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SUMMARY

To meet the rigorous demands of large-scale data sharing in global collaborations,
we present a replication scheme for NFSv4 that supports mutable replication without
sacrificing strong consistency guarantees. Experimental evaluation indicates a substantial
performance advantage over a single server system. With the introduction of a
hierarchical replication control protocol, the overhead of replication is negligible even
when applications mostly write and replication servers are widely distributed. Evaluation
with the NAS Grid Benchmarks demonstrates that our system provides comparable and
often better performance than GridFTP, the de facto standard for Grid data sharing.
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1. INTRODUCTION

Driven by the needs of scientific collaborations, the emerging Grid infrastructure [17, 11]
aims to connect globally distributed resources to form a shared virtual computing and
storage system, offering a model for solving large-scale computation problems. Sharing in Grid
computing is not merely file exchange but also entails direct access to computers, software,
data, and other resources, as is required by a range of collaborative scientific problem-solving
patterns. To make such sharing simple and effective demands data access schemes that are
scalable, reliable, and efficient.

The primary data access method used today in the Grid infrastructure is GridFTP [2].
Engineered with Grid applications in mind, GridFTP has many advantages: automatic
negotiation of TCP options to fill the pipe, parallel data transfer, integrated Grid security,
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Figure 1. A Grid use case example.

and resumption of partial transfers. In addition, because it runs as an application, GridFTP
is easy to install and support across a broad range of platforms.

On the other hand, GridFTP does not offer sophisticated distributed data sharing, which
impedes the convenient use of globally distributed resources for scientific studies. For example,
in a common Grid use-case, a scientist wants to run a simulation on high performance
computing systems and analyze results on a visualization system. With the Grid technologies
available today, the scientist submits the job to a Grid scheduler, such as Condor-G [19].
The Grid scheduler determines where to run the job, pre-stages the input data to the running
machines, monitors the progress of the running job, and when the job is complete, transfers the
output data to the visualization system through GridFTP. The output data is reconstructed
in the visualization site, and then the results are returned to the scientist.

The scenario has the advantage of enabling the scientist access to more computing resources
and speeding up his simulation. However, the whole process is performed in a batch mode. The
scientist cannot view intermediate results before the entire scheduled job is complete. Scientific
simulations are often iterative and interactive processes, so the need to wait for hours or days
to examine experimental results is very inconvenient. To overcome this disadvantage, the Grid
infrastructure requires more flexible data distribution and sharing in its middleware.

To facilitate Grid computing over wide area networks, we developed a replicated file system
that provides users high performance data access with conventional file system semantics.
The system supports a global name space and location independent naming, so applications
on any client can access a file with a common name and without needing to know where
the data physically resides. The system supports mutable (i.e., read/write) replication with
explicit consistency guarantees, which lets users make data modification with ease, safety,
and transparency. The system provides semantics compatible with POSIX, allowing easy
deployment of unmodified scientific applications. We implemented our design by extending
NFSv4, the emerging standard protocol for distributed filing [32]. In latter discussions, we
refer to the replication system we implemented as NFSv4.r.

Using NFSv4.r, the scientist in the example described above can now monitor and control
the progress of the simulation in real time. As illustrated in Figure 1, with the support
of a global name space, the scientist can run programs on remote machines with the same
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A REPLICATED FILE SYSTEM FOR GRID COMPUTING 3

pathname and without any reconfiguration. By using a replicated file system, the intermediate
output of simulation is automatically distributed to the visualization center and the scientist’s
computer. The scientist can view intermediate results and immediately determine if parameters
or algorithms need to be adjusted. If so, he can update them from his local computer and
restart the simulation on the remote site, as simply as if he were running the experiment
locally. Meanwhile, remote computation nodes can still access data from a nearby server.

In the rest of this paper, we detail the design, implementation, and evaluation of the
replicated file system we developed. The naming scheme for supporting a global name space
and location independent naming can be referred in a previous paper [43]. The remainder of the
paper proceeds as follows. Section 2 presents a mutable replicated file system that coordinates
concurrent writes by dynamically electing a primary server at various granularities. Section 3
examines the system performance over wide area networks. Following that, we review related
work in Section 4 and conclude in Section 5.

2. CONSISTENT MUTABLE REPLICATION

To meet availability, performance, and scalability requirements, distributed services naturally
turn to replication, and file service is no exception. While the concept of file system replication
is not new, existing solutions either forsake read/write replication totally [6, 41, 36] or weaken
consistency guarantees [37, 24, 33]. These compromises fail to satisfy the requirements for
global scientific collaborations.

Returning to the example described in Section 1, experiment analysis is often an iterative,
collaborative process. The stepwise refinement of analysis algorithms employs multiple clusters
to reduce development time. Although the workload during this process is often dominated by
read, it also demands the underlying system to support write operations. Furthermore, strong
consistency guarantees are often assumed. For example, an executable binary may incorporate
user code that is finished only seconds before the submission of the command that requires
using the code. To guarantee correctness, the underlying system needs to ensure that the
modified data is successfully transferred to the remote machine where the code is running.

