
Defending Against Statistical Steganalysis

Niels Provos
Center for Information Technology Integration

University of Michigan
provos@citi.umich.edu

Abstract

The main purpose of steganography is to hide the
occurrence of communication. While most methods
in use today are invisible to an observer’s senses,
mathematical analysis may reveal statistical anoma-
lies in the stego medium. These discrepancies ex-
pose the fact that hidden communication is hap-
pening.

This paper presents improved methods for informa-
tion hiding. One method uses probabilistic em-
bedding to minimize modifications to the cover
medium. Another method employs error-correcting
codes, which allow the embedding process to choose
which bits to modify in a way that decreases the
likelihood of being detected. In addition, we can
hide multiple data sets in the same cover medium
to provide plausible deniability.

To prevent detection by statistical tests, we preserve
the statistical properties of the cover medium. After
applying a correcting transform to an image, sta-
tistical steganalysis is no longer able to detect the
presence of steganography. We present an a priori
estimate to determine the amount of data that can
be hidden in the image while still being able to main-
tain frequency count based statistics. This way, we
can quickly choose an image in which a message of
a given size can be hidden safely. To evaluate the
effectiveness of our approach, we present statistical
tests for the JPEG image format and explain how
our new method defeats them.

1 Introduction

Steganography is the art and science of hiding the
fact that communication is taking place. While

classical steganographic systems depend on keeping
the encoding system secret, modern steganography
tries to be undetectable unless secret information
is known, namely, a secret key. Because of their
invasive nature, steganographic systems leave de-
tectable traces within a medium’s characteristics.
This allows an eavesdropper to detect media that
have been modified, revealing that secret communi-
cation is taking place. Although the secret content
is not exposed, its hidden nature is revealed, which
defeats the main purpose of steganography.

In general, the information hiding process starts
by identifying redundant bits in a cover medium.
Redundant bits are those bits that can be modi-
fied without destroying the integrity of the cover
medium. The embedding process then selects a sub-
set of the redundant bits to hold data from a secret
message. The stego medium is created by replacing
the selected redundant bits with message bits.

This paper presents two new methods to improve
the selection process. The first method selects from
a family of pseudo-random number generators [3].
Each pseudo-random number generator results in
a different bit selection; the selection that causes
the fewest changes to the cover medium is used
for the embedding. The second method uses error-
correcting codes. The result is greater flexibility
in selecting bits. The two methods can be used
together to minimize modifications to the cover
medium.

Nonetheless, any modification of the redundant bits
can change the statistical properties of the cover
medium. For example, ones and zeros are equally
likely in a message that has been encrypted. How-
ever, the redundant data being replaced might have
a strong correlation towards either zero or one. Em-
bedding the encrypted message weakens that corre-
lation.

One way to prevent detection of steganographic con-
tent is to reduce the size of the hidden message.
While such an approach decreases the likelihood of
detection, it also results in decreased hiding capac-
ity. Our paper presents a new method to preserve
the statistical properties of a cover medium by ap-
plying additional transforms to the redundant data.
The transforms correct measurable deviations in the
statistics caused by the embedding process without
decreasing the hiding capacity of the stego medium.
We derive an a priori estimate for the amount of
data that can be hidden while still being able to pre-
serve frequency count based statistics. As a result,
we can quickly identify images in which a particular
message can be hidden safely.

While the method of using additional transforms
is a generic concept that is data format indepen-
dent, statistical properties and the specific trans-
forms to preserve them depend on the data format
of the stego medium. We illustrate existing statis-
tical tests for the JPEG image format. Although
these tests are not capable of detecting data embed-
ded with our OutGuess [8] system, we present a new
test that does detect the presence of steganographic
content. We then demonstrate a specific transform
for the JPEG format that preserves the image’s sta-
tistical properties and thus prevents detection from
statistical tests based on frequency counts.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the prerequisites neces-
sary for secure steganography and discusses related
work in image steganography. In Section 3, we give
an overview of the embedding process and introduce
new methods to improve the embedding of hidden
messages. After reviewing JPEG encoding in Sec-
tion 4, we present statistical tests in Section 5. In
Section 6, we show how to apply transforms that
prevent detection by statistical tests. Section 7 pro-
vides an analysis of the transforms we use to correct
deviations in the JPEG image format. We conclude
in Section 8.

2 Prerequisites and Related Work

For steganography to remain undetected, the un-
modified cover medium needs to be kept secret1. If
it is exposed, a comparison between cover medium

1Throughout, we use the terminology established by Pfitz-
mann et al. [7].

and stego medium immediately reveals changes.
While an adversary gains knowledge of only approx-
imately half of the embedded bits, she still detects
modification.

Zöllner et al. [14] propose an information theoretic
approach to solve the problem of secure steganog-
raphy by employing nondeterministic selection. In
their model, the original medium is known to the ad-
versary but a preprocessing step introduces random-
ness into the cover medium. If the adversary can
not obtain the transformed cover medium, she can
not deduce information about the embedded mes-
sage by observing differences between the original
and the stego medium. In summary, they suggest
two necessary conditions for secure steganography:

• The secret key used to embed the hidden mes-
sage is unknown to the adversary.

• The adversary does not know the cover
medium.

In practice, these two conditions are easily met. It
suffices to create a cover medium with a digital cam-
era or by scanning holiday pictures, and to discard
the originals.

However, even though the original medium might
not be available for comparison, the embedding pro-
cess can introduce distortions. Analysis of many
unmodified images may reveal characteristics that
modified images lack. Identification of these charac-
teristics allows us to perform correcting transforms
after the embedding process that preserve the desir-
able characteristics.

Walton [12] authenticates an image by storing its
checksum in the redundant bits of the image. The
checksum is distributed uniformly over the image
with a pseudo-random number generator. The prob-
abilistic embedding in this paper differs by choos-
ing a seed for the pseudo-random number genera-
tor that reduces the necessary changes to the cover
medium.

Aura [2] uses a pseudo-random permutation gen-
erator to select the bits in the cover-medium. He
notes that if the secret key and cover size remain
unchanged, then the selected bits will be the same.
In our embedding process, however, the pseudo-
random number generator is reseeded to find the
best embedding; in addition, the bit selection de-
pends on the hidden message size.

Johnson and Jajodia [4] analyze images created
with available steganographic software. Although
they claim that current steganographic techniques
leave noticeable distortions in the discrete cosine
transform (DCT) coefficients, they do not further
discuss the nature of these distortions.

Westfeld and Pfitzmann [13] describe visual and
statistical attacks against common steganographic
tools. They discuss ways that common stegano-
graphic techniques change statistical properties in
the cover medium. For example, they evaluate one
particular program that embeds data in JPEG im-
ages. To detect hidden information embedded by
the program, they use a χ2-test [6], which estimates
the color distribution of an image carrying hidden
information and compares it against the observed
distribution.

The χ2-test is perhaps too discriminating, in that it
detects only programs that embed hidden message
bits without spreading them over all redundant bits.
In particular, this test does not detect the OutGuess
embedding process, presented in Section 3.

In Section 5, we describe an extended χ2-test that is
capable of detecting more subtle changes. Even so,
the methods developed in this paper prevent detec-
tion by both the original and the extended χ2-test.

3 Embedding Process

The specific transforms we introduce to perform
statistical corrections depend on embedding meth-
ods that distribute a hidden message over all re-
dundant bits. This section explains the underlying
steganographic embedding process and introduces
new methods to improve on it.

We divide the task of embedding hidden information
in a cover medium into two steps:

• Identification of redundant bits. Redundant
bits can be modified without detectably de-
grading the cover medium.

• The selection of bits in which the hidden infor-
mation should be placed.

Separating the embedding process into two parts al-
lows for easy replacement. A different data format

can be accommodated with a different identifica-
tion algorithm, and new selection strategies can be
implemented without changing other parts of the
system. In addition, the computational cost of the
selection does not depend on the cost of identifying
the redundant bits.

One valid objection against this separation is po-
tential loss of information that might be helpful in
the selection step. For example, an image may have
areas of high complexity that can either hold more
hidden information or in which modifications are
less likely to be detected. In our model, the selec-
tion algorithm sees only the redundant bits and is
not aware of their origin. To remedy this, the identi-
fication step adds attributes to each redundant bit.
These attributes indicate if a bit is locked or how
detectable changes to it are.

3.1 Identification of Redundant Bits

In general, identifying the redundant bits of a data
source depends on the specific output format. One
has to be aware that the embedding actually hap-
pens when the cover medium is written out in that
format. Conversion to the final data format might
include operations like compression, and is not nec-
essarily deterministic. Minimizing modifications to
the cover medium requires knowledge of the redun-
dant bits before the actual stego medium is created.
For example, the OutGuess [8] system performs all
operations involved in creating the output object
and saves the redundant bits encountered. For the
JPEG image format, this might be the LSB of the
discrete cosine transform coefficients; see Section 4.

The hidden information overwrites the redundant
bits when the final output is created. This requires
determinism in the conversion process, which can al-
ways be ensured by replacing random processes with
a pseudo-random number generator that is initial-
ized to the same state for the identification and the
final conversion step.

Before the identified bits are passed to the selec-
tion step, they are annotated with additional infor-
mation. This information includes locked bits, i.e.
bits that may not be modified in the embedding pro-
cess, and a heuristic that determines how detectable
changes to a bit might be.

A bit is locked when the bit has already been

used to carry hidden information. This can occur
when more than one message is hidden in the cover
medium.

3.2 Selection of Bits

Before the selection of redundant bits can begin,
an RC4 stream cipher [9] is initialized with a user-
chosen secret key. We use the keyed stream cipher
to encrypt the hidden message and derive a pseudo-
random number generator (PRNG) for the selection
process from it. The bits that are replaced with in-
formation from the hidden message are selected with
the help of the pseudo-random number generator as
follows.

First, we need to hide 32 state bits. The state is
a concatenation of a 16-bit seed and a 16-bit in-
teger containing the length of the hidden message.
By varying the seed the selection can find a bet-
ter embedding. Selection starts at the beginning of
the identified bits. We determine the next bit by
computing a random offset within a fixed interval
and adding that offset to the current bit position.
To compute the random offsets, we use the pseudo-
random number generator described earlier. Data
at the new bit position is replaced with the mes-
sage data. This process is iterated 32 times. The
resulting bit positions can be represented as,

b0 = 0
bi = bi−1 + Ri(x) for i = 1, . . . , n

where bi is the position of the i-th selected bit, and
Ri(x) is a random offset in the interval [1, x].

After the state data has been embedded, the pseudo-
random number generator is reseeded with the 16-
bit seed. The remaining length of the hidden mes-
sage is used to adapt the interval out of which the
random numbers are drawn to the amount of re-
maining data,

interval ≈ 2× remaining redundant bits
remaining length of message

.

The selection process continues as outlined above,
the only difference being that the interval is ad-
justed every eight bits. This way the hidden mes-
sage is distributed evenly over all available bits.

Choosing the interval in this way restricts the hid-
den message size to a maximum of 50% of the avail-
able redundant bits. We explain in Section 6 why
this is not a serious restriction. Not using all the
redundant bits gives the selection process a greater
opportunity to find a good embedding, as described
in Section 3.3. It also leaves enough bits for the cor-
recting transform to preserve frequency count based
statistics.

Because the PRNG is keyed with a secret, it is not
possible to find the hidden message without know-
ing the key. The recipient initializes the PRNG with
that secret and uses the same selection process to
retrieve the hidden message from the stego medium.
The interval size is changed only after the state has
been embedded, so the state is retrievable and can
be used to reseed the pseudo-random number gen-
erator correctly.

3.3 Beneficial Reseeding of the PRNG

We now explain how modifications to the cover
medium can be reduced with the selection algorithm
from the previous section.

In the selection process, the keyed pseudo-random
number generator can be reseeded with a freely cho-
sen 16-bit seed. In effect, the seed creates a family
of independent pseudo-random number generators.
Each pseudo-random number generator selects its
own subset of redundant bits. The selections result
in a different number of bits that have to be modi-
fied. The distribution of the number of changed bits
is binomial. The probability that k of n bits will be
changed is as follows,

p
(n)
k =

(
n

k

)
pk(1− p)n−k,

where p is the probability that a selected bit in the
redundant data has to be changed.

As the hidden data has been encrypted by the RC4
stream cipher, it has the properties of a random
stream, so we expect that p = 1

2 , and that the aver-
age number of changed bits will be close to 50% of
the bits in the hidden data.

Picking a seed that represents the changed bits at
the lower end of the binomial distribution allows
us to reduce the number of bits that have to be
modified; see Figure 1. It becomes harder to detect

the modifications, as more of the hidden message is
already naturally represented in the redundant bits.

2100 2150 2200 2250 2300 2350
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Changed bits in redundant data

P
ro

ba
bi

lit
y

Binomial distribution
Selection for different seeds

Figure 1: Probability distribution of changed bits
for different seeds compared to a binomial distribu-
tion with n = 4430 and p = 1

2 .

Detectability is also used as a bias in the selection
process. The selector does not try to reduce only
the number of changed bits but also the overall de-
tectability. Whenever a bit has to be modified, its
detectability will be added to a global bias. A higher
accumulated bias reduces the likelihood that this
specific embedding will be used.

The standard deviation of a binomial distribution
is given by σ =

√
npq with q = 1 − p; in our case

σ = 1
2

√
n. We notice that the ratio of the standard

deviation and the square root of the number of bits
in the hidden message remains constant,

σ√
n

= p.

Bits Standard Deviation σ Probability
n Expected Measured σ/

√
n

1216 17.436 16.193 0.464
2400 24.495 24.254 0.495
4176 32.311 32.205 0.498
6840 41.352 40.163 0.486
9800 49.497 44.257 0.447
14832 60.893 53.123 0.436

Figure 2: Deriving the probability p that a selected
bit has to be changed from the size of a hidden mes-
sage in bits n and the standard deviation σ for em-
bedding into a JPEG-image with 77135 redundant
bits.

As a result, more modifications can be avoided by
reseeding the PRNG for smaller hidden messages
than for bigger ones.

Measuring the standard deviation of changed bits
encountered in the selection step allows us to ver-
ify the probability p that a selected bit has to be
modified as shown in Figure 2.

Furthermore, by varying the seed the algorithm is
able to find an embedding that does not have con-
flicts with locked bits. This allows us to hide mul-
tiple data sets within a cover medium, which we
discuss in Section 3.5.

3.4 Choices with Coding Theory

While the seeding allows us to view the embed-
ding as a probabilistic process, the flexibility of the
PRNG family in selecting bits is not always enough
to avoid all bits that are locked or have a high de-
tectability. We could prevent modification of those
bits if it were possible to introduce errors into our
hidden message without destroying its content. In
other words, all introduced errors need to be cor-
rectable.

Coding theory provides us with codes that can cor-
rect errors by maximum-likelihood decoding. We
write [n, k, d] to indicate a k-dimensional linear code
of length n with Hamming distance d. Such a code
can correct t errors, where d = 2t + 1.

In general, the application of an error-correcting
code increases the data that we need to embed. A
k-bit data block will result in an n-bit code block.
However, we first observe that about one half of the
data is already represented and does not need to
be modified, and second, that we can introduce t
additional errors in the code block. Thus, if

n

2
− t =

k

2
(1)

holds, we expect the number of modifications for the
encoded data to be the same as for the unencoded
data. Equation (1) can be rewritten as

d = n− k + 1,

which is exactly the Singleton bound fulfilled by all
maximum distance separable (MDS) codes [10].

Unfortunately, the only non-trivial binary MDS
code is the repetition code [n, 1, n]. It’s major draw-

back is the n-fold repