
Hierarchical Replication Control in a Global File System

Jiaying Zhang and Peter Honeyman
Center for Information Technology Integration

University of Michigan at Ann Arbor
jiayingz@eecs.umich.edu honey@citi.umich.edu

Abstract

We develop a consistent mutable replication extension

for NFSv4 tuned to meet the rigorous demands of large-
scale data sharing in global collaborations. The system
uses a hierarchical replication control protocol that dy-
namically elects a primary server at various
granularities. Experimental evaluation indicates a sub-
stantial performance advantage over a single server sys-
tem. With the introduction of the hierarchical replication
control, the overhead of replication is negligible even
when applications mostly write and replication servers
are widely distributed.

1. Introduction

Grid-based scientific collaborations are characterized

by geographically distributed institutions sharing comput-
ing, storage, and instruments in dynamic virtual organiza-
tions [1, 2]. By aggregating globally distributed re-
sources, Grid middleware provides an infrastructure for
computations far beyond the scope of a single organiza-
tion.

Grid computations feature high performance comput-
ing clusters connected with long fat pipes, a significant
departure from the traditional high-end setting of a collec-
tion of nodes sited at one location connected by a fast
local area network. This difference introduces new chal-
lenges in storage management, job scheduling, security
provision, etc., stimulating growing research in these ar-
eas. In particular, the need for flexible and coordinated
resource sharing among geographically distributed or-
ganizations demands efficient, reliable, and convenient
data access and movement schemes to ease users’ efforts
for using Grid data.

The state of the art in Grid data access is characterized
by parallel FTP driven manually or by scripts [3]. FTP
has the advantage of following a strict and simple stan-
dard and widespread vendor support. However, FTP has
some shortcomings.

• Applications must explicitly transfer a remote file in
its entirety to view or access even a small piece of it,
then transfer it back if the file is modified.

• Consistent sharing for distributed applications is not
supported.

• The distribution model also leads to long first-byte
latency.

To overcome these problems, we developed an alter-
native for distributed filing on the Grid that allows users
and applications to access widely distributed data as sim-
ply and efficiently as they access them locally.

Recent advances in Internet middleware infrastructure
— notably, broad support for NFSv4 [4, 5] — offer re-
markable opportunities for virtual organizations to share
data through a unified global file system. Designed with
Internet data management in mind, NFSv4 has the poten-
tial to meet the requirements of widely distributed col-
laborations. As a distributed file system protocol, NFSv4
allows users to access data with traditional file system
semantics. NFSv4 guarantees “close-to-open” consis-
tency, i.e., an application opening a file is guaranteed to
see the data written by the last application that writes and
closes the file. This model, which proves adequate for
most applications and users [6], can also serve as an ena-
bling feature for re-using existing software on the Grid.

In spite of these advantages, extending NFSv4 access
to a global scale introduces performance challenges. Our
evaluation indicates that conventional NFS distribution
— multiple clients connected to storage elements through
a common server — cannot meet Grid performance re-
quirements when computational elements are widely dis-
tributed [7]. To overcome this problem, we developed a
replication protocol for NFSv4 that allows placement of
replication servers near compute nodes [8]. The protocol
supports NFSv4 semantics exactly and requires no client-
side extensions, which simplifies deployment in wide
area networks.

Our replication extension to NFSv4 coordinates con-
current writes by dynamically electing a primary server
for client updates. When no writers are active, our sys-
tem has the performance profile of systems that support

 2

read-only replication. Unlike read-only systems, though,
we also support concurrent write access without compro-
mising NFSv4 consistency guarantees. Security of the
protocol follows from the use of secure RPC channels,
mandatory in NFSv4, for server-to-server communica-
tion. Furthermore, the system can automatically recover
from minority server failures, offering higher availability
than single server systems.

Our earlier replication protocol breaks new ground in
performance and availability for read-dominant applica-
tions, yet further analysis exposes a considerable per-
formance penalty for large synchronous writes, bursty
directory updates, and widely separated replication serv-
ers — data access patterns characteristic of Grid comput-
ing. The observed performance penalty is mainly due to
the cost of guaranteeing durability and the cost of syn-
chronization. Specifically, the durability requirement
delays the response to a client update request until a ma-
jority of the replication servers have acknowledged the
update. This provides a simple recovery mechanism for
server failure but synchronous writes and directory up-
dates suffer when replication servers are far away. The
synchronization requirement, which amounts to an elec-
tion for consensus gathering, also delays applications —
especially when they emit a burst of metadata updates —
while waiting for distant replication servers to vote.

