
1

EECS 498-7/8
Computer Security

Peter Honeyman
Center for Information Technology Integration

Course Overview

◊ www.citi.umich.edu/u/honey/security

◊ Monday & Friday, 9:00 – 10:30
Wednesday, 9:00 - 10:00
1005 Dow
4 credits

◊ EECS Technical Elective?
◊ Presumably -- working on it.

Course Requirements

◊ Cryptography and Network Security:
Principles and Practice (Third Edition)
William Stallings
Prentice-Hall
ISBN 0130914290

◊ Weekly (or more) homework + programming
assignments: 50%

◊ Exams: 25% ea.

Outline of Lectures

◊ Models of security
◊ Classical encryption

◊ Substitution and transposition ciphers
◊ Symmetric key cryptography

◊ DES, AES, others
◊ Confidentiality
◊ Key distribution
◊ Random number generation

Outline of Lectures

◊ Number theory
◊ Asymmetric key cryptography
◊ Message authentication
◊ Digital signatures
◊ Applications

◊ Kerberos
◊ SSL, X.509, and PKI
◊ IPSec

Computer Security

◊ Host security & network security
◊ Equally important
◊ Often no clear boundary between them

◊ Examples
◊ Morris’ Internet worm
◊ Mitnick’s attack on Shimomura
◊ Credit card theft from e-commerce sites
◊ Distributed denial of service attacks

2

X.800 Security Services

◊ Authentication
◊ Peer entity identification

◊ Guards against masquerade and unauthorized replay

◊ Data origin
◊ Useful in connectionless communication

◊ Access control
◊ Prevent unauthorized use of resources
◊ Presupposes some sort of authentication

X.800 Security Services

◊ Data confidentiality
◊ Protection from unauthorized disclosure
◊ Granularity

◊ Session
◊ Message
◊ Fields in a message

◊ Traffic analysis

X.800 Security Services

◊ Data integrity
◊ Protection from unauthorized modification,

insertion, deletion, replay
◊ Granularity

◊ Session, message, or field(s)
◊ Connection-oriented or connectionless

◊ Detection and/or recovery

X.800 Security Services

◊ Nonrepudiation
◊ Origin (sender)
◊ Destination (receiver)

◊ Availability
◊ Security? Reliability?

X.800 Security Mechanisms

◊ Encryption
◊ Digital signature
◊ Access control
◊ Data integrity
◊ Authentication exchange
◊ Traffic padding
◊ Routing control
◊ Notarization

Security Attacks

◊ Passive attacks
◊ Interception
◊ Traffic analysis

◊ Active attacks
◊ Masquerade
◊ Replay
◊ Content modification
◊ Denial of service

3

Model for Network Security

◊ Principals
◊ Sender
◊ Receiver
◊ Adversary
◊ Trusted third party

Model for Network Security

◊ Sender injects message, receiver extracts it
◊ Sender and receiver communicate over information

channel
◊ Sender and receiver provide security-related

information
◊ Possibly shared with or generated by T3P

◊ Security-related transformation is applied to
message

◊ Adversary may control information channel

Designing a Security Service

◊ Select an algorithm for the security-related
transformation (cipher)

◊ Generate the security-related information to be
used by the algorithm (keys)

◊ Select a method for distribution of security-related
information (key distribution)

◊ Select a protocol for the communicating principals
that uses the security algorithm (cryptographic
protocol)

Classical Encryption

◊ Symmetric, or single-key encryption
◊ Model: Fig 2.1, p. 25

�laintextplaintextpl
aintextplaintextplai
ntextplaintextplaint
extplaintextplaintex
tplaintextp�laintext
plaintextplaintextpl
aintextplaintextplai
ntextplaintextplaint
extplaintextplaintex
tplaintextplaintextp
laintextplaintextplai
ntextplaintextplaint
extplaintextplaintex