The conventional NFS consistency model, the so-called “close-to-open semantics” [38],
guarantees that an application opening a file sees the data written by the last application
that writes and closes the file. This strategy has proved to provide sufficient consistency for
most applications and users [31].

We also consider close-to-open semantics to be important in Grid data access, as the
above example illustrates. To provide such a guarantee, our replication extension to NFSv4
coordinates concurrent writes by dynamically electing a primary server upon client updates.
With no writers, our system has the performance profile of systems that support read-
only replication. But unlike read-only systems, we also support concurrent writes without
compromising NFSv4 consistency guarantees.

The rest of this section presents the design of the mutable replication control mechanisms
in detail. Section 2.1 describes a fine-grained replication control protocol that coordinates
concurrent writes by electing a primary server at the granularity of a single file or directory. The
protocol offers good performance for read-dominant applications, but introduces considerable
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4 J. ZHANG AND P. HONEYMAN

overhead for bursty metadata updates. To reduce the performance overhead of replication
control, we propose a hierarchical replication control protocol that extends the fine-grained
replication control protocol by allowing a primary server to assert control at various
granularities. Section 2.2 details the design of this extended protocol.

2.1. Fine-grained Replication Control

In this subsection, we describe the design of a mutable replication protocol for NFSv4
that guarantees close-to-open consistency semantics by electing a primary server upon client
updates at the granularity of a single file or directory. Section 2.1.1 introduces the replication
protocol, Section 2.1.2 presents the primary server election algorithm, and Section 2.1.3
discusses the handling of various kinds of failures.

2.1.1. Replication Control Protocol

Most applications, scientific and otherwise, are dominated by reads, so it is important that
a replication control protocol avoids overhead for read requests. We achieve this by using a
variant of the well understood and intuitive primary-copy scheme to coordinate concurrent
writes. Under the conventional primary copy approach, a primary server is statically assigned
for each mount point during configuration so all write requests under a single mount point
go to the same primary server. On the contrast, in our system, the server to which a client
sends the first write request is elected as the primary server for the file or the directory to
be modified. With no writers, our system has the natural performance advantages of systems
like AFS that support read-only replication: use a nearby server, support transparent client
rollover on server failure, etc. However, we also support concurrent writes without weakening
NFSv4 consistency guarantees.

The system works as follows. When a client opens a file for writing, it sends the open
request to the NFS server that it has selected for the mount point to which the file belongs.
An application can open a file in write mode without actually writing any data for a long time,
e.g., forever, so the server does nothing special until the client makes its first write request.
When the first write request arrives, the server invokes the replication control protocol, a
server-to-server protocol extension to the NFSv4 standard.

First, the server arranges with all other replication servers to acknowledge its primary role.
Then, all other replication servers are instructed to forward client read and write requests for
that file to the primary server. The primary server distributes (ordered) updates to other
servers during file modification. When the file is closed (or has not been modified for a
long time) and all replication servers are synchronized, the primary server notifies the other
replication servers that it is no longer the primary server for the file.

Directory updates are handled similarly, except for the handling of concurrent writes.
Directory updates complete quickly, so a replication server simply waits for the primary server
to relinquish its role if it needs to modify a directory undergoing change. For directory updates
that involve multiple objects, a server must become the primary server for all objects. The
common case for this is rename, which needs to make two updates atomically. To prevent
deadlock, we group these update requests and process them together.

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 00:1–7
Prepared using cpeauth.cls



A REPLICATED FILE SYSTEM FOR GRID COMPUTING 5

Two requirements are necessary to guarantee close-to-open semantics. First, a server
becomes the primary server for an object only after it collects acknowledgments from a majority
of the replication servers. Second, a primary server must ensure that all working replication
servers have acknowledged its role when a written file is closed, so that subsequent reads on
any server reflect the contents of a file when it was closed. The second requirement is satisfied
automatically if the client access to the written file lasts longer than the duration of the primary
server election. However, an application that writes many small files can suffer non-negligible
delays. These files are often temporary files, i.e., files that were just created (and are soon
to be deleted), so we allow a new file to inherent the primary server that controls its parent
directory for file creation. Since the primary server does not need to propose a new election for
writing a newly created file, close-to-open semantics is often automatically guaranteed without
additional cost.

A primary server is responsible for distributing updates to other replication servers during
file or directory modification. In an earlier version of the protocol, we required that a primary
server not process a client update request until it receives update acknowledgments from a
majority of the replication servers [43]. With this requirement, as long as a majority of the
replication servers are available, a fresh copy can always be recovered from them. Then, by
having all active servers synchronize with the most current copy, we guarantee that the data
after recovery reflects all acknowledged client updates, and a client needs to reissue its last
pending request only.

The earlier protocol transparently recovers from a minority of server failures and balances
performance and availability well for applications that mostly read. However, performance
suffers for scientific applications that are characterized by many synchronous writes or directory
updates and replication servers that are far away from each other [43]. Meeting the performance
needs of Grid applications requires a different trade-off.

Failures occur in distributed computations, but are rare in practice. Furthermore, the results
of most scientific applications can be reproduced by simply re-executing programs or re-
starting from the last checkpoint. This suggests a way to relax the costly update distribution
requirement so that the system provides higher throughput for synchronous updates at the
cost of sacrificing the durability of data undergoing change in the face of failure.

Adopting this strategy, we allow a primary server to respond immediately to a client write
request before distributing the written data to other replication servers. Thus, with a single
writer, even when replication servers are widely distributed, the client experiences longer delay
only for the first write (whose processing time includes the cost of primary server election),
while subsequent writes have the same response time as accessing a local server (assuming the
client and the chosen server are in the same LAN). Of course, should concurrent writes occur,
performance takes a back seat to consistency, so some overhead is imposed on the application
whose reads and writes are forwarded to the primary server.

2.1.2. Primary Server Election

Two (or more) servers may contend to become the primary server for the same object (file
or directory) concurrently. To guarantee correctness of our replication protocol, we need to
ensure that more than one primary server is never chosen for a given object, even in the face
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6 J. ZHANG AND P. HONEYMAN

Upon receiving a client update request, initiate primary server election if the object’s primary server is NULL 

set the object’s primary server to MyID  // ack self 
loop until all active servers ack 

propose <MyID, object> to unacked servers 

wait until all those servers reply or timeout 

if the number of acks received is less than majority then 

identify competitors from the replies 

if any competitor is accepted by a majority of servers, or any competitor’s identifier is larger than MyID, or 

set the object’s primary server to NULL 

send abort <MyID, object> to all acked servers 

wait until the object’s primary not NULL or timeout 

exit loop 

else // have collected acks from majority

mark timed out servers inactive 

Upon receiving propose <ServerID, object>  

if the object’s primary server is NULL then 

set the object’s primary server to ServerID 

send ack 

else

send nack <the object’s primary server> 

Upon receiving abort <ServerID, object> 

if the object’s primary server equals to ServerID then 

set the object’s primary server to NULL 

Figure 2. Primary server election pseudocode.

of conflicts and/or failures. The problem is a special case of the extensively studied consensus
problem.

In the consensus problem, all correct processes must reach an agreement on a single proposed
value [15]. Achieving consensus is a challenging problem, especially in an asynchronous
distributed system. In such a system, there is no upper bound on the message transmission
delays or the time to execute a computing step. A good consensus algorithm needs to maintain
consistency, i.e., only a single value is chosen, and to guarantee progress so that the system
is eventually synchronous for a long enough interval [14]. Unfortunately, Fischer et al. showed
that the consensus problem cannot be solved in an asynchronous distributed system in the
presence of even a single fault [16].

Observing that failures are rare in practice, candidate consensus algorithms have been
proposed to separate the consistency requirement from the progress property [25, 27, 26, 29, 10].
That is, while consistency must be guaranteed at all times, progress may be hampered during
periods of instability, as long as it is eventually guaranteed after the system returns to the
normal state. Following this principle, we implement a primary server election algorithm that
achieves the lower time bound of Fast Consensus. The algorithm assumes that all messages
are delivered in order, which can be achieved by including a serial number in each message or
through a reliable transport protocol. Figure 2 presents the pseudo code of the algorithm.

It is easy to verify that the algorithm satisfies the consistency requirement: a primary server
needs to accumulate the acknowledgments from a majority of the replication servers and a
replication server cannot commit to more than one primary server, so only a single primary
server is elected for a given object. Furthermore, for the common case - no failures and only one
server issues the proposal request - primary server election completes with only one message
delay between the elected primary server and the farthest replication server. In fact, since the
server can process the client’s update request as soon as it receives acknowledgments from
a majority of the replication servers, the conflict- and failure- free response time is bounded
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A REPLICATED FILE SYSTEM FOR GRID COMPUTING 7

by the largest round-trip time (RTT) separating the primary server and half of the nearest
replication servers.

If multiple servers compete to be the primary server for an object, it is possible that none
of them collects acknowledgments from a majority of the replication servers in the first round
of the election. Absent failure, the conflict is quickly learned by each competing server from
the replies it receives from other replication servers. In this case, the server with the largest
identifier is allowed to proceed and its competitors abort their proposals by releasing the
servers that have already acknowledged. A server that aborts its election then waits for the
late-round proposal request from the identified winner server. The waiting is associated with a
timer to guarantee progress in case that the winner server fails. Upon receiving the late-round
proposal from the winner, the server acknowledges the request and forwards the client update
to the newly elected primary server.

In the presented algorithm, the winner of the competition keeps sending proposal requests
to replication servers that have not acknowledged its role, subject to timeout. However, the
abort request from a yielding competitor may arrive at such a replication server after several
rounds of proposal distribution, resulting in redundant network messages. The situation can
be improved with a small optimization in the second round of the election: the winning server
can append the replies it has collected in previous rounds to its subsequent proposals. With
this information, a server that receives a late-round proposal can learn that the server it is
currently treating as primary will soon abort the election. Thus, it can briefly delay replying
to the new proposal, increasing the chance that the object is released by the old primary server
before responding to the late-round proposal. We leave the detailed discussion of failures to the
next subsection, but point out that when the system is free of failure, primary server election
converges in two message delays even in the face of contention.

2.1.3. Coping with Failure

The discussion so far focuses on replication control in normal - i.e., failure-free - system states.
However, failure introduces complexity. Different forms of failure may occur: client failure,
replication server failure, network partition, or any combination of these. In this subsection,
we describe the handling of each case. Our failure model is fail stop, i.e., no Byzantine failures
[12]. Security of the protocol follows from the use of secure RPC channels, mandatory in
NFSv4, for server-to-server communication.

Following the specification of NFSv4, a file opened for writing is associated with a lease on
the primary server, subject to renewal by the client. If the client fails, the server receives no
further renewal requests, so the lease expires. Once the primary server decides that the client
has failed, it closes any files left open by the failed client on its behalf. If the client was the
only writer for a file, the primary server relinquishes its role for the file.

To guarantee consistency upon server failure, our system maintains an active view among
replication servers [4]. During file or directory modification, a primary server removes from
its active view any replication server that fails to respond to its election request or update
requests within a specified time bound. We require an active view to contain a majority of
the replication servers. A replication server rejects any further client update request should
its active view shrinks less than majority. The primary server can relinquish its role only after
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8 J. ZHANG AND P. HONEYMAN

distributing the new active view to all active servers. Each replication server records the active
view in stable storage. A server not in the active view may have stale data, so the working
servers must deny any requests coming from a server not in the active view.

We note that if the server failure is caused by network partition, close-to-open semantics
is not guaranteed on the “failed” server(s), i.e., clients may have read stale data without
awareness. However, a server excluded from the active view cannot update any working server,
which prevents the system from entering an inconsistent state. †

If a replication server fails after sending primary server election requests to a minority of
replication servers, the failure can be detected by a subsequently elected primary server (this
is possible since a majority of acknowledges can still be gathered from the left active servers).
As described above, that primary server eliminates the failed server from the active view and
distributes the new view to the other replication servers. The servers that have acknowledged
the failed server switch to the new primary server after employing the new active view. The
consistency of the data is unaffected: the failed server had not received acknowledgments from
a majority of the replication servers so it cannot process any client updates.

A primary server may fail during file or directory modification. With the relaxed update
distribution requirement, the primary server responds to a client update request immediately
before distributing updates to the other replication servers. As a result, other active servers
cannot recover the most recent copy among themselves. The “principle of least surprise” argues
the importance of guaranteed durability of data written by a client and acknowledged by the
server, so we make the object being modified inaccessible until the failed primary server recovers
or an outside administrator re-configures the system. However, clients can continue to access
objects that are outside the control of the failed server, and applications can choose whether
to wait for the failed server to recover or to re-produce the computation results.

In the special case that a primary server fails after distributing a new active view to some
but not all replication servers, the active views maintained by the replication servers become
inconsistent. A request from a server that is eliminated from the new active view can be
accepted by the servers that still hold the old active view. However, since the primary server
has not relinquished its role for the updated file or directory, no other replication servers can
modify that same object. Thus, the consistency of data is unaffected. The copies of active
view converge until a new active view is generated and distributed during the modification of
another file or directory.

Since our system does not allow a file or a directory to be modified simultaneously on more
than one server even in case of failure, the only valid data copy for a given file or directory is
the most recent copy found among the replication servers. This feature simplifies the failure
recovery in our system: when an active server detects the return of a failed server, either upon
receiving an election or update request from the returning server or under the control of an
external administration service, it notifies the returning server to initiate a synchronization
procedure. During synchronization, write operations are suspended, and the returning server
exchanges the most recent data copies with all active replication servers. After recovery, all the

†Generally, the computation results on a failed server are dubious since they might be generated with stale
input data. To be safe, applications should re-compute these results.
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A REPLICATED FILE SYSTEM FOR GRID COMPUTING 9

objects that were controlled by the returning server, i.e., those for which it was the primary
server at the moment it failed, are released and the server is added to the active view.

Should a majority of the replication servers fail simultaneously, an external administrator
must enforce a grace period after the recovering from the failure. To be safe, the administration
service should instruct each replication server to execute the synchronization procedure during
the grace period.

2.2. Hierarchical Replication Control

Notwithstanding an efficient consensus protocol, a server can still be delayed waiting
for acknowledgments from slow or distant replication servers. This can adversely affect
performance, e.g., when an application issues a burst of metadata updates to widely distributed
objects. Conventional wisdom holds that such workloads are common in Grid computing, and
we have observed them ourselves when installing, building, and upgrading Grid application
suites. To address this problem, we introduce a hierarchical replication control protocol that
amortizes the cost of primary server election over more requests by allowing a primary server
to assert control over an entire subtree rooted at a directory. In this section, we detail the
design of this tailored protocol.

The remainder of this section proceeds as follows. Section 2.2.1 introduces two control types
that a primary server can hold on an object. One is limited to a single file or directory, while
the other governs an entire subtree rooted at a directory. Section 2.2.2 discusses revisions to
the primary server election. Section 2.2.3 then investigates mechanisms to balance performance
and concurrency related to the two control types.

2.2.1. Shallow vs. Deep Control

We introduce nomenclature for two types of control: shallow and deep. A server exercising
shallow control on an object (file or directory) L is the primary server for L. A server exercising
deep control on a directory D is the primary server for D and all of the files and directories
in D, and additionally exercises deep control on all the directories in D. In other words, deep
control on D makes the server primary for everything in the subtree rooted at D. In the
following discussion, when a replication server P is elected as the primary server with shallow
control for an object L, we say that P has shallow control on L. Similarly, when a replication
server P is elected as the primary server with deep control on a directory D, we say that P

has deep control on D. Relinquishing the role of primary server for an object L amounts to
revoking shallow or deep control on L. We say that a replication server P controls an object
L if P has (shallow or deep) control on L or P has deep control on an ancestor of L.

We introduced deep control to improve performance for a single writer without sacrificing
correctness for concurrent updates. Electing a primary server with the granularity of a single file
or directory allows high concurrency and fine-grained load balancing, but a coarser granularity
is suitable for applications whose updates exhibit high temporal locality and are spread across
a directory or a file system. A primary server can process any client update in a deeply
controlled directory immediately, so it improves performance for applications that issue a
burst of metadata updates.

Copyright c© 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 00:1–7
Prepared using cpeauth.cls



10 J. ZHANG AND P. HONEYMAN

Upon receiving a client update request for object L

if L is controlled by self then serve the request

if L is controlled by another server then forward the request

else // L is uncontrolled

if L is a file then request shallow control on L

if L is a directory then

if a descendant of L is controlled by another server then 

request shallow control on L

else

request deep control on L

Upon receiving a shallow control request for object L from peer server P

grant the request iff L is not controlled by a server other than P

Upon receiving a deep control request for directory D from peer server P

grant the request iff D is not controlled by a server other than P,

and no descendant of D is controlled by a server other than P

Figure 3. Using and granting deep and shallow controls.

Introducing deep control complicates consensus during primary server election. To guarantee
that an object is under the control of a single primary server, we enforce the rules shown in
Figure 3. We consider single writer cases to be more common than concurrent writes, so a
replication server attempts to acquire a deep control on a directory whenever it can. On the
other hand, we must prevent an object from being controlled by multiple servers. Therefore,
a replication server needs to ensure that an object in a (shallow or deep) control request is
not already controlled by another server. Furthermore, it must guarantee that a directory in
a deep control request has no descendant under the control of another server.

To validate the first condition, a replication server scans each directory along the path from
the referred object to the mount point. If an ancestor of the object has a primary server other
than the one who issues the request, the validation fails.

Checking the second condition is more complex. Scanning the directory tree during the check
is too expensive, so we do some bookkeeping when electing a primary server: each replication
server maintains an ancestry table for files and directories whose controls are granted to some
replication servers. An entry in the ancestry table corresponds to a directory that has one
or more descendants whose primary servers are not empty. An ancestry entry contains an
array of counters, each of which corresponds to a replication server. E.g., if there are three
replication servers in the system, an entry in the ancestry table contains three corresponding
counters. Whenever a (deep or shallow) control for an object L is granted or revoked, each
server updates its ancestry table by scanning each directory along the path from L to the
mount point, adjusting counters for the server that owns the control. A replication server also
updates its ancestry table appropriately if a controlled object is moved, linked, or unlinked
during directory modifications.

A replication server needs only one lookup in its ancestry table to tell whether a directory
subtree holds an object under the control of a different server: It first finds the mapping entry
of the directory from its ancestry table, and then examines that entry’s counter array. If the
counter on any replication server other than the one that issues the deep control request has
a non-zero value, the replication server knows that some other server currently controls a
descendant of the directory, so it rejects the deep control request.
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A REPLICATED FILE SYSTEM FOR GRID COMPUTING 11

2.2.2. Primary Server Election with Deep Control

With the introduction of deep control, two primary server election requests on two different
objects can conflict if one of them wants deep control on a directory. To guarantee progress
during conflicts, we extend the consensus algorithm for primary server election as follows.