We assume (and observe) that failures are rare in prac-
tice. Furthermore, the computation results by Grid appli-
cations can usually be reproduced by simply re-executing
programs or restarting from a recent checkpoint. This
suggests that we may relax the durability requirement to
improve performance for synchronous updates. Instead
of automatically guaranteeing durability to a client, we
may elect to report failure to the application immediately
by making the data under modification inaccessible. The
application can then decide whether to wait for server
recovery or to regenerate the computation results.

To reduce the cost of synchronization, we introduce a
hierarchical replication control protocol that allows a pri-
mary server to assert control at granularities coarser than
a single file or directory, allowing control over an entire
subtree rooted at a directory. This amortizes the cost of
synchronization over multiple update requests.

In this paper, we describe these extensions in detail.
In particular, we focus on the design, implementation, and
evaluation of the hierarchical replication control protocol
we developed. The evaluation for using the described
replicated file system to support Grid computing and the
performance comparisons with GridFTP are presented in
a companion paper [7].

The remainder of the paper proceeds as follows. Sec-
tion 2 describes our earlier work in developing a replica-
tion control protocol that coordinates concurrent writes by
electing a primary server at the granularity of a single file
or directory and the extensions we made to reduce the

cost of guaranteeing durability. We refer to it as the fine-
grained replication control protocol in the following dis-
cussion. In Section 3, we introduce a hierarchical repli-
cation control protocol that allows a primary server to
assert control at various granularities to amortize the per-
formance cost of primary server election over more up-
date requests. In Section 4, we examine the performance
of these protocols with a file system benchmark. In Sec-
tions 5 and 6, we discuss related work and conclude.

2. Fine-grained Replication Control

This section reviews the design of a mutable replica-

tion protocol for NFSv4 that guarantees close-to-open
semantics by electing a primary server for client updates
at the granularity of a single file or directory [8].

Briefly, the system works as follows. When a client
opens a file for writing, the replication server to which it
connects invokes a replication control protocol, a server-
to-server protocol extension to the NFSv4 standard.1
First, the server arranges with all other replication servers
to acknowledge its primary role. Then, all other replica-
tion servers are instructed to forward client read and write
requests for that file to the primary server. The primary
server distributes (ordered) updates to other servers dur-
ing file modification. When the file is closed (or has not
been modified for a long time) and all replication servers
are synchronized, the primary server notifies the other
replication servers that it is no longer the primary server
for the file.

Directory updates are handled similarly, except for the
handling of concurrent writes. Directory updates com-
plete quickly, so a replication server simply waits for the
primary server to relinquish its role if it needs to modify a
directory undergoing change. For directory updates that
involve multiple objects, e.g., renaming, a server must
become the primary server for all objects. To prevent
deadlock, we group these update requests and process
them together.

Two requirements are necessary to guarantee close-to-
open semantics. First, a server becomes the primary
server for an object only after it collects acknowledge-
ments from a majority of the replication servers. To guar-
antee this, we implement a leader election algorithm that
achieves the lower time bound of fast Consensus [9]. The
pseudo code of the implementation and the failure recov-
ery mechanisms are provided in our technical report [10].
Second, a primary server must ensure that all working
replication servers have acknowledged its role when a
written file is closed, so that subsequent reads on any
server reflect the contents of a file when it was closed.

1 An application can open a file in write mode without actually

writing any data for a long time, e.g., forever, so the procedure
is delayed until the client makes its first write.

 3

The second requirement is satisfied automatically if the
client access to the written file lasts longer than the dura-
tion of the primary server election. However, an applica-
tion that writes many small files can suffer non-negligible
delays. These files are often temporary files, i.e., files
that were just created (and are soon to be deleted), so we
allow a new file to inherit the primary server that controls
its parent directory for file creation. Since the primary
server does not need to propose a new election for writing
a newly created file, close-to-open semantics is often
automatically guaranteed without additional cost.