Kdksfvkmv.dp[shk
munhgsee22g49ghl;,
,g00f9kfckmcvlvvpn
,.ddejrt6yo7074kdn
syug253tdbhbdjnfije
88uyy4e6wews3srcf
dbghk,k,lophp0u=k; ’l
’,.gkmfcubdyew6534
uhd7dubfncvlfr0of9
r5954r9d82512e5e
67ewppee[l; fmdfpk[f
fpfgmglndw83fxo93
ckldoed0d23dcbndx

�laintextplaintextpl
aintextplaintextplai
ntextplaintextplaint
extplaintextplaintex
tplaintextp�laintext
plaintextplaintextpl
aintextplaintextplai
ntextplaintextplaint
extplaintextplaintex
tplaintextplaintextp
laintextplaintextplai
ntextplaintextplaint
extplaintextplaintex

key

encrypt decrypt

Symmetric Key Cryptography

◊ Sender combines plaintext and key to produce
ciphertext

◊ Called enciphering or encryption
◊ Y = E(K, X) or Y = EK(X)

◊ Receiver combines ciphertext and key to recover
ciphertext

◊ Called deciphering or decryption
◊ X = D(K, Y) or X = DK(Y)

◊ Cryptography is the study of ciphers

Dimensions of Cryptography

◊ Type of operations used in cipher
◊ Substitution
◊ Transposition

◊ Number of keys
◊ Symmetric vs. asymmetric

◊ Plaintext processing
◊ Block cipher
◊ Stream cipher

4

Cryptosystem Model

◊ Fig. 2.2, p. 26 augments earlier model in two ways
◊ Key distribution via secure channel
◊ Adversary cryptanalyzes ciphertext

◊ Adversary has complete information about the
encryption and decryption methods

◊ Only the key is secret
◊ Kerckhoff’s principle, 1883
◊ Necessary for any practical cipher
◊ Alternatively, refer to all the secret information as the key

◊ Example: gzip | dd conv=swab | tr -c

Goals of Cryptanalysis

◊ Recover plaintext
◊ Recover key

Cryptanalytic Attacks

◊ In all cases, cryptanalyst has complete knowledge of
the cipher and some ciphertext to be decoded

◊ Ciphertext only
◊ Most common attack

◊ Known plaintext
◊ Cryptanalyst has plaintext-ciphertext pair(s)
◊ Surprisingly easy to obtain or infer plaintext

◊ Chosen plaintext
◊ Cryptanalyst has plaintext-ciphertext pair(s)
◊ Cryptanalyst (somehow) was able to select the plaintext and

force its encryption

Cryptanalysis

◊ Chosen ciphertext
◊ Cryptanalyst has plaintext-ciphertext pair(s)
◊ Cryptanalyst (somehow) was able to select the

ciphertext and force its decryption

◊ Chosen text
◊ Cryptanalyst is able to produce chosen plaintext

and chosen ciphertext pairs

Unconditionally Secure Cipher

◊ A cipher is unconditionally secure if no
amount of ciphertext suffices to determine
uniquely the plaintext

◊ Shannon showed that there is only one cipher that
is unconditionally secure

◊ It is not practical in most instances

Computationally Secure Cipher

◊ A cipher is computationally secure if
◊ The cost of breaking the cipher exceeds the value

of the encrypted information, or
◊ The time required to break the cipher exceeds

the useful lifetime of the information
◊ Key size plays an important role
◊ So does computational power
◊ Table 2.2, p. 26

5

Exhaustive Search and Key Size

6.4 ¥ 106 years6.4 ¥ 1012

years
Substitution

5.4 ¥ 1018

years
5.4 ¥ 1024

years
128 bits

10.01 hours1,142 years56 bits

2.15 ms35.8 min32 bits

@ 1 per picosec@ 1 per msecKey

Computationally Secure Cipher

◊ Note that DES can no longer be considered
computationally secure

◊ Cracking DES: Secrets of Encryption
Research, Wiretap Politics & Chip Design,
Electronic Frontier Foundation, John Gilmore
(Editor), O'Reilly & Associates, ISBN:
1565925203