When a replication server receives a shallow control request for an object L from a peer
server P but cannot grant the control according to the rules listed in Figure 3, it replies to
P with the identifier of the primary server that currently controls L. On the other hand,
if a replication server judges that it cannot grant a deep control request, it simply replies
with a nack. A server downgrades a deep control request to shallow if it fails to accumulate
acknowledgments from a majority of the replication servers. Then with shallow controls only,
the progress of primary server election is guaranteed with the original consensus algorithm.

2.2.3. Performance and Concurrency Tradeoff

The introduction of deep control introduces a performance and concurrency trade-off. A
primary server can process any client update in a deep-controlled directory, which substantially
improves performance when an application issues a burst of updates. This argues for holding
deep control as long as possible. On the other hand, holding a deep control can introduce
conflicts due to false sharing. In this subsection, we strive for balance in the trade-off between
performance and concurrency when employing shallow and deep controls.

First, we postulate that the longer a server controls an object, the more likely it will
receive conflicting updates, so we start a timer on a server when it obtains a deep control.
The primary server resets its timer if it receives a subsequent client update under the deep-
controlled directory before timeout. When the timer expires, the primary server relinquishes
its role.

Second, recall that in a system with multiple writers, we increase concurrency by issuing
a revoke request from one server to another if the former server receives an update request
under a directory deep-controlled by the latter. Locality of reference suggests that more revoke
requests will follow shortly, so the primary server shortens the timer for relinquishing its role
for that directory.

Third, when a primary server receives a client write request for a file under a deep-controlled
directory, it distributes a new shallow control request for that file to other replication servers.
The primary server can process the write request immediately without waiting for replies from
other replication servers as it is already the primary server of the file’s ancestor. However,
with a separate shallow control on the file, subsequent writes on that file do not reset the
timer of the deep controlled directory. Thus, a burst of file writes has minimal impact on the
duration that a primary server holds a deep control. Furthermore, to guarantee close-to-open
semantics, a replication server need only check whether the accessed file is associated with
a shallow control before processing a client read request, instead of scanning each directory
along the path from the referred file to the mount point.

Fourth, a replication server can further improve its performance by issuing a deep control
request for a directory that contains many frequently updated descendants if it observes no
concurrent writes. This heuristic is easy to implement with the information recorded in the
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ancestry table: a replication server can issue such a request for directory D if it observes that
in the ancestry entry of D, the counter corresponding to itself is beyond some threshold and
the counters of all other replication servers are zero.

The introduction of deep control provides significant performance benefits, but can adversely
affect data availability in the face of failure: if a primary server with deep control on a
directory fails, updates in that directory subtree cannot proceed until the failed primary server
is recovered. Recapitulating the discussion of false sharing above, this argues in favor of a small
value for the timer. Our study shows that timeouts as short as one second are long enough
to reap the performance benefits of deep control [44]. Combined with our assumption that
failure is infrequent, we anticipate that the performance gains of deep control far outweigh the
potential cost of server’s failing while holding deep control on directories.

3. EVALUATION

In this section, we explore the performance of NFSv4.r with the NAS Grid Benchmarks over
simulated wide-area networks. We measured all the experiments presented in this paper with
a prototype implemented in Linux 2.6.16 kernel. Servers and clients all run on dual 2.8GHz
Intel Pentium4 processors with 1024 KB L2 cache, 1 GB memory, and Intel 82547GI Gigabit
Ethernet card onboard. The number of bytes NFS uses for reading (rsize) and writing files
(wsize) is set to 32768 bytes. We use Netem [22] to simulate the network latencies. To focus
on evaluating the performance impact caused by WAN delays, we do not simulate packet loss
in our measurements, and enable the async option (asynchronously write data to disk) on
the NFS servers. All numbers presented are mean values from five trials of each experiment;
standard deviations (not shown) are within five percent of the mean values.

The NAS Grid Benchmarks (NGB), released by NASA, provide an evaluation tool for Grid
computing [20]. The benchmark suite evolves from the NAS Parallel Benchmarks (NPB), a
toolkit designed and widely used for benchmarking on high-performance computing [13]. An
instance of NGB comprises a collection of slightly modified NPB problems, each of which is
specified by class (mesh size, number of iterations), source(s) of input data, and consumer(s)
of solution values. The current NGB consists of four problems: Embarrassingly Distributed
(ED), Helical Chain (HC), Visualization Pipe (VP), and Mixed Bag (MB).

ED, HC, VP, and MB highlight different aspects of a computational Grid. ED represents
the important class of Grid applications called parameter studies, which constitute multiple
independent runs of the same program, but with different input parameters. It requires
virtually no communication, and all the tasks in it execute independently. HC represents
long chains of repeating processes; tasks in HC execute sequentially. VP simulates logically
pipelined processes, like those encountered when visualizing flow solutions as the simulation
progresses. The three tasks in VP fulfill the role of flow solver, post processor, and visualization,
respectively. MB is similar to VP, but introduces asymmetry. Different amounts of data are
transferred between different tasks, and some tasks require more work than others do.

