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Abstract 
 
We develop a consistent mutable replication extension 

for NFSv4 tuned to meet the rigorous demands of large-
scale data sharing in global collaborations.  The system 
uses a hierarchical replication control protocol that dy-
namically elects a primary server at various 
granularities.  Experimental evaluation indicates a sub-
stantial performance advantage over a single server sys-
tem.  With the introduction of the hierarchical replication 
control, the overhead of replication is negligible even 
when applications mostly write and replication servers 
are widely distributed. 

 
1. Introduction 

 
Grid-based scientific collaborations are characterized 

by geographically distributed institutions sharing comput-
ing, storage, and instruments in dynamic virtual organiza-
tions [1, 2].  By aggregating globally distributed re-
sources, Grid middleware provides an infrastructure for 
computations far beyond the scope of a single organiza-
tion. 

Grid computations feature high performance comput-
ing clusters connected with long fat pipes, a significant 
departure from the traditional high-end setting of a collec-
tion of nodes sited at one location connected by a fast 
local area network.  This difference introduces new chal-
lenges in storage management, job scheduling, security 
provision, etc., stimulating growing research in these ar-
eas.  In particular, the need for flexible and coordinated 
resource sharing among geographically distributed or-
ganizations demands efficient, reliable, and convenient 
data access and movement schemes to ease users’ efforts 
for using Grid data. 

The state of the art in Grid data access is characterized 
by parallel FTP driven manually or by scripts [3].  FTP 
has the advantage of following a strict and simple stan-
dard and widespread vendor support.  However, FTP has 
some shortcomings. 

• Applications must explicitly transfer a remote file in 
its entirety to view or access even a small piece of it, 
then transfer it back if the file is modified.   

• Consistent sharing for distributed applications is not 
supported.   

• The distribution model also leads to long first-byte 
latency.   

To overcome these problems, we developed an alter-
native for distributed filing on the Grid that allows users 
and applications to access widely distributed data as sim-
ply and efficiently as they access them locally. 

Recent advances in Internet middleware infrastructure 
— notably, broad support for NFSv4 [4, 5] — offer re-
markable opportunities for virtual organizations to share 
data through a unified global file system.  Designed with 
Internet data management in mind, NFSv4 has the poten-
tial to meet the requirements of widely distributed col-
laborations.  As a distributed file system protocol, NFSv4 
allows users to access data with traditional file system 
semantics.  NFSv4 guarantees “close-to-open” consis-
tency, i.e., an application opening a file is guaranteed to 
see the data written by the last application that writes and 
closes the file.  This model, which proves adequate for 
most applications and users [6], can also serve as an ena-
bling feature for re-using existing software on the Grid. 

In spite of these advantages, extending NFSv4 access 
to a global scale introduces performance challenges.  Our 
evaluation indicates that conventional NFS distribution 
— multiple clients connected to storage elements through 
a common server — cannot meet Grid performance re-
quirements when computational elements are widely dis-
tributed [7].  To overcome this problem, we developed a 
replication protocol for NFSv4 that allows placement of 
replication servers near compute nodes [8].  The protocol 
supports NFSv4 semantics exactly and requires no client-
side extensions, which simplifies deployment in wide 
area networks.  

Our replication extension to NFSv4 coordinates con-
current writes by dynamically electing a primary server 
for client updates.  When no writers are active, our sys-
tem has the performance profile of systems that support 
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read-only replication.  Unlike read-only systems, though, 
we also support concurrent write access without compro-
mising NFSv4 consistency guarantees.  Security of the 
protocol follows from the use of secure RPC channels, 
mandatory in NFSv4, for server-to-server communica-
tion.  Furthermore, the system can automatically recover 
from minority server failures, offering higher availability 
than single server systems. 

Our earlier replication protocol breaks new ground in 
performance and availability for read-dominant applica-
tions, yet further analysis exposes a considerable per-
formance penalty for large synchronous writes, bursty 
directory updates, and widely separated replication serv-
ers — data access patterns characteristic of Grid comput-
ing.  The observed performance penalty is mainly due to 
the cost of guaranteeing durability and the cost of syn-
chronization.  Specifically, the durability requirement 
delays the response to a client update request until a ma-
jority of the replication servers have acknowledged the 
update.  This provides a simple recovery mechanism for 
server failure but synchronous writes and directory up-
dates suffer when replication servers are far away.  The 
synchronization requirement, which amounts to an elec-
tion for consensus gathering, also delays applications — 
especially when they emit a burst of metadata updates — 
while waiting for distant replication servers to vote.   

We assume (and observe) that failures are rare in prac-
tice.  Furthermore, the computation results by Grid appli-
cations can usually be reproduced by simply re-executing 
programs or restarting from a recent checkpoint.  This 
suggests that we may relax the durability requirement to 
improve performance for synchronous updates.  Instead 
of automatically guaranteeing durability to a client, we 
may elect to report failure to the application immediately 
by making the data under modification inaccessible.  The 
application can then decide whether to wait for server 
recovery or to regenerate the computation results.   

To reduce the cost of synchronization, we introduce a 
hierarchical replication control protocol that allows a pri-
mary server to assert control at granularities coarser than 
a single file or directory, allowing control over an entire 
subtree rooted at a directory.  This amortizes the cost of 
synchronization over multiple update requests.  

In this paper, we describe these extensions in detail.  
In particular, we focus on the design, implementation, and 
evaluation of the hierarchical replication control protocol 
we developed.  The evaluation for using the described 
replicated file system to support Grid computing and the 
performance comparisons with GridFTP are presented in 
a companion paper [7]. 

The remainder of the paper proceeds as follows.  Sec-
tion 2 describes our earlier work in developing a replica-
tion control protocol that coordinates concurrent writes by 
electing a primary server at the granularity of a single file 
or directory and the extensions we made to reduce the 

cost of guaranteeing durability.  We refer to it as the fine-
grained replication control protocol in the following dis-
cussion.  In Section 3, we introduce a hierarchical repli-
cation control protocol that allows a primary server to 
assert control at various granularities to amortize the per-
formance cost of primary server election over more up-
date requests.  In Section 4, we examine the performance 
of these protocols with a file system benchmark.  In Sec-
tions 5 and 6, we discuss related work and conclude.  

 
2. Fine-grained Replication Control  

 
This section reviews the design of a mutable replica-

tion protocol for NFSv4 that guarantees close-to-open 
semantics by electing a primary server for client updates 
at the granularity of a single file or directory [8].  

Briefly, the system works as follows.  When a client 
opens a file for writing, the replication server to which it 
connects invokes a replication control protocol, a server-
to-server protocol extension to the NFSv4 standard.1  
First, the server arranges with all other replication servers 
to acknowledge its primary role.  Then, all other replica-
tion servers are instructed to forward client read and write 
requests for that file to the primary server.  The primary 
server distributes (ordered) updates to other servers dur-
ing file modification.  When the file is closed (or has not 
been modified for a long time) and all replication servers 
are synchronized, the primary server notifies the other 
replication servers that it is no longer the primary server 
for the file.       

Directory updates are handled similarly, except for the 
handling of concurrent writes.  Directory updates com-
plete quickly, so a replication server simply waits for the 
primary server to relinquish its role if it needs to modify a 
directory undergoing change.  For directory updates that 
involve multiple objects, e.g., renaming, a server must 
become the primary server for all objects.  To prevent 
deadlock, we group these update requests and process 
them together. 

Two requirements are necessary to guarantee close-to-
open semantics.  First, a server becomes the primary 
server for an object only after it collects acknowledge-
ments from a majority of the replication servers.  To guar-
antee this, we implement a leader election algorithm that 
achieves the lower time bound of fast Consensus [9].  The 
pseudo code of the implementation and the failure recov-
ery mechanisms are provided in our technical report [10].  
Second, a primary server must ensure that all working 
replication servers have acknowledged its role when a 
written file is closed, so that subsequent reads on any 
server reflect the contents of a file when it was closed.  

                                                           
1 An application can open a file in write mode without actually 

writing any data for a long time, e.g., forever, so the procedure 
is delayed until the client makes its first write. 
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The second requirement is satisfied automatically if the 
client access to the written file lasts longer than the dura-
tion of the primary server election.  However, an applica-
tion that writes many small files can suffer non-negligible 
delays.  These files are often temporary files, i.e., files 
that were just created (and are soon to be deleted), so we 
allow a new file to inherit the primary server that controls 
its parent directory for file creation.  Since the primary 
server does not need to propose a new election for writing 
a newly created file, close-to-open semantics is often 
automatically guaranteed without additional cost. 

A primary server is responsible for distributing up-
dates to other replication servers during file or directory 
modification.  In our earlier version of the protocol, we 
required that a primary server not process a client update 
request until it receives update acknowledgements from a 
majority of the replication servers [8].  With this require-
ment, as long as a majority of the replication servers is 
available, a fresh copy can always be recovered from 
them.  Then, by having all active servers synchronize 
with the most current copy, we guarantee that the data 
after recovery reflects all acknowledged client updates, 
and a client needs to reissue only its last pending request 
after switching to a working server. 

The earlier protocol transparently recovers from a mi-
nority of server failures and balances performance and 
availability well for applications that mostly read.  How-
ever, performance suffers for scientific applications that 
consist of many synchronous writes or directory updates 
and replication servers that are far away from each other.  
Meeting the performance needs of Grid applications re-
quires a different trade-off. 

Failures occur in distributed computations, but are rare 
in practice.  Furthermore, the results of most scientific 
applications can be reproduced by simply re-executing 
programs or re-starting from the last checkpoint.  This 
suggests a way to relax the costly update distribution re-
quirement so that the system provides higher throughput 
for synchronous updates at the cost of sacrificing the du-
rability of data undergoing change in the face of failure. 

Adopting this strategy, we allow a primary server to 
respond immediately to a client write request before dis-
tributing the written data to other replication servers.  
Thus, with a single writer, even when replication servers 
are widely distributed, the client experiences longer delay 
only for the first write (whose processing time includes 
the cost of primary server election), while subsequent 
writes have the same response time as accessing a local 
server (assuming the client and the chosen server are in 
the same LAN).  Of course, should concurrent writes oc-
cur, performance takes a back seat to consistency, so 
some overhead is imposed on the application whose reads 
and writes are forwarded to the primary server. 

  

3. Hierarchical Replication Control 
 
Even with an efficient consensus protocol, a server can 

be delayed waiting for acknowledgments from slow or 
distant replication servers.  This can adversely affect per-
formance, e.g., when an application issues a burst of 
metadata updates to widely distributed objects.  Conven-
tional wisdom holds that such workloads are common in 
Grid computing, and we have observed them ourselves 
when installing, building, and upgrading Grid application 
suites.  To address this problem, we introduce a hierarchi-
cal replication control protocol that amortizes the cost of 
primary server election over more requests by allowing a 
primary server to assert control over an entire subtree 
rooted at a directory.  In this section, we detail the design 
of this tailored protocol. 

The remainder of this section proceeds as follows.  
Section 3.1 introduces two control types that a primary 
server can assert.  One is limited to a single file or direc-
tory, while the other governs an entire subtree rooted at a 
directory.  Section 3.2 discusses revisions to the primary 
server election needed for hierarchical replication control.  
Section 3.3 then investigates mechanisms to balance the 
performance and concurrency trade-off related to the two 
control types. 

 
3.1 Shallow vs. Deep Control 

 
We introduce nomenclature for two types of control: 

shallow and deep.  A server exercising shallow control on 
an object (file or directory) L is the primary server for L.  
A server exercising deep control on a directory D is the 
primary server for D and all of the files and directories in 
D, and additionally exercises deep control on all the di-
rectories in D.  In other words, deep control on D makes 
the server primary for everything in the subtree rooted at 
D.  In the following discussion, when a replication server 
P is elected as the primary server with shallow control for 
an object L, we say that P has shallow control on L.  
Similarly, when a replication server P is elected as the 
primary server with deep control on a directory D, we say 
that P has deep control on D.  Relinquishing the role of 
primary server for an object L amounts to revoking shal-
low or deep control on L.  We say that a replication 
server P controls an object L if P has (shallow or deep) 
control on L or P has deep control on an ancestor of L. 

We introduced deep control to improve performance 
for a single writer without sacrificing correctness for con-
current updates.  Electing a primary server with the 
granularity of a single file or directory allows high con-
currency and fine-grained load balancing, but a coarser 
granularity is suitable for applications whose updates ex-
hibit high temporal locality and are spread across a direc-
tory or a file system.  A primary server can process any 
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client update in a deeply controlled directory immedi-
ately, so it improves performance for applications that 
issue a burst of metadata updates. 

Introducing deep control complicates consensus during 
primary server election.  To guarantee that an object is 
under the control of a single primary server, we enforce 
the rules shown in Figure 1.  We assume that the single 
writer case is more common than concurrent writes, so a 
replication server attempts to acquire a deep control on a 
directory whenever it can.  On the other hand, we must 
not allow an object to be controlled by multiple servers.  
Therefore, a replication server needs to ensure that an 
object in a (shallow or deep) control request is not already 
controlled by another server.  Furthermore, it must guar-
antee that a directory in a deep control request has no 
descendant under the control of another server.   

To validate the first condition, a replication server ex-
amines each directory along the path from the referred 
object up to the mount point.  If an ancestor of the object 
has a primary server other than the one that issues the 
request, the validation fails.  Checking the second condi-
tion is more complex.  Scanning the directory tree during 
the check is too expensive, so we do some bookkeeping 
when electing a primary server:  each replication server 
maintains an ancestry table for files and directories 
whose controls are granted to some replication servers.  
An entry in the ancestry table corresponds to a directory 
that has one or more descendants whose primary servers 
are not empty.  Figure 2 shows entries in the ancestry 
table and illustrates how the ancestry table is maintained. 

An ancestry entry contains an array of counters, each 
of which corresponds to a replication server.  E.g., if there 
are three replication servers in the system, an entry in the 
ancestry table contains three corresponding counters.  
Whenever a (deep or shallow) control for an object L is 
granted or revoked, each server updates its ancestry table 

by scanning each directory along the path from L to the 
mount point, adjusting counters for the server that owns 
the control.  A replication server also updates its ancestry 
table appropriately if a controlled object is moved, linked, 
or unlinked during directory modifications. 

A replication server needs only one lookup in its an-
cestry table to tell whether a directory subtree holds an 
object under the control of a different server.  First, it 
finds the mapping entry of the directory from its ancestry 
table.  Then, it examines that entry’s counter array.  If the 
counter on any replication server other than the one that 
issues the deep control request has a non-zero value, the 
replication server knows that some other server currently 
controls a descendant of the directory, so the replication 
server rejects the deep control request. 

 
3.2 Primary Server Election with Deep Control 

 
With the introduction of deep control, primary server 

election requests on two different objects can conflict if 
one of them wants deep control on a directory, as the ex-
ample in Figure 3 illustrates.  To guarantee progress dur-
ing conflicts, we extend the consensus algorithm for pri-
mary server election as follows.  When a replication 
server receives a deep control request for a directory D 
from a peer server P but cannot grant the control accord-
ing to the rules listed in Figure 1, it replies to P with a 
NACK.  A server downgrades a deep control request to 
shallow if it fails to accumulate acknowledgments from a 
majority of the replication servers.  Proceeding with shal-
low controls only, the progress of primary server election 
is then governed by the original consensus algorithm [10]. 

 
3.3 Performance and Concurrency Tradeoff  

 
The introduction of deep control introduces a perform-

ance and concurrency trade-off.  A primary server can 
process any client update in a deep-controlled directory, 
which substantially improves performance when an ap-
plication issues a burst of updates.  This argues for hold-
ing deep control as long as possible.  On the other hand, 
holding a deep control can introduce conflicts due to false 
sharing.  In this subsection, we strive for balance in the 
trade-off between performance and concurrency when 
employing shallow and deep controls. 

First, we assume that the longer a server controls an 
object, the more likely it will receive conflicting updates, 
so we start a timer on a server when it obtains a deep con-
trol.  The primary server resets its timer if it receives a 
subsequent client update under the deep-controlled direc-
tory before the timeout.  When the timer expires, the pri-
mary server relinquishes its role.  

Second, recall that in a system with multiple writers, 
we increase concurrency by issuing a revoke request from 

Upon receiving a client update request for object L 
if L is controlled by self then serve the request 
if L is controlled by another server then forward the request 
else   // L is uncontrolled 

if L is a file then request shallow control on L 
if L is a directory then 

if a descendant of L is controlled by another server then  
request shallow control on L 

else 
request deep control on L 

 
Upon receiving a shallow control request for object L from 
peer server P 
grant the request iff L is not controlled by a server other than P 
 
Upon receiving a deep control request for directory D from 
peer server P 
grant the request iff D is not controlled by a server other than P, 
and no descendant of D is controlled by a server other than P 

 

Figure 1.  Using and granting controls. 
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one server to another if the former server receives an up-
date request under a directory deep-controlled by the lat-
ter.  Locality of reference suggests that more revoke re-
quests will follow shortly, so the primary server shortens 
the timer for relinquishing its role for that directory.  Note 
that a replication server does not send a revoke request 
when it receives a directory read request under a deep-
controlled directory.  This strategy is based on observing 
that the interval from the time that a client receives a di-
rectory update acknowledgment and the time that other 
replication servers implement the update is small (be-
cause the primary server distributes a directory update to 
other replication servers immediately after replying to the 
client).  This model complies with NFSv4 consistency 
semantics: in NFSv4, a client caches attributes and direc-
tory contents for a specified duration before requesting 
fresh information from its server.   

Third, when a primary server receives a client write 
request for a file under a deep-controlled directory, it dis-
tributes a new shallow control request for that file to other 
replication servers.  The primary server can process the 
write request immediately without waiting for replies 
from other replication servers, as it is already the primary 
server of the file’s ancestor.  However, with a separate 
shallow control on the file, subsequent writes on that file 
do not reset the timer of the deep controlled directory.  
Thus, a burst of file writes has minimal impact on the 
duration that a primary server holds a deep control.  Fur-
thermore, to guarantee close-to-open semantics, a replica-
tion server need only to check whether the accessed file is 
associated with a shallow control before processing a 
client read request, instead of scanning each directory 
along the path from the referred file to the mount point. 

Fourth, a replication server can further improve its per-
formance by issuing a deep control request for a directory 
that contains many frequently updated descendants if it 
observes no concurrent writes.  This is easy to implement 
with the information recorded in the ancestry table: a rep-

lication server can issue such a request for directory D if 
it observes that in the ancestry entry of D, the counter 
corresponding to itself is beyond some threshold and the 
counters of all other replication servers are zero. 

The introduction of deep control promises substantial 
performance benefits, but can also adversely affect data 
availability in the face of failure: if a primary server with 
deep control on a directory fails, updates in that directory 
subtree cannot proceed until the failed primary server is 
recovered.  Recapitulating the discussion of false sharing 
above, this argues in favor of a small value for the timer.  
In the next section, we show that timeouts as short as one 
second are long enough to reap the performance benefits 
of deep control.  Combined with our assumption that fail-
ure is uncommon, we anticipate that the performance 
gains of deep control far outweigh the potential cost of 
servers failing while holding deep control on directories.  

 
4. Evaluation 

 
In this section, we evaluate the performance of hierar-

chical replication control using the SSH-Build bench-
mark.  The SSH-Build benchmark [11] runs in three 
phases.  The unpack phase decompresses a tar archive of 
SSH v3.2.9.1.  This phase is relatively short and is char-
acterized by metadata operations on files of varying sizes.  
The configure phase builds various small programs that 
check the configuration of the system and automatically 
generates header files and Makefiles.  The build phase 
compiles the source tree and links the generated object 
files into the executables.  The last phase is the most CPU 
intensive, but it also generates a large number of tempo-
rary files and a few executables in the compiling tree. 

We conducted the experiments that follow with a pro-
totype implemented in the Linux 2.6.16 kernel.  Servers 
and clients all run on dual 2.8GHz Intel Pentium4 proces-
sors with 1 MB L2 cache, 1 GB memory, and onboard 
Intel 82547GI Gigabit Ethernet card.  The NFS configura-
tion parameters for reading (rsize) and writing (wsize) are 
set to 32 KB, the recommended value for WAN access.  

 
Consider three replication servers: S0, S1, and S2.  Currently, 
S0 is the primary server of file f1 and directory d1, S1 is the 
primary server of file f2, and S2 is the primary server of direc-
tory d2.  The right table shows the content of the ancestry table
maintained on each replication server. 

Figure 2.  Maintenance of the ancestry table. 

 
Consider three replication servers: S0, S1, and S2.  Simultane-
ously, S0 requests (deep or shallow) control of directory b, S1 
requests control of directory c, and S2 requests deep control of 
directory a.  According to the rules in Figure 1, S0 and S1 suc-
ceed in their primary server elections, but S2’s election fails due 
to conflicts.  S2 then retries by asking for shallow control of a. 

Figure 3.  Potential conflicts in primary server 
election caused by deep control. 
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We use Netem [12] to induce network latencies.  Our 
experiments focus on evaluating the performance impact 
caused by WAN delays.  Hence, we do not simulate 
packet loss or bandwidth limits in our measurements.  
Although not comprehensive, we expect that our settings 
resemble a typical Grid environment — high performance 
clusters connected by long fat pipes.  All measurements 
presented in this paper are mean values from five trials of 
each experiment with a warm client cache; measured 
variations in each experiment are negligible. 

Before diving into the evaluation of hierarchical repli-
cation, we look at performance when accessing a single 
distant NFSv4 server.  Figure 4 shows the measured times 
(in log-scale) when we run the SSH-Build benchmark 
with an increasingly distant file server.  In the graph, the 
RTT marked on the X-axis shows the round-trip time be-
tween the client and the remote server, starting with 200 
µsec, the network latency of our test bed LAN.  We find 
that the SSH build that completes in a few minutes on a 
local NFSv4 server takes hours when the RTT between 
the server and the client increases to tens of milliseconds.  
The experiment shows that it is impractical to execute 
update-intensive applications using a stock remote server.  
Network RTT is the dominant factor in NFS WAN per-
formance, which suggests the desirability of a replicated 
file system that provides client access to a nearby server. 

Next, we compare the time to build SSH using fine-
grained replication control and hierarchical replication 
control with a local replication server and an increasingly 
distant replication server.  The results, shown (in linear 
scale) in Figure 5, demonstrate the performance advan-
tage of file system replication.  Even with fine-grained 
replication control, adding a nearby replication server 
significantly shortens the time to build SSH, as expensive 
reads from a remote server are now serviced nearby.  
Moreover, we see dramatic improvement with the intro-
duction of hierarchical replication control: the penalty for 
replication is now negligible, even when replication serv-
ers are distant. 

In Section 3, we discussed the use of a timer for each 
deep-controlled directory to balance performance and 

concurrency but did not fix the timeout value.  To deter-
mine a good value for the timer, we measure the time to 
build SSH for timeout values of 0.1 second, 0.5 second, 
and 1 second.  Figure 6 presents the results.  As the data 
shows, when we set the timeout value to one second, the 
SSH build with a distant replication server runs almost as 
fast as one accessing a single local server.  Furthermore, 
almost all of the performance differences among the three 
timeout values come from the CPU intensive build phase.  
For the unpack and configure phases, which emit updates 
more compactly, even a tiny timeout value yields per-
formance very close to that for single local server access.  
Of course, in practice the “optimal” timeout value de-
pends on the workload characteristics of the running ap-
plications.  However, the SSH build experiment suggests 
that a small timer value—a few seconds at most—-
captures most of the bursty updates. 

So far, our experiments focus on evaluation with two 
replication servers.  Generally, our system is designed to 
be used with a small number of replication servers, say, 
fewer than ten.  Under this assumption, we do not expect 
performance to suffer when additional replication servers 
are added because a primary server distributes updates to 
other replication servers in parallel.  To test this conjec-
ture, we measure the time to build SSH as the number of 
replication servers increases in a LAN and in a simulated 
WAN.  Figure 7 shows that performance is largely unaf-
fected as the number of replication servers increases.  
Note that distributing client updates consumes progres-
sively more primary server bandwidth as we increase the 
number of replication servers.  As a gedanken experi-
ment, we might imagine the practical limits to scalability 
as the number of replication servers grows.  For the near 
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Figure 4.  SSH build on a single NFSv4 server. 
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term, then, the cost of bandwidth appears to be a barrier 
to massive replication with our design. 

 
5. Related Work 

 
Replicated File Systems.  Echo [13] and Harp [14] 

are file systems that use the primary copy scheme to sup-
port mutable replication.  Both of these systems use a pre-
determined primary server for a collection of disks, a po-
tential bottleneck if those disks contain hot spots or if the 
primary server is distant.  Our system avoids this problem 
by allowing any server to be primary for any file, deter-
mined dynamically in response to client behavior.  

Many replicated file systems trade consistency for 
availability.  Examples include Coda [15], Ficus [16], and 
Locus [17].  These systems allow continued operations in 
the presence of failures, at the cost of sacrificing consis-
tency if conflicting updates occur.  Typically, automatic 
tools are provided to reconcile conflicts [18, 19].  How-
ever, in some cases, user involvement is needed to get the 
desired version of data.  

Recent years have seen a lot of work in peer-to-peer 
file systems, including OceanStore [20], Ivy [21], Pan-
gaea [22], and Farsite [23].  These systems address the 
design of systems in untrusted, highly dynamic environ-
ments.  Consequently, reliability and continuous data 
availability are usually critical goals in these systems; 
performance or data consistency are often secondary con-
siderations.  Compared to these systems, our system ad-
dresses data replication among file system servers, which 
are more reliable but have more stringent requirements on 
average I/O performance. 

Hierarchical Replication Control.  The use of multi-
ple granularities of control to balance performance and 
concurrency has been studied in other distributed file sys-
tems and database systems.  Many modern transactional 
systems use hierarchical locking [24] to improve concur-
rency and performance of simultaneous transactions.  In 

distributed file systems, Frangipani [25] uses distributed 
locking to control concurrent accesses among multiple 
shared-disk servers.  For efficiency, it partitions locks 
into distinct lock groups and assign them to servers by 
group, not individually.  Lin et al. study the selection of 
lease granularity when distributed file systems use leases 
to provide strong cache consistency [26].  To amortize 
leasing overhead across multiple objects in a volume, 
they propose volume leases that combine short-term 
leases on a group of files (volumes) with long-term leases 
on individual files.  Farsite [23] uses content leases to 
govern which client machines currently have control of a 
file’s content.  A content lease may cover a single file or 
an entire directory of files. 

Data Grid.  Various middleware systems have been 
developed to facilitate data access on the Grid.  Storage 
Resource Broker (SRB) [27] provides a metadata catalog 
service to allow location-transparent access for heteroge-
neous data sets.  NeST [28], a user-level local storage 
system whose goal is to bring appliance technology to the 
Grid, provides best-effort storage space guarantees, 
mechanisms for resource and data discovery, user authen-
tication, quality of service, and multiple transport proto-
col support.  The Chimera system [29] provides a virtual 
data catalog that can be used by applications to describe a 
set of programs, and then to track all the data files pro-
duced by their execution.  The work is motivated by ob-
serving that scientific data is often derived from other 
data by the application of computational procedures, 
which implies the need for a flexible data sharing and 
access system. 

A commonly omitted feature among these middleware 
approaches is fine-grained data sharing semantics.  Fur-
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Figure 6.  Deep control timeout values.  The dia-
gram shows the time to build SSH using hierarchical 
replication when the timeout for releasing a deep 
control is set to 0.1, 0.5, and 1 second. 
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Figure 7.  Increasing the number of replication 
servers.  For LAN replication, the RTT between any 
two machines is around 200 µsec.  For WAN repli-
cation, the RTT between any two replication servers 
is set to 120 msec, while the RTT between the client 
and the connected server is kept as 200 µsec.  The 
primary server relinquishes deep control if it re-
ceives no further client updates for one second. 
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thermore, most of these systems provide extended fea-
tures by defining their own API, so an application has to 
be re-linked with their libraries in order to use them. 

 
6. Conclusion 

 
Conventional wisdom holds that supporting consistent 

mutable replication in large-scale distributed storage sys-
tems is too expensive even to consider.  Our study proves 
otherwise: in fact, it is both feasible and practical.  In this 
paper, we present a replication control protocol that sup-
ports mutable replication with strong consistency guaran-
tees.  The protocol can be realized with a modest exten-
sion isolated to NFSv4 servers.  We are working to influ-
ence the IETF to adopt such an extension.  With the ubiq-
uitous deployment of NFSv4, our work holds great prom-
ise for accessing and sharing data in Grid computing, 
delivering superior performance while rigorously adher-
ence to conventional file system semantics. 
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