Substitution Ciphers

◊ Plaintext characters are replaced by other plaintext
characters according to some rule

◊ Caesar cipher: E(C) = P + 3 (mod 26), D(P) = C - 3
(mod 26)

◊ ROT13: E(C) = P + 13 (mod 26), D = E
◊ General Caesar cipher: E(C) = P + k (mod 26)

◊ k is the key

◊ Cryptanalysis: try k = 0, …, 25
◊ Works for known (or probable) plaintext

Caesar Ciphers

◊ Cryptanalysis is easy because
◊ Algorithm is known
◊ Only 26 keys to try
◊ Known or probable plaintext

◊ Defeating cryptanalysis
◊ Pre-scramble plaintext, e.g., compress it
◊ Increase the key space

◊ E(C) = P + k (mod 26), k = 0, …, 1,000,000? :-)

Monoalphabetic Substitution Cipher

◊ Let S = {A, B, …, Z}
◊ Let P: S Æ S be a permutation
◊ Key space is now 26! ª 288

◊ Much too large to search

◊ But this is still easy to cryptanalyze through
letter frequency analysis

◊ ETAOINSHRDLU or something like that

Polygram Substitution Cipher

◊ Playfair
◊ E(PiPi+1) = CiCi+1 through key-based 5 ¥ 5 transformation

table
◊ Cryptanalysis: digram frequency

◊ Hill cipher
◊ C = KP, where C and P are d-dimensional column vectors and

K is a nonsingular d ¥ d matrix
◊ P = K-1C
◊ Hides d-1 letter sequence analysis
◊ Easily broken with known plaintext

6

Polyalphabetic Substitution Cipher

◊ E: S Æ 2S, pick one
◊ Typically a set of monoalphabetic substitution

rules is used
◊ Key determines which rule to use

Periodic Substitution Ciphers

◊ Special class of polyalphabetic substitution ciphers
◊ Example: Vigenère cipher

◊ Each key letter determines one of 26 Caesar ciphers
◊ Ci = E(Pi) = Pi + ki mod(key length)

◊ Given a sufficient amount of ciphertext, common sequences
are repeated, exposing the period

◊ Frequently occurring letters in the key will be used to
encrypt frequently occur plaintext letters

Periodic Substitution Ciphers

◊ Vigenère autokey system: after key is
exhausted, use plaintext for running key

◊ Can still detect regularities, e.g., E encrypted
with E

Vernam Cipher

◊ Key length equal to plaintext length
◊ A.k.a. “one-time pad”
◊ Plaintext and ciphertext are statistically

independent
◊ Unconditionally secure (Shannon, 1948)
◊ Key generation and distribution are difficult

Transposition

◊ Rail-fence technique
◊ Ri-ec ehiu
alfnetcnqe

◊ Generalization: columnar technique
◊ Cuathq
omrenu
ln cie

◊ Augment with permuted rows

◊ Generalization: multiple transpositions
◊ Does not change letter frequencies

Rotor Machines

◊ Enigma, ca. WWII
◊ Each rotor corresponds to a substitution

cipher
◊ A one-rotor machine produces a

polyalphabetic cipher with period 26
◊ Output of each rotor is input to next rotor

7

Rotor Machines

◊ After each symbol, the “fast” rotor is
rotated

◊ After a full rotation, the adjacent rotor is
rotated

◊ An n rotor machine produces a polyalphabetic
cipher with period 26n

Chapter 2 Homework

◊ Pick any five problems
◊ Extra credit for more than five

Chapter 3

◊ Simplified DES
◊ Block cipher principles
◊ DES
◊ Block cipher modes of operation

Simplified DES

◊ Block cipher: 8-bit blocks
◊ Input and output

◊ 10-bit key
◊ Complex, multi-stage algorithm

Simplified DES

◊ Five stages
◊ Initial permutation (IP)
◊ Key-dependent scrambler (f)