Figure 4 illustrates the Data Flow Graph for each of these benchmarks. The nodes in the
graph, indicated by the rectangular boxes, represent computational tasks. Dashed arrows
indicate control flow between the tasks. Solid arrows indicate data as well as control flow.
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Figure 4. Data flow graphs of the NAS Grid Benchmarks.

Table I. Amount of data exchanged between NGB tasks.

HC VP MB
Class BT→SP SP→LU LU→BT BT→MG MG→FT BT→BT FT→FT BT→LU LU→MG MG→FT

S 169K 169K 169K 34K 641k 169K 5.1M N/A 34K 641K
W 1.4M 4.5M 3.5M 271K 41M 1.4M 11M N/A 702K 41M
A 26M 26M 26M 5.1M 321M 26M 161M N/A 5.1M 321M
B 102M 102M 102M 21M 321M 102M 641M 102M 21M 321M
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Figure 5. NGB evaluation experiment setup.

Launch and Report do little work; the former initiates execution of tasks while the latter
collects and verifies computation results. ‡ The NGB instances include different problem sizes
(denoted Classes). For the experiments presented in this paper, we use four Classes: S, W, A,
and B. Table I summarizes the amount of data communicated among tasks for these Classes.

A fundamental goal of Grid computing is to harness globally distributed resources for
solving large-scale computation problems. To explore the practicality and benefit of using
NFS replication to facilitate Grid computing, we compare the performance of running NGB
under three configurations, referred as NFS, NFSv4.r, and GridFTP. Figure 5 illustrates the
experiment setup.

In the experiments, we use three computing nodes to emulate three computing clusters, with
the RTT between each pair increased from 200 µsec to 120 msec. In the NFS configuration,
the three computing nodes all connect to a single NFS server. In the NFSv4.r configuration,
we replace the single NFS server with three replicated NFS servers, with each computing node
connected to a nearby server. In the GridFTP configuration, we use GridFTP to transfer
data among computing nodes. The software we use is globus-url-copy from Globus-4.0.2

‡Figure 4 illustrates the Data Flow Graphs for Class S, W, and A. For Class B, ED includes 18 parallel SP
tasks; HC includes 6 layers of BT, SP, and LU; VP includes 6 layers of BT, MG, and LU; MB includes 4 layers:
BT, LU, MG, and FT, and each layer includes 4 tasks [20].
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toolkit. In our experiments, we start eight parallel data connections in each GridFTP transfer,
which we found provides the best-measured performance for GridFTP. NFSv4.r also supports
parallel data connections between replicated NFS servers, but this optimization provides small
performance benefit in the experiments presented here. Thus, we report results measured with
a single server-to-server data connection only. Focusing on performance comparison, we disable
encryption of GridFTP, NFS, and NFSv4.r. The authentication options are enabled in all of
the systems, but their performance impacts are negligible according to our analysis.

For the GridFTP configuration, we run the NGB tasks using the Korn shell Globus
implementation from the NGB3.1 package. In this implementation, a Korn shell script launches
the NGB tasks in round robin on the specified computing nodes. Tasks are started through the
globusrun command with the batch flag set. After a task completes, output data is transferred
to the computing node(s), where the tasks require the data as input. A semaphore file is used
to signal task completion: tasks poll their local file systems for the existence of the semaphore
files to monitor the status of the required input files. After all tasks start, the launch script
periodically queries their completion using globus-job-status command.

For the NFS and NFSv4.r setups, we extended the original NGB Korn shell scripts. The
modified programs use ssh to start NGB tasks in round robin on the specified computing
nodes. The tasks and the launch script poll for the status of the required input data and tasks
with semaphore files, as above.

Figure 6 shows the results of executing NGB on NFS, NFSv4.r, and GridFTP as the RTT
among the three computing nodes increases from 200 µsec to 120 msec. The data presented is
the measured “turnaround time”, i.e., the time between starting a job and obtaining the result.
With GridFTP, turnaround time does not include deployment and cleanup of executables on
Grid machines. The time taken in these two stages ranges from 10 seconds to 40 seconds as
the RTT increases from 200 µsec to 120 msec.

Evidently, in Grid computing, deployment and cleanup can sometimes take significant time
with large size of executables and input data [23]. Furthermore, in some cases, it is hard for
users to determine which files to stage [39]. With NFS and NFSv4.r, on the other hand, there
is no extra deployment and cleanup time, because computing nodes access data directly from
file servers. Even so, the times we report do not reflect this inherent advantage.

The histograms in Figure 6 show that performance with a single NFS server suffers
dramatically as the RTT between the server and the computing nodes increases. Except for the
ED problem - whose tasks run independently - on larger data sets (W and A), the experiments
take a very long time to execute when the RTT increases to 120 msec. Clearly, in most cases
it is impractical to run applications on widely distributed clients connected to a single NFS
server, even for CPU intensive applications.

On the other hand, with NFSv4.r and GridFTP on large class sizes, run times are not
adversely affected by increasing RTT. When the class size is small (e.g., the results of Class S),
NFSv4.r outperforms GridFTP, because the latter requires extra time to deploy dynamically
created scripts and has extra Globus-layer overhead. For larger class sizes, the performances
of NFSv4.r and GridFTP are generally comparable. The only exception is the experiment
with Class B of VP. There, the running time on GridFTP is about 50% longer than the time
measured when running the benchmark on NFSv4.r. A closer analysis shows that the observed
performance difference is caused by the memory contention that Globus introduces.
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Figure 6. Turnaround times (seconds) of NGB on NFS, NFSv4.r, and GridFTP.

In each figure, X-axis denotes the RTT (milliseconds) shown in Figure 5, and Y-axis denotes the

measured turnaround times. For Class B, we omit the experiments of accessing a single remote NFS

server, which take extremely long times; the results of using a single local NFS server are presented

on the left side of each figure for comparison.

Globus starts a job manager for each scheduled task on a computing node. The performance
overhead added by Globus job managers is usually small. However, a FT task of Class B
demands a large amount of memory. As a result, the Globus job managers cause the memory
contention on the computing node where FT tasks execute and lead to a noticeable slowdown.
The experiment with Class B of MB also experiences the memory contention problem. The
Class B of MB consists of 4×4 tasks (see footnote 2). As we assign tasks in round robin, two
FT tasks are scheduled to run on the same computing node. Due to memory contention, the
execution times for these two tasks are significantly longer than executing them individually
and we observe the relatively high variances in the measured results of this experiment.
However, all the experiments with Class B of MB experience this slowdown, so the performance
difference is small. We anticipate that the memory contention problem described here can be
avoided with a well-designed job scheduler. Since the focus of our study is on data access in
Grid computing, more detailed discussions are beyond the scope of this paper.

In summary, the NGB experiments demonstrate that well-engineered replication control
provides superior file system semantics and easy programmability to WAN-based Grid
applications without sacrificing performance.
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4. RELATED WORK

Replicated File Systems. Echo [9] and Harp [28] are file systems that use the primary
copy scheme to support replication. Both systems use a pre-determined primary server for a
collection of disks, a potential bottleneck if those disks contain hot spots or if the primary
server is distant. In contrast, our system avoids this problem by allowing any server to be
primary for any file, determined dynamically in response to client behavior.

Recent years have seen a lot of work in peer-to-peer (P2P) file systems, including
OceanStore [34], Ivy [30], and Pangaea [35]. These systems address untrusted, highly dynamic
environments. Consequently, reliability and continuous data availability are usually critical
goals in these systems; performance or data consistency are often secondary considerations.
Compared to these systems, our system addresses data replication among file system servers,
which are more reliable but have more stringent requirements on average I/O performance.

Hierarchical Replication Control. The use of multiple granularities of control to
balance performance and concurrency has been studied in other distributed file systems
and database systems. Many modern transactional systems use hierarchical locking [21] to
improve concurrency and performance of simultaneous transactions. In distributed file systems,
Frangipani [40] uses distributed locking to control concurrent accesses among multiple shared-
disk servers. For efficiency, it partitions locks into distinct lock groups and assign them to
servers by group, not individually. Lin et al. study the selection of lease granularity when
distributed file systems use leases to provide strong cache consistency [42]. To amortize leasing
overhead across multiple objects in a volume, they propose volume leases that combine short-
term leases on a group of files (volumes) with long-term leases on individual files. Farsite [5]
uses content leases to govern which client machines currently have control of a file’s content.
A content lease may cover a single file or an entire directory of files.

Data Grid. Various middleware systems have been developed to facilitate data access on
the Grid, such as Storage Resource Broker (SRB) [7], NeST [8], and Chimera [18]. Most of
these systems provide extended features by defining their own API. In order to use them,
an application has to be re-linked with their libraries. Consequently, scientific researchers are
generally hesitant to install and use these Grid softwares.

In GPFS-WAN [1], each computing site provides its own cluster file system that is exported
to the other sites as part of a common global file system. The system, in operation on the
TeraGrid [3], demonstrates the promise of using standard Unix I/O operations for Grid data
access. The existing prototype focuses on delivering high throughput for massive file transfers,
rather than reducing the cost of individual I/O and metadata operations.

5. CONCLUSION

Conventional wisdom holds that supporting consistent mutable replication in large-scale
distributed storage systems is too expensive even to consider. Our study proves otherwise: in
fact, it is both feasible, practical, and can be realized today. The replicated file system presented
in this paper supports mutable replication with strong consistency guarantees. Experimental
evaluation shows that the system holds great promise for accessing and sharing data in Grid
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computing, delivering superior performance while rigorously adherence to conventional file
system semantics.
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