 39

BIBLIOGRAPHY 73

[56] T. Hwang and Y-H. Chen. On the security of SPLICE/AS the authentica-
tion system in WIDE internet. Information Processing Letters, 53:97–101,
1995. 16

[57] IETF Internet Traffic Engineering Working Group.
http://www.ietf.org/html.charters/ tewg-charter.html. 55

[58] K. Jackson, S. Tuecke, and D. Engert. TLS delegation protocol. Internet
Draft, February 2001. draft-ggf-tls-delegation-09.txt. 39

[59] R. Kailar and V. Gligor. On belief evolution in authentication protocols.
In Proceedings of the Computer Security Foundations Workshop IV, 1991.
15

[60] N. Karonis, C. Kesselman, G. Koenig, and S. Tueke. A secure commu-
nication infrastructure for high-performance distributed computing. In
Proceedings of the 6th IEEE Symposium on High-Performance Distributed
Computing, August 1997. 57

[61] R. Kemmerer, C. Meadows, and J. Millen. Three systems for crypto-
graphic protocol analysis. Journal of Cryptology, 7(2):79–130, 1994. 14

[62] S. Kent. Privacy enhancements for internet electronic mail, certificate
based key management. RFC 1422, February 1993. 28

[63] C. Kesselman and S. Tueke. Managing security in high-performance dis-
tributed environment. Cluster Computing, 1(1):95–107, 1998. 57

[64] P. Kocher. On certificate revocation and validation. In Proceedings of
Financial Cryptography, February 1998. 26

[65] L. Kohnfelder. Towards a practical public-key cryptosystem. Bachelor’s
thesis, EECS Department, Massachusetts Institute of Technology, May
1978. 13

[66] D. Kormann and A. Rubin. Risks of the passport single signon protocol.
Computer Networks, 33:51–58, 2000. 27

[67] O. Kornievskaia, P. Honeyman, B. Doster, and K. Coffman. Kerberized
credential translation: A solution to web access control. In Proceedings of
the 10th USENIX Security Symposium, August 2001. 29, 59

[68] B. Lampson. Designing a global name service. In Proceedings of the 5th
ACM Symposium on Principles of Distributed Computing, August 1986.
16, 28

[69] J. Linn. Generic security service application program interface, version 2,
update 1. RFC 2743, October 2000. 57

74 BIBLIOGRAPHY

[70] D. Longley and S. Rigby. Use of expert systems in the analysis of key
management systems. Security and Protection in Information Systems,
pages 213–224, 1989. 14

[71] G. Lowe. An attack on the needham-schroeder public-key authentication
protocol. Information Processing Letters, 56(3):131–133, 1995. 12, 16

[72] G. Lowe. A family of attacks upon authentication protocols. Techni-
cal Report 1997/5, Department of Mathematics and Computer Science,
University of Leicester, January 1997. 16

[73] G. Lowe. A hierarchy of authentication specifications. In Proceedings of
10th IEEE Computer Security Foundations Workshop, 1997. 15

[74] A. Malpani and P. Hoffman. Simple certificate validation protocol. Inter-
net Draft, August 1999. 26

[75] W. Mao and C. Boyd. Towards a formal analysis of security protocols.
In Proceedings of the Computer Security Foundations Workshop VI, 1993.
15

[76] P. McDaniel and S. Jamin. Windowed certificate revocation. In Proceed-
ings of IEEE INFOCOM, March 2000. 26

[77] C. Meadows. Using narrowing in the analysis of key management pro-
tocols. In Proceedings of the IEEE Symposium on Security and Privacy,
May 1989. 15

[78] C. Meadows. Representing parital knowledge in an algebraic security
model. In Proceedings of the Computer Security Foundation Workshop
III, June, 1990. 15

[79] C. Meadows. A system for the specification and analysis of key manage-
ment protocols. In Proceedings of the IEEE Symposium on Security and
Privacy, May 1991. 15

[80] C. Meadows. Applying formal methods to the analysis of a key man-
agement protocol. Journal of Computer Security, 1(1):5–35, 1992. 14,
15

[81] C. Meadows. Formal verification of cryptographic protocols. In Proceed-
ings of ”Advances in Cryptology – ASIACRYPT’94”, 1994. 14, 15

[82] M. Merritt. Cryptographic Protocols. PhD thesis, Georgia Institute of
Techonology, 1983. 15

[83] S. Micali. Efficient certificate revocation. Technical Report Techni-
cal Memo, MIT/LCS/TM-542b, Massachussetts Institute of Technology,
March 1996. 26

BIBLIOGRAPHY 75

[84] J. Millen, S. Clark, and S. Freedman. The interrogator: Protocol security
analysis. IEEE Transactions on Software Engineering, SE-13(2):274–288,
February 1987. 14