◊ Mixes permutation and substitution
◊ 8-bit key

◊ Swap of L and R
◊ f again (different key)
◊ Inverse permutation IP-1

◊ DES: IP-1 ° fK2 ° swap ° fK1 ° IP
◊ DES -1: IP-1 ° fK1 ° swap ° fK2 ° IP

S-DES Key Schedule

◊ 10-bit key is generator for two 8-bit keys, K1
and K2

◊ K1 = select and permute8 ° paired circular left
shift1 ° permute10(K)

◊ K2 = select and permute8 ° paired circular left
shift2 ° paired circular left shift1 °
permute10(K)

8

S-DES Key Schedule

◊ Permute10
3 5 2 7 4 10 1 9 8 6

◊ Paired circular left shift1
2 3 4 5 1 7 8 9 10 6

◊ Select and permute8
6 3 7 4 8 5 10 9

◊ Paired circular left shift2
4 5 1 2 3 9 10 6 7 8

S-DES Initial Permutation

◊ IP = 2 6 3 1 4 8 5 7
◊ IP-1 = 4 1 3 5 7 2 8 6

fK

◊ Combination of substitution and permutation
◊ Let input8 = L4 R4

◊ Let F: {0,1}4 Æ {0,1}4, not necessarily 1-1
◊ fK(L, R) = L ⊕ F(R, Ki), R)
◊ Note the structure: Feistel network

◊ We will revisit this soon

F

◊ F takes a 4-bit input, expands it to 8 bits
◊ 4 1 2 3 2 3 4 1

◊ Then adds the key
n4 + K11 n1 + K12 n2 + K13 n3+ K14

n2 + K15 n3 + K16 n4 + K17 n1 + K18

F

◊ View this as a matrix
p0,0 p0,1 p0,2 p0,3

p1,0 p1,1 p1,2 p1,3

◊ First row is fed into S-box S0
Second row is fed into S-box S1

◊ Each produces two bits
◊ Results are concatenated for 4-bit output

S-boxes

◊ S0: 4¥4 matrix of 2-bit entries
1 0 3 2
3 2 1 0
0 2 1 3
3 1 3 2

◊ S1

0 1 2 3
2 0 1 3
3 0 1 0
2 1 0 3

9

S-boxes

◊ Select row px,0, px,3 of Sx

◊ Select column px,1 and px,2 of Sx

◊ Concatenate and permute the resulting 2-bit S-box
entries

◊ 2 4 3 1

◊ Complete the computation of f
◊ xor with L, append R

◊ N.B.: F is applied only to R, but after swapping, F is
applied to the former L.

S-DES Example

◊ Big, hairy example

Analysis of S-DES

◊ Exhaustive search (brute force) on key space
◊ Known plaintext attack
◊ For each ciphertext bit, can write an

equation
◊ ci = g(p1, p2, …, p8, k1, k2, …, k10)

◊ 8 equations in 10 unknowns, many (like 29)
terms

Relationship to DES

◊ DES has 64-bit blocks, 56-bit key, 48-bit
subkeys, 16 rounds

◊ F acts on 32-bits
◊ 8 S boxes, 4 by 16, containing 4-bit values
◊ IP-1 º fK16 º SW º fK15 º SW º … º fK1 º IP

Block Cipher Principles

◊ Stream cipher: one bit or byte at a time
◊ E.g., Vigenere, Vernam

◊ Block cipher: large block, typically 8 bytes, at
a time

◊ Large block thwarts statistical attacks

Block Cipher Principles

◊ F: 2n Æ 2n

◊ F must be reversible, i.e., 1-1 correspondence
◊ 2n! bijections fi O(n ¥ 2n) bit keys

◊ 64 bit block fi ª 270 ª 1021 bit key, which is far
too long

10

Product Ciphers
◊ Apply confusion and diffusion operations to thwart

statistical analysis
◊ Diffusion

◊ Thwart letter frequency analysis by dissipating statistical
structure into long-range statistics relating plaintext and
ciphertext