A primary server is responsible for distributing up-
dates to other replication servers during file or directory
modification. In our earlier version of the protocol, we
required that a primary server not process a client update
request until it receives update acknowledgements from a
majority of the replication servers [8]. With this require-
ment, as long as a majority of the replication servers is
available, a fresh copy can always be recovered from
them. Then, by having all active servers synchronize
with the most current copy, we guarantee that the data
after recovery reflects all acknowledged client updates,
and a client needs to reissue only its last pending request
after switching to a working server.

The earlier protocol transparently recovers from a mi-
nority of server failures and balances performance and
availability well for applications that mostly read. How-
ever, performance suffers for scientific applications that
consist of many synchronous writes or directory updates
and replication servers that are far away from each other.
Meeting the performance needs of Grid applications re-
quires a different trade-off.

Failures occur in distributed computations, but are rare
in practice. Furthermore, the results of most scientific
applications can be reproduced by simply re-executing
programs or re-starting from the last checkpoint. This
suggests a way to relax the costly update distribution re-
quirement so that the system provides higher throughput
for synchronous updates at the cost of sacrificing the du-
rability of data undergoing change in the face of failure.

Adopting this strategy, we allow a primary server to
respond immediately to a client write request before dis-
tributing the written data to other replication servers.
Thus, with a single writer, even when replication servers
are widely distributed, the client experiences longer delay
only for the first write (whose processing time includes
the cost of primary server election), while subsequent
writes have the same response time as accessing a local
server (assuming the client and the chosen server are in
the same LAN). Of course, should concurrent writes oc-
cur, performance takes a back seat to consistency, so
some overhead is imposed on the application whose reads
and writes are forwarded to the primary server.

3. Hierarchical Replication Control

Even with an efficient consensus protocol, a server can

be delayed waiting for acknowledgments from slow or
distant replication servers. This can adversely affect per-
formance, e.g., when an application issues a burst of
metadata updates to widely distributed objects. Conven-
tional wisdom holds that such workloads are common in
Grid computing, and we have observed them ourselves
when installing, building, and upgrading Grid application
suites. To address this problem, we introduce a hierarchi-
cal replication control protocol that amortizes the cost of
primary server election over more requests by allowing a
primary server to assert control over an entire subtree
rooted at a directory. In this section, we detail the design
of this tailored protocol.

The remainder of this section proceeds as follows.
Section 3.1 introduces two control types that a primary
server can assert. One is limited to a single file or direc-
tory, while the other governs an entire subtree rooted at a
directory. Section 3.2 discusses revisions to the primary
server election needed for hierarchical replication control.
Section 3.3 then investigates mechanisms to balance the
performance and concurrency trade-off related to the two
control types.

3.1 Shallow vs. Deep Control

We introduce nomenclature for two types of control:

shallow and deep. A server exercising shallow control on
an object (file or directory) L is the primary server for L.
A server exercising deep control on a directory D is the
primary server for D and all of the files and directories in
D, and additionally exercises deep control on all the di-
rectories in D. In other words, deep control on D makes
the server primary for everything in the subtree rooted at
D. In the following discussion, when a replication server
P is elected as the primary server with shallow control for
an object L, we say that P has shallow control on L.
Similarly, when a replication server P is elected as the
primary server with deep control on a directory D, we say
that P has deep control on D. Relinquishing the role of
primary server for an object L amounts to revoking shal-
low or deep control on L. We say that a replication
server P controls an object L if P has (shallow or deep)
control on L or P has deep control on an ancestor of L.

We introduced deep control to improve performance
for a single writer without sacrificing correctness for con-
current updates. Electing a primary server with the
granularity of a single file or directory allows high con-
currency and fine-grained load balancing, but a coarser
granularity is suitable for applications whose updates ex-
hibit high temporal locality and are spread across a direc-
tory or a file system. A primary server can process any

 4

client update in a deeply controlled directory immedi-
ately, so it improves performance for applications that
issue a burst of metadata updates.

Introducing deep control complicates consensus during
primary server election. To guarantee that an object is
under the control of a single primary server, we enforce
the rules shown in Figure 1. We assume that the single
writer case is more common than concurrent writes, so a
replication server attempts to acquire a deep control on a
directory whenever it can. On the other hand, we must
not allow an object to be controlled by multiple servers.
Therefore, a replication server needs to ensure that an
object in a (shallow or deep) control request is not already
controlled by another server. Furthermore, it must guar-
antee that a directory in a deep control request has no
descendant under the control of another server.