[85] Project Minotaur: Kerberizing the Web, software at Carnegie Mellon
University. http://andrew2.andrew.cmu.edu/minotaur. 39

[86] R. Mraz. Secure blue: an architecture for a high volume SSL internet
server. In Proceedings of the 17th Annual Computer Security Applications
Conference, December 2001. 40

[87] Microsoft Security Bulletin MS01-017. Erroneous VeriSign-issued digital
certificates pose spoofing hazard, March 2001. 40

[88] M. Myers. Revocation: Options and challenges. In Proceedings of Finan-
cial Cryptography, February 1999. 26

[89] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509
internet public key infrastructure: Online certificate status protocol. RFC
2560, June 1999. 26

[90] M. Naor and K. Nissim. Certificate revocation and certificate update. In
Proceedings of the 7th USENIX Security Symposium, January 1998. 26

[91] R. Needham and M. Shroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12):993 –
999, December 1978. 11, 17

[92] D. Nessett. A critique of the burrows, abadi and needham logic. Operating
System Review, 24(2):35–38, April 1990. 15

[93] C. Neuman. Proxy-based authorization and accounting for distributed sys-
tems. In Proceedings of the 13th International Conference on Distributing
Computing Systems, May 1993. 39

[94] C. Neuman and T. Ts’o. Kerberos: an authentication service for computer
networks. IEEE Communications, 32(9):33–38, September 1994. 11, 58

[95] D. Otway and O. Rees. Efficient and timely mutual authentication. ACM
Operating System Review, 21(1):8–10, January 1987. 15

[96] .Net Passport 2.0 Technical Overview, 2000.
http://www.microsoft.com/myservices/passport/technical.asp . 27

[97] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A com-
munity authorization service for group collaboration. In IEEE Workshop
on Policies for Distributed Systems and Networks, 2002. submitted. 58

[98] MyProxy project. http://dast.nlanr.net/ Projects/MyProxy. 58

76 BIBLIOGRAPHY

[99] SideCar project. Software at Cornell University.
http://www.cit.cornell.edu/ kerberos/sidecar.html. 39

[100] J.T. Regan and C.D. Jensen. Capability file names: Separating authori-
sation from user management in an internet file system. In Proceedings of
the 10th USENIX Security Symposium, August, 2001. 39

[101] R. Rivest and B. Lampson. SDSI – A simple distributed security infras-
tructure. Presented at CRYPTO’96 Rump session, 1996. 28, 35, 39

[102] R. Rivest, A. Shamir, and L. Adleman. A method of obtaining digital
signatures and public key cryptosystems. Communications of the ACM,
21:120–126, February 1978. 13

[103] M. Roe. Certification authority requirements. PASSWORD Document
R2.5, November 1992. 28, 30

[104] M. Roe and W. Schneider et al. Service requirements. PASSWORD
Document R1.1, August 1992. 28

[105] A. Rubin. Nonmonotonic cryptographic protocols. PhD thesis, University
of Michigan, 1994. 14

[106] T. Ryutov and C. Neuman. Representation and evaluation of security
policies for distributed system services. In Proceedings of the DISCEX,
January 2000. 39

[107] V. Sander, W. A. Adamson, I. Foster, and A. Roy. End-to-end provision of
policy information for network qos. In Proceedings of the 10th Symposium
on High Performance Distributed Computing, August 2001. 58

[108] J. Schiller and D. Atkins. Scaling the web of trust: Combining ker-
beros and pgp to provide large scale authentication. In Proceedings of
the USENIX Winter Technical Conference, January 1995. 27

[109] SIBBS. The simple inter-domain bandwidth broker specification.
http://qbone.internet2.edu/bb/. 55, 58

[110] D. Sidhu. Authentication protocols for computer networks. Computer
Networks and ISDN Systems, 11:297–310, 1986. 14

[111] Netscape Single Singon, 2000. http://developer.netscape.com/docs/

manuals/security/SSO/sso.htmii#1053955. 27

[112] M. Sirbu and J. Chuang. Distributed authentication in Kerberos using
public key cryptography. In Symposium On Network and Distributed Sys-
tem Security, February 1997. 27

[113] E. Snekkenes. Exploring the BAN approach to protocol analysis. In
Proceedings of the IEEE Symposium on Security and Privacy, May 1991.
15

BIBLIOGRAPHY 77

[114] E. Snekkenes. Roles in cryptographic protocols. In Proceedings of the
IEEE Symposium on Security and Privacy, May 1992. 15

[115] D. Song. Kerberized WWW access.
http://www.monkey.org/∼dugsong/krb-www. 39

[116] V. Staats. Kerberized TLS, June 2000. Private communication. 39

[117] J. Steiner, C. Neuman, and J. Schiller. Kerberos: An authentication
service for open network systems. In USENIX Conference Proceedings,
February 1988. 11

[118] Stone Cold Software. Apache Kerberos Module.
http://stonecold.unity.ncsu.edu. 39

[119] S. Stubblebine and R. Wright. An authentication logic supporting syn-
chronization, revocation, and recency. In Proceedings of the 3rd ACM
Conference on Computer and Communication Security, March 1996. 16

[120] P. Syverson. A logic for cryptographic protocol analysis. Technical Report
9305, NRL Formal Report, December 1990. 15

[121] P. Syverson. Knowledge, belief, and semantics in the analysis of crypto-
graphic protocols. Journal of Computer Security, 1:317–330, 1992. 15

[122] P. Syverson. Adding time to a logic of authentication. In Proceedings
of the 1st ACM Conference on Computer and Communication Security,
November 1993. 15

[123] P. Syverson. A taxonomy of replay attacks. In Proceedings of the IEEE
Computer Security Foundations Workshop VII, 1994. 16

[124] P. Syverson. Limitations on design principles for public key protocols. In
Proceedings of IEEE Symposium on Security and Privacy, May 1996. 16

[125] P. Syverson and C. Meadows. A logical language for specifying crypto-
graphic protocol requirements. In Proceedings of the IEEE Symposium in
Security and Privacy, May 1993. 15

[126] International Telegraph and Telephone Consultative Committee
(CCITT). The directory. Recommendations X.500, X.501, X.509,
X.511, X.518-X.521, 1988. 16

[127] The Globus Resource Specification Language RSL v1.0.
http://www.globus.org/gram/rsl spec1.html. 57

[128] M. Thompson, W. Johnson, S. Mudumbai, G. Hoo, K. Jackson, and A. Es-
siari. Certificate based access control for widely distributed resources. In
Proceedings of the 8th USENIX Security Symposium, August 1999. 39

78 BIBLIOGRAPHY

[129] D. Trcek and B.J. Blazic. Certification infrastructure reference procedures.
NIST PKI Technical Working Group (W. Burr, Ed.), NISTIR 5788, NIST,
September 1995. 28

[130] S. Tuecke, D. Engert, and M. Thompson. Internet X.509 public key infras-
tructure impersonation certificate profile. Internet Draft, February 2001.
draft-ggf-x509-impersonation-05.txt. 39

[131] B. Tung, C. Neuman, and J. Wray. Public key cryptography for initial
authentication in Kerberos. Internet Draft, April 2000. 26

[132] V. Varadharajan. Verification of network security protocols. Computers
and Security, 8(8):693–708, 1989. 14

[133] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijin,
C. de Laat, M. Holdrege, and D. Spence. AAA authorization framework.
RFC 2904, August 2000. 58

[134] T. Woo and S. Lam. Authentication for distributed systems. Computer,
25(1):39–52, January 1992. 16

[135] T. Woo and S. Lam. A sematic model for authentication protocols. In
Proceedings of the IEEE Symposium on Security and Privacy, May 1993.
15

[136] T. Woo and S. Lam. A lesson on authentication protocol design. Operating
Systems Review, 28(3):24–37, 1994. 16

[137] A. Yasinsac. A Formal Semantics for Evaluating Cryptographic Protocols.
PhD thesis, University of Virginia, 1996. 14

	Introduction
	Motivation
	Thesis Statement

	Background
	Authentication: Protocols and Systems
	Terminology and Notations
	Symmetric Key Authentication
	Asymmetric Key Authentication

	Basis of Authentication
	Related Work
	Formalizing Authentication
	Semantics of Authentication
	Design Principles
	Attacks on Authentication Protocols
	Timeliness
	Naming

	Symmetric and Asymmetric Authentication
	Semantics of Authentication
	Dimensions of Comparison
	Naming: Identity Binding and Verification
	Time: Lifetime and Freshness
	Network Availability
	Granularity of Access
	Discussion

	Future Work

	Kerberized Public Key Infrastructure
	Introduction
	Related Work
	Certificate Revocation
	Single Signon Systems

	Design
	Design Criteria
	Protocol Description
	Security Analysis

	Implementation
	Future Work
	Performance
	Naming
	Attribute Certificates
	Key Management Service

	Kerberized Credential Translation
	Introduction
	Related Work
	Performance Studies

	Design
	Design Criteria
	Web Server
	Kerberized Credential Translator
	Security Analysis

	Application: WebAFS
	Performance
	Future Work
	Security Policy Issues
	Extending Credential Translation
	Performance

	Practical Distributed Authorization
	Introduction
	Overview of GARA Architecture
	Related Work
	Design
	GARA Web Interface
	Distributed Authorization Design

	Implementation
	Future Work
	Implementation Issues
	Policy Management
	Controlled Delegation
	Namespace Management

	Research Plan