◊ Accomplished by making each plaintext character affect
many ciphertext characters

◊ Equivalently, each ciphertext is affected by many plaintexts

Product Ciphers

◊ Confusion
◊ Makes statistical relationship between ciphertext

and key complex
◊ Generally a complex, key-dependent substitution

algorithm

Feistel Cipher Structure

◊ Substitution on L input
◊ Substitution is based on operations applied to R

◊ Result is modified L and original R, allowing decryption

◊ Followed by a permutation, swapping L and R

◊ Multiple rounds

Feistel Cipher Features

◊ Block size
◊ Bigger is better, but slower

◊ Key size
◊ Bigger is better, but slower

◊ Number of rounds
◊ S-DES: 8-bit block, 10-bit key, 2 rounds
◊ DES: 64-bit block, 56-bit key, 16 rounds

Feistel Cipher Features

◊ Subkey generation algorithm
◊ Greater complexity leads to more difficult cryptanalysis

◊ Round function
◊ Greater complexity leads to more difficult cryptanalysis

◊ Hardware vs. software speed
◊ Fast software implementation is desirable

◊ Ease of analysis

Decryption

◊ Reverse the encryption steps
◊ Recall the Feistel round step: (L, R) ‹ (R, L ⊕

F(K, R))
◊ Reverse with (L, R) = (R, R ⊕ F(K, L))
◊ F need not be reversible

11

DES

◊ 64-bit block, 56-bit key, 16 rounds
◊ 48-bit subkeys
◊ Initial and final (inverse) permutations

DES Round Function

◊ Operates on 32-bit units
◊ 32-bit Æ 48-bit expansion/permutation (E

table)
◊ XOR with 48 bit subkey
◊ S-box computation returns 32 bits
◊ Round permutation
◊ Followed by Feistel XOR and swap

S-box Details

◊ Eight S-boxes, each maps 6-bits to 4-bits
◊ One S-box contains 64 entries, each 4-bits
◊ Can be viewed as four permutations of {0, …,

15}
◊ The particular permutation is selected with

the additional bits added by the E table

DES Key Generation

◊ 56-bit key is split into 28-bit L and R
◊ Subkeys are generated by various circular

left shifts of L and R
◊ Bits are permuted and selected

DES Decryption

◊ Just as in S-DES, apply the subkeys in
reverse order

◊ The Feistel structure does the rest

DES Avalanche Effect

◊ In any good cipher, any change in the key or
plaintext, no matter how large or small, should
change approximately half the ciphertext bits

◊ Examples in Table 3.5 on p. 81
◊ Change one bit in the plaintext or key
◊ After 3 or 4 rounds, approximately half of the ciphertext

bits are changed
◊ After 16 rounds, a lot of scrambling has taken place

◊ Thwarts key guessing attacks

12

Strength of DES

◊ EFF DES cracker
◊ Brute force attack on 56-bit key based on Weiner’s design
◊ $250K custom h/w exhausts key space in about a week
◊ Final nail in DES’ coffin

◊ Timing and power attacks
◊ Paul Kocher smart card attacks
◊ Use knowledge of an actual implementation under test to

infer key bits
◊ Relies on internal calculations varying in time or power

depending on input value

DES Design Criteria

◊ S-box weaknesses?
◊ No publicly known weaknesses
◊ Design criteria remain classified

◊ Why?

◊ What we know is based mostly on D.
Coppersmith, “The Data Encryption Standard
(DES) and Its Strength Against Attacks,”
IBM J. of R. and D. (May 1994)

DES S-Box Design Criteria

◊ The S-box is the only source of nonlinearity in DES
◊ No S-box output bit should be too close to a linear

function of the input bits (or any subset of them)
◊ In practical terms, if we select any output bit and

any subset of the input bits, then the fraction of
inputs for which the output bit is the xor of the
input bits should be close to 1/2

DES S-Box Design Criteria

◊ Each row of an S-box should be a permutation
◊ If two inputs to an S-box differ in exactly

one bit, then the outputs must differ in at
least two bits

◊ If two inputs to an S-box differ in exactly
the middle two bits, then the outputs must
differ in at least two bits

DES S-Box Design Criteria

◊ If two inputs to an S-box differ in their first two
bits and are identical in their last two bits, then the
two outputs should not be the same

◊ Etc., see text. The remaining criteria have mostly to
do with avalanche and resistance to differential
cryptanalysis

◊ See the text for general information about design
criteria for the round function, S-box design, and
key schedule algorithm design

Statistical Attacks on DES

◊ Differential cryptanalysis
◊ Attack on Feistel structure
◊ Murphy (FEAL), then Biiham and Shamir (DES)
◊ Look for inputs with some fixed difference that

produce outputs with a predictable difference
◊ This allows inference of key bits
◊ Round by round analysis, so more rounds Æ more

difficult analysis
◊ Leads to a 247 chosen plaintext attack

13

Statistical Attacks on DES

◊ Linear cryptanalysis
◊ Matsui
◊ Also iterated over rounds with decreasing

effectiveness
◊ 247 known plaintexts

Statistical Attacks on DES

◊ Smonewhat surprisingly, DES resists
differential cryptanalysis

◊ Apparently known to NSA in 70s
◊ Eight round LUCIFER requires 28 chosen

plaintexts
◊ Eight round DES requires 214 chosen plaintexts

Block Cipher Modes of Operation

◊ How to encrypt more than one block?
◊ Block modes

◊ Electronic codebook (ECB)
◊ Cipher block chaining (CBC)

◊ Stream modes
◊ Cipher feedback (CFB)
◊ Output feedback (OFB)
◊ Counter mode (CTR)

Electronic Codebook (ECB)

◊ Each plaintext block is independently encrypted with
the same key

◊ Last block is padded appropriately
◊ Useful for transmission of a single block or a small

number of blocks
◊ Called a codebook because, for a given key, each

block of plaintext produces a unique ciphertext
◊ ECB has certain weaknesses …

Cipher Block Chaining

◊ Prior to encrypting a plaintext block, xor it
with the previous ciphertext block

◊ Ci = DES(K, Ci-1 ⊕ Pi)
◊ Pi = DES-1(K, Ci) ⊕ Pi-1

◊ For first block, need “initialization vector”

Initialization Vector Considerations

◊ IV must be known to sender and receiver
◊ Stallings (and others) recommend security

for the IV
◊ This prevents the adversary from modifying

selected bits in the plaintext by complementing
corresponding bits in the IV

◊ In practice, it is effective to use a fixed
value, say, 0

14

Cipher Feedback Mode

◊ Allows use of DES as a stream cipher
◊ Start with IV
◊ Encrypt
◊ XOR j bits of output with j bit plaintext

◊ Result is ciphertext

◊ Shift IV by j bits, insert ciphertext
◊ Most efficient to use j = 64

Cipher Feedback Decryption

◊ Reverse steps
◊ Start with IV
◊ Encrypt
◊ XOR j bits of output with j bit ciphertext

◊ Result is plaintext

◊ Shift IV by j bits, insert ciphertext

Output Feedback Mode

◊ Encrypt IV
◊ Shift IV by j bits, insert j bits of DES output
◊ XOR same j bits of output with j bit plaintext

◊ Result is ciphertext
◊ Similar to a Vernam cipher: XOR with PRNG bits

◊ Only use j = 64
◊ Decryption reverses these steps
◊ Must not reuse IV+key pair

CFB and OFB comparison

◊ Errors do not propagate in OFB
◊ This makes OFB vulnerable to modification

Counter Mode

◊ Similar to OFB but encrypts a counter (or
Gray code or …) instead

◊ Ci = Pi ⊕ DESK(i)
◊ Supports random access
◊ Provably as secure as other modes
◊ Must not reuse counter+key pair

Other Block Ciphers

◊ Triple DES
◊ Blowfish
◊ Rijndael

15

Triple DES

◊ First consider double DES
◊ C = EK2(EK1(P))
◊ 112 bit key is safe from brute force attack
◊ But … $ K3 s.t. EK2(EK1(P)) = EK3(P)
◊ No — DES is not closed

◊ Not surprising, as DES occupies only a tiny portion
of the space of 64-bit substitution ciphers

Meet In The Middle Attack

◊ Let X = EK1(P). Clearly X = DK2(C)
◊ Given a known <P, C>, construct a table of size 256

with all values of K1 and EK1(P)
◊ Sort on EK1(P)
◊ Now decrypt C with all values of K2. Check all results

against table
◊ Any match is a candidate <K1, K2> pair
◊ Total effort is O(256), not 2112

◊ Works for any F = f2 ° f1

◊ Hence, need three encryptions

Triple DES

◊ C = EK1(DK2(EK3(P))) (EDE)
◊ No cryptographic significance to middle decrypt

operation
◊ D and E have equivalent security
◊ Allows single DES by setting K1 = K2 = K3

◊ Two-key 3DES: K1 = K3 (EDE)
◊ Shorter key is easier to work with
◊ Textbook describes several impractical attacks

◊ Three-key 3DES

Other Block Ciphers

◊ IDEA
◊ Blowfish
◊ RC5 (not covered)
◊ CAST-128
◊ RC2
◊ Rijndael (AES)

IDEA

◊ Xuejia Lai and James Massey, ETH
◊ Patented
◊ Used in PGP
◊ 128-bit key, 64-bit block
◊ Variant Feistel network
◊ Eight rounds + final transformation

IDEA Round Function

◊ Round function mixes four 16-bit blocks
◊ Each round takes six 16-bit subkeys

◊ Final transformation uses four 16-bit subkeys
◊ Total of 52 subkeys
◊ Subkeys are derived through circular shifts

◊ Uses three operations
◊ XOR
◊ Addition modulo 216

◊ Multiplication modulo 216 + 1

16

Blowfish

◊ Bruce Schneier, ca. ‘93
◊ Freely available
◊ Used in SSH, OpenBSD, IPSec
◊ 64-bit block, 32- to 448-bit keys
◊ Fast encryption, small memory footprint
◊ Slow key schedule computation

◊ Four S-boxes, each containing 256 32-bit values
◊ 18 32-bit subkeys (“P array”)

Blowfish Initialization

◊ P and S are initialized with fractional part of
π

◊ P is XORed with the key (reusing key bits if
necessary)

◊ P and S are churned through Blowfish
◊ 521 executions in total

◊ Excellent defense against dictionary attack

Blowfish Encryption

◊ Slight variant on classic Feistel network
◊ L and R are both processed in each round
◊ 16 rounds
◊ Two extra XORs at the end

◊ Uses addition modulo 232 and XOR
◊ Round function processes four bytes

◊ F(a, b, c, d) = ((S1,a + S2,b) ⊕ S3,c) + S4,d

◊ Followed by Feistel swap

◊ This is fast

CAST-128

◊ Carlisle Adams and Stafford Tavares
◊ Used in IPSec
◊ 64-bit block, 40- to 128-bit keys
◊ Classic Feistel network
◊ Sixteen rounds

CAST-128 Round Function

◊ Two subkeys per round, one 32-bit, one 5-bit
◊ Three different round functions
◊ Four operations: addition and subtraction

modulo 232, XOR, and (variable) circular shift
◊ 5-bit subkey determines shift amount

CAST-128 Round Function

◊ Round function uses four S-boxes
◊ Fixed values
◊ Indexed by four 8-bit blocks
◊ Each contains 256 32-bit values
◊ 32-bit values are combined in round-dependent

ways
◊ Produces 32-bit output

17

Characteristics of Advanced Block Ciphers

◊ Variable key length
◊ Blowfish, RC5, CAST-128, RC2

◊ Mixed operators
◊ Especially ones that are not associative or distributive

◊ Data-dependent rotation
◊ RC5

◊ Key-dependent rotation
◊ CAST-128

Characteristics of Advanced Block Ciphers

◊ Key-dependent S-boxes
◊ Expensive key schedule computation

◊ Blowfish

◊ Variable round function
◊ CAST-128

◊ Variable block length
◊ Variable number of rounds
◊ Operation on L and R in the round function

Rijndael

◊ Selected as AES
◊ 128-bit block, 128-, 192-, or 256-bit key, 9,

11, or 13 rounds
◊ Simple and fast

Rijndael Round Function

◊ Substitution
◊ Permutation
◊ Multiplication over GF(28)
◊ Addition over GF(28)
◊ Not a Feistel network

GF(28)

◊ All representations of a finite field over a
prime power (in this case 2) are isomorphic

◊ Treat a byte b7b6b5b4b3b2b1b0 as a polynomial
◊ b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x1 + b0x0

◊ Addition: bitwise modulo 2, i.e., XOR
◊ 0x57 + 0x83 = 0xD4
◊ 0101 0111
+ 1000 0011
 1101 0100 = 0xD4

GF(28) Multiplication

◊ Multiplication
◊ Multiplication of polynomials modulo an irreducible

binary polynomial of degree 8
◊ For Rijndael, it is 0x11B
◊ x8 + x4 + x3 + x + 1

18

GF(28) Multiplication Example

◊ 0x57 ¥ 0x83 = 0xC1
◊ 0101 0111
 ¥ 1000 0011
 0101 0111
 0 1010 1110
 01 0101 1100 0000
 010 1011 0111 1001 = 0x2B79

◊ 0x2B79 modulo 0x11B = 0xC1

GF(28)

◊ Addition is an Abelian group: closed, associative,
commutative, every element has an inverse (itself),
and there is an additive identity (0)

◊ Multiplication: closed, associative, commutative,
there is a multiplicative identity (0x01), every
element (except 0) has an inverse

◊ Also an Abelian group (ignoring 0)

GF(28)

◊ Distributive law holds over addition and
multiplication

◊ a ¥ (b + c) = ab + ac

◊ GF(28) is a field

Polynomials with coefficients in GF(28)

◊ Treat a four-byte vector as four coefficients
of a polynomial of degree less than four

◊ Addition is still XOR
◊ For multiplication, use polynomial x4 + 1

◊ Not irreducible, but relatively prime to the
polynomials we multiply with, so the step is
invertible.

Rijndael Round Function

◊ Substitution
◊ S-box replaces each byte with its multiplicative

inverse followed by addition of 0x63
◊ Permutation

◊ Represent 16 bytes as 4 ¥ 4 block
◊ ith row is shifted by i elements (0 £ i £ 3)
◊ Same for 24 bytes (4 ¥ 6)
◊ For 32 bytes (4 ¥ 8), extra shift for rows 2 and 3

Rijndael Round Function

◊ Multiplication of polynomials over GF(28)
◊ Can be represented as matrix multiplication

◊ Addition over GF(28)
◊ Add round key

◊ Initialize with round key addition
◊ Last round omits multiply

19

Rijndael Key Schedule

◊ Expand cipher key into (block length) ¥
(number of rounds + 1) bits

◊ Round keys are taken from the expanded key
in the natural way

◊ Key expansion is defined recursively, using
rotation, S-boxes, and XOR with a round
constant

Rijndael Decryption

◊ Each step is invertible

Rijndael Performance

◊ 8-bit mP
◊ ~ 1 KB code size, < 100 bytes RAM, 10-50K clock

cycles

◊ 32-bit mP
◊ 300-3,000 cycles for key schedule, 1,500-4,000

cycles for inverse key schedule
◊ 20-50 Mbits/sec encryption speed on 200 Mhz

Pentium