To validate the first condition, a replication server ex-
amines each directory along the path from the referred
object up to the mount point. If an ancestor of the object
has a primary server other than the one that issues the
request, the validation fails. Checking the second condi-
tion is more complex. Scanning the directory tree during
the check is too expensive, so we do some bookkeeping
when electing a primary server: each replication server
maintains an ancestry table for files and directories
whose controls are granted to some replication servers.
An entry in the ancestry table corresponds to a directory
that has one or more descendants whose primary servers
are not empty. Figure 2 shows entries in the ancestry
table and illustrates how the ancestry table is maintained.

An ancestry entry contains an array of counters, each
of which corresponds to a replication server. E.g., if there
are three replication servers in the system, an entry in the
ancestry table contains three corresponding counters.
Whenever a (deep or shallow) control for an object L is
granted or revoked, each server updates its ancestry table

by scanning each directory along the path from L to the
mount point, adjusting counters for the server that owns
the control. A replication server also updates its ancestry
table appropriately if a controlled object is moved, linked,
or unlinked during directory modifications.

A replication server needs only one lookup in its an-
cestry table to tell whether a directory subtree holds an
object under the control of a different server. First, it
finds the mapping entry of the directory from its ancestry
table. Then, it examines that entry’s counter array. If the
counter on any replication server other than the one that
issues the deep control request has a non-zero value, the
replication server knows that some other server currently
controls a descendant of the directory, so the replication
server rejects the deep control request.

3.2 Primary Server Election with Deep Control

With the introduction of deep control, primary server

election requests on two different objects can conflict if
one of them wants deep control on a directory, as the ex-
ample in Figure 3 illustrates. To guarantee progress dur-
ing conflicts, we extend the consensus algorithm for pri-
mary server election as follows. When a replication
server receives a deep control request for a directory D
from a peer server P but cannot grant the control accord-
ing to the rules listed in Figure 1, it replies to P with a
NACK. A server downgrades a deep control request to
shallow if it fails to accumulate acknowledgments from a
majority of the replication servers. Proceeding with shal-
low controls only, the progress of primary server election
is then governed by the original consensus algorithm [10].

3.3 Performance and Concurrency Tradeoff

The introduction of deep control introduces a perform-

ance and concurrency trade-off. A primary server can
process any client update in a deep-controlled directory,
which substantially improves performance when an ap-
plication issues a burst of updates. This argues for hold-
ing deep control as long as possible. On the other hand,
holding a deep control can introduce conflicts due to false
sharing. In this subsection, we strive for balance in the
trade-off between performance and concurrency when
employing shallow and deep controls.

First, we assume that the longer a server controls an
object, the more likely it will receive conflicting updates,
so we start a timer on a server when it obtains a deep con-
trol. The primary server resets its timer if it receives a
subsequent client update under the deep-controlled direc-
tory before the timeout. When the timer expires, the pri-
mary server relinquishes its role.

Second, recall that in a system with multiple writers,
we increase concurrency by issuing a revoke request from

Upon receiving a client update request for object L
if L is controlled by self then serve the request
if L is controlled by another server then forward the request
else // L is uncontrolled

if L is a file then request shallow control on L
if L is a directory then

if a descendant of L is controlled by another server then
request shallow control on L

else
request deep control on L

Upon receiving a shallow control request for object L from
peer server P
grant the request iff L is not controlled by a server other than P

Upon receiving a deep control request for directory D from
peer server P
grant the request iff D is not controlled by a server other than P,
and no descendant of D is controlled by a server other than P

Figure 1. Using and granting controls.

 5

one server to another if the former server receives an up-
date request under a directory deep-controlled by the lat-
ter. Locality of reference suggests that more revoke re-
quests will follow shortly, so the primary server shortens
the timer for relinquishing its role for that directory. Note
that a replication server does not send a revoke request
when it receives a directory read request under a deep-
controlled directory. This strategy is based on observing
that the interval from the time that a client receives a di-
rectory update acknowledgment and the time that other
replication servers implement the update is small (be-
cause the primary server distributes a directory update to
other replication servers immediately after replying to the
client). This model complies with NFSv4 consistency
semantics: in NFSv4, a client caches attributes and direc-
tory contents for a specified duration before requesting
fresh information from its server.

Third, when a primary server receives a client write
request for a file under a deep-controlled directory, it dis-
tributes a new shallow control request for that file to other
replication servers. The primary server can process the
write request immediately without waiting for replies
from other replication servers, as it is already the primary
server of the file’s ancestor. However, with a separate
shallow control on the file, subsequent writes on that file
do not reset the timer of the deep controlled directory.
Thus, a burst of file writes has minimal impact on the
duration that a primary server holds a deep control. Fur-
thermore, to guarantee close-to-open semantics, a replica-
tion server need only to check whether the accessed file is
associated with a shallow control before processing a
client read request, instead of scanning each directory
along the path from the referred file to the mount point.

Fourth, a replication server can further improve its per-
formance by issuing a deep control request for a directory
that contains many frequently updated descendants if it
observes no concurrent writes. This is easy to implement
with the information recorded in the ancestry table: a rep-

lication server can issue such a request for directory D if
it observes that in the ancestry entry of D, the counter
corresponding to itself is beyond some threshold and the
counters of all other replication servers are zero.

The introduction of deep control promises substantial
performance benefits, but can also adversely affect data
availability in the face of failure: if a primary server with
deep control on a directory fails, updates in that directory
subtree cannot proceed until the failed primary server is
recovered. Recapitulating the discussion of false sharing
above, this argues in favor of a small value for the timer.
In the next section, we show that timeouts as short as one
second are long enough to reap the performance benefits
of deep control. Combined with our assumption that fail-
ure is uncommon, we anticipate that the performance
gains of deep control far outweigh the potential cost of
servers failing while holding deep control on directories.

4. Evaluation

In this section, we evaluate the performance of hierar-

chical replication control using the SSH-Build bench-
mark. The SSH-Build benchmark [11] runs in three
phases. The unpack phase decompresses a tar archive of
SSH v3.2.9.1. This phase is relatively short and is char-
acterized by metadata operations on files of varying sizes.
The configure phase builds various small programs that
check the configuration of the system and automatically
generates header files and Makefiles. The build phase
compiles the source tree and links the generated object
files into the executables. The last phase is the most CPU
intensive, but it also generates a large number of tempo-
rary files and a few executables in the compiling tree.

We conducted the experiments that follow with a pro-
totype implemented in the Linux 2.6.16 kernel. Servers
and clients all run on dual 2.8GHz Intel Pentium4 proces-
sors with 1 MB L2 cache, 1 GB memory, and onboard
Intel 82547GI Gigabit Ethernet card. The NFS configura-
tion parameters for reading (rsize) and writing (wsize) are
set to 32 KB, the recommended value for WAN access.

Consider three replication servers: S0, S1, and S2. Currently,
S0 is the primary server of file f1 and directory d1, S1 is the
primary server of file f2, and S2 is the primary server of direc-
tory d2. The right table shows the content of the ancestry table
maintained on each replication server.

Figure 2. Maintenance of the ancestry table.

Consider three replication servers: S0, S1, and S2. Simultane-
ously, S0 requests (deep or shallow) control of directory b, S1
requests control of directory c, and S2 requests deep control of
directory a. According to the rules in Figure 1, S0 and S1 suc-
ceed in their primary server elections, but S2’s election fails due
to conflicts. S2 then retries by asking for shallow control of a.

Figure 3. Potential conflicts in primary server
election caused by deep control.

 6

We use Netem [12] to induce network latencies. Our
experiments focus on evaluating the performance impact
caused by WAN delays. Hence, we do not simulate
packet loss or bandwidth limits in our measurements.
Although not comprehensive, we expect that our settings
resemble a typical Grid environment — high performance
clusters connected by long fat pipes. All measurements
presented in this paper are mean values from five trials of
each experiment with a warm client cache; measured
variations in each experiment are negligible.

Before diving into the evaluation of hierarchical repli-
cation, we look at performance when accessing a single
distant NFSv4 server. Figure 4 shows the measured times
(in log-scale) when we run the SSH-Build benchmark
with an increasingly distant file server. In the graph, the
RTT marked on the X-axis shows the round-trip time be-
tween the client and the remote server, starting with 200
µsec, the network latency of our test bed LAN. We find
that the SSH build that completes in a few minutes on a
local NFSv4 server takes hours when the RTT between
the server and the client increases to tens of milliseconds.
The experiment shows that it is impractical to execute
update-intensive applications using a stock remote server.
Network RTT is the dominant factor in NFS WAN per-
formance, which suggests the desirability of a replicated
file system that provides client access to a nearby server.

Next, we compare the time to build SSH using fine-
grained replication control and hierarchical replication
control with a local replication server and an increasingly
distant replication server. The results, shown (in linear
scale) in Figure 5, demonstrate the performance advan-
tage of file system replication. Even with fine-grained
replication control, adding a nearby replication server
significantly shortens the time to build SSH, as expensive
reads from a remote server are now serviced nearby.
Moreover, we see dramatic improvement with the intro-
duction of hierarchical replication control: the penalty for
replication is now negligible, even when replication serv-
ers are distant.

In Section 3, we discussed the use of a timer for each
deep-controlled directory to balance performance and

concurrency but did not fix the timeout value. To deter-
mine a good value for the timer, we measure the time to
build SSH for timeout values of 0.1 second, 0.5 second,
and 1 second. Figure 6 presents the results. As the data
shows, when we set the timeout value to one second, the
SSH build with a distant replication server runs almost as
fast as one accessing a single local server. Furthermore,
almost all of the performance differences among the three
timeout values come from the CPU intensive build phase.
For the unpack and configure phases, which emit updates
more compactly, even a tiny timeout value yields per-
formance very close to that for single local server access.
Of course, in practice the “optimal” timeout value de-
pends on the workload characteristics of the running ap-
plications. However, the SSH build experiment suggests
that a small timer value—a few seconds at most—-
captures most of the bursty updates.

So far, our experiments focus on evaluation with two
replication servers. Generally, our system is designed to
be used with a small number of replication servers, say,
fewer than ten. Under this assumption, we do not expect
performance to suffer when additional replication servers
are added because a primary server distributes updates to
other replication servers in parallel. To test this conjec-
ture, we measure the time to build SSH as the number of
replication servers increases in a LAN and in a simulated
WAN. Figure 7 shows that performance is largely unaf-
fected as the number of replication servers increases.
Note that distributing client updates consumes progres-
sively more primary server bandwidth as we increase the
number of replication servers. As a gedanken experi-
ment, we might imagine the practical limits to scalability
as the number of replication servers grows. For the near

0

100
200

300

400

500
600

700

800

0.2 20 40 60 80 100 120 single
local

server
RTT between two replication servers (ms)

SS
H

 b
ui

ld
 ti

m
e

(s
)

unpack configure build

Figure 5. Fine-grained replication control vs.
hierarchical replication control. The first column
shows the time to build SSH using fine-grained rep-
lication control. The second column shows the time
when using hierarchical replication control. For runs
with hierarchical replication control, the primary
server relinquishes deep control if it receives no cli-
ent updates for one second.

1

10

100

1000

10000

0.2 5 10 20 30 40
RTT between NFS server and client (ms)

SS
H

 b
ui

ld
 ti

m
e

(s
)

unpack configure build

Figure 4. SSH build on a single NFSv4 server.

 7

term, then, the cost of bandwidth appears to be a barrier
to massive replication with our design.

5. Related Work

Replicated File Systems. Echo [13] and Harp [14]

are file systems that use the primary copy scheme to sup-
port mutable replication. Both of these systems use a pre-
determined primary server for a collection of disks, a po-
tential bottleneck if those disks contain hot spots or if the
primary server is distant. Our system avoids this problem
by allowing any server to be primary for any file, deter-
mined dynamically in response to client behavior.

Many replicated file systems trade consistency for
availability. Examples include Coda [15], Ficus [16], and
Locus [17]. These systems allow continued operations in
the presence of failures, at the cost of sacrificing consis-
tency if conflicting updates occur. Typically, automatic
tools are provided to reconcile conflicts [18, 19]. How-
ever, in some cases, user involvement is needed to get the
desired version of data.

Recent years have seen a lot of work in peer-to-peer
file systems, including OceanStore [20], Ivy [21], Pan-
gaea [22], and Farsite [23]. These systems address the
design of systems in untrusted, highly dynamic environ-
ments. Consequently, reliability and continuous data
availability are usually critical goals in these systems;
performance or data consistency are often secondary con-
siderations. Compared to these systems, our system ad-
dresses data replication among file system servers, which
are more reliable but have more stringent requirements on
average I/O performance.

Hierarchical Replication Control. The use of multi-
ple granularities of control to balance performance and
concurrency has been studied in other distributed file sys-
tems and database systems. Many modern transactional
systems use hierarchical locking [24] to improve concur-
rency and performance of simultaneous transactions. In

distributed file systems, Frangipani [25] uses distributed
locking to control concurrent accesses among multiple
shared-disk servers. For efficiency, it partitions locks
into distinct lock groups and assign them to servers by
group, not individually. Lin et al. study the selection of
lease granularity when distributed file systems use leases
to provide strong cache consistency [26]. To amortize
leasing overhead across multiple objects in a volume,
they propose volume leases that combine short-term
leases on a group of files (volumes) with long-term leases
on individual files. Farsite [23] uses content leases to
govern which client machines currently have control of a
file’s content. A content lease may cover a single file or
an entire directory of files.

Data Grid. Various middleware systems have been
developed to facilitate data access on the Grid. Storage
Resource Broker (SRB) [27] provides a metadata catalog
service to allow location-transparent access for heteroge-
neous data sets. NeST [28], a user-level local storage
system whose goal is to bring appliance technology to the
Grid, provides best-effort storage space guarantees,
mechanisms for resource and data discovery, user authen-
tication, quality of service, and multiple transport proto-
col support. The Chimera system [29] provides a virtual
data catalog that can be used by applications to describe a
set of programs, and then to track all the data files pro-
duced by their execution. The work is motivated by ob-
serving that scientific data is often derived from other
data by the application of computational procedures,
which implies the need for a flexible data sharing and
access system.

A commonly omitted feature among these middleware
approaches is fine-grained data sharing semantics. Fur-

0

40

80

120

160

200

0.2
20 40 60 80 100
120

0.2
20 40 60 80 100
120

0.2
20 40 60 80 100
120

RTT between two replication servers (ms)

SS
H

 b
ui

ld
 ti

m
e

(s
)

unpack configure build

0.1s timer 0.5s timer 1s timer

single
local
server

Figure 6. Deep control timeout values. The dia-
gram shows the time to build SSH using hierarchical
replication when the timeout for releasing a deep
control is set to 0.1, 0.5, and 1 second.

0

40

80

120

160

200

2 3 4 5 2 3 4 5

Number of replication servers

SS
H

 b
ui

ld
 ti

m
e

(s
)

unpack configure build

LAN Replicaton WAN Replication

single local
server

Figure 7. Increasing the number of replication
servers. For LAN replication, the RTT between any
two machines is around 200 µsec. For WAN repli-
cation, the RTT between any two replication servers
is set to 120 msec, while the RTT between the client
and the connected server is kept as 200 µsec. The
primary server relinquishes deep control if it re-
ceives no further client updates for one second.

 8

thermore, most of these systems provide extended fea-
tures by defining their own API, so an application has to
be re-linked with their libraries in order to use them.

6. Conclusion

Conventional wisdom holds that supporting consistent

mutable replication in large-scale distributed storage sys-
tems is too expensive even to consider. Our study proves
otherwise: in fact, it is both feasible and practical. In this
paper, we present a replication control protocol that sup-
ports mutable replication with strong consistency guaran-
tees. The protocol can be realized with a modest exten-
sion isolated to NFSv4 servers. We are working to influ-
ence the IETF to adopt such an extension. With the ubiq-
uitous deployment of NFSv4, our work holds great prom-
ise for accessing and sharing data in Grid computing,
delivering superior performance while rigorously adher-
ence to conventional file system semantics.

References

[1] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and

S. Tuecke. “The Data Grid: Towards an Architecture for
the Distributed Management and Analysis of Large Scien-
tific Datasets,” J Network and Computer Apps. (2001).

[2] I. Foster and C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann
(1998).

[3] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link,
“The Globus Striped GridFTP Framework and Server,” in
Proc. Supercomputing (Nov. 2005).

[4] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M.
Eisler, D. Noveck, D. Robinson, and R. Thurlow, “The
NFS Version 4 Protocol,” in Proc. 2nd SANE (2000).

[5] Sun Microsystems, Inc., “NFS Version 4 Protocol,” RFC
3010 (2000).

[6] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D.
Lebel, and D. Hitz, “NFS Version 3 Design and Imple-
mentation,” in Proc. USENIX Technical Conf. (1994).

[7] J. Zhang and P. Honeyman, “NFSv4 Replication for Grid
Storage Middleware,” in Proc 4th Intl. Workshop on Mid-
dleware for Grid Computing (2006).

[8] J. Zhang and P. Honeyman, “Naming, Migration, and
Replication for NFSv4,” in Proc. 5th SANE (2006).

[9] L. Lamport, “Lower bounds on Asynchronous Consen-
sus,” In Andre Schiper, Alex A. Shvartsman, Hakim
Weatherspoon, and Ben Y. Zhao, editors, Future Direc-
tions in Distributed Computing, volume 2584 of Lecture
Notes in Computer Science, Springer (2003).

[10] J. Zhang and P. Honeyman, “Hierarchical Replication
Control in a Global File System,” Tech Report 06-08,
Center for Information Technology Integration (2006).

[11] T. Ylonen, “SSH—Secure Login Connection Over the
Internet,” in Proc. 6th USENIX Security Symp. (1996).

[12] S. Hemminger, “Netem—Emulating Real Networks in the
lab,” linux.conf.au (LCA) (2005).

[13] A. Hisgen, A. Birrel, T. Mann, M. Schroeder, and G.
Swart, “Granularity and Semantic Level of Replication in
the Echo Distributed File System.” in Proc. Workshop on
Mgmt. of Replicated Data (Nov. 1990).

[14] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams, “Replication in the Harp File System,”
in Proc. 13th ACM SOSP (Oct. 1991).

[15] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki,
W.H. Siegel, and D.C. Steere, “Coda: A highly available
file system for a distributed workstation environment,”
IEEE Transactions on Computers (1990).

[16] G.J. Popek, R.G. Guy, T.W. Page, Jr., and J.S. Heide-
mann, “Replication in Ficus distributed file systems,” in
Proc. Workshop on Mgment. of Replicated Data (1990).

[17] G.J. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G.
Rudisin, and G. Thiel, “LOCUS: A network transparent,
high reliability distributed system,” in Proc. 8th SOSP
(1981).

[18] P. Kumar and M. Satyanarayanan, “Log-based directory
resolution in the coda file system,” in Proc. 2nd Intl. Conf.
on Parallel and Distributed Information Systems (1993).

[19] P. Kumar and M. Satyanarayanan, “Supporting applica-
tion-specific resolution in an optimistically replicated file
system,” in Proc. Workshop on Workstation Operating
System (1993).

[20] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz, “Pond: the OceanStore Prototype,” in
Proc. 2nd USENIX FAST (2003).

[21] A. Muthitacharoen, R. Morris, T.M. Gil, and B. Chen,
“Ivy: A Read/Write Peer-to-peer File System,” in Proc. 5th
SOSP (2002).

[22] Y. Saito, C. Karamonolis, M. Karlsson, and M. Mahalin-
gam, “Taming aggressive replication in the Pangaea wide-
area file system,” in Proc. 5th SOSP (2002).

[23] A. Adya, W.J. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J.R. Douceur, J. Howell, J.R. Lorch, M. Theimer,
R.P. Wattenhofer, “FARSITE: Federated, Available, and
Reliable Storage for an Incompletely Trusted Environ-
ment”, in Proc. 5th SOSP (2002).

[24] J. Gray, R.A. Lorie, G.R. Putzolu, and I.L. Traiger,
“Granularity of Locks and Degrees of Consistency in a
Shared Data Base,” IFIP Working Conf. on Modeling in
Data Base Management Systems (1976).

[25] C.A. Thekkath, T. Mann, and E.K. Lee, “Frangipani: A
Scalable Distributed File System,” in Proc. 16th SOSP
(1997).

[26] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. “Volume Leases
for Consistency in Large-Scale Systems,” IEEE Trans. on
Knowledge and Data Engineering (1999).

[27] C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The
SDSC Storage Resource Broker,” in CASCON'98 (1998).

[28] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley,
A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, and M.
Livny, “Flexibility, Manageability, and Performance in a
Grid Storage Appliance,” in Proc. 11th HPDC (2002).

[29] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, “Chimera:
A Virtual Data System for Representing, Querying, and
Automating Data Derivation,” in Proc. 14th Scientific and
Statistical Database Management Conf. (2002).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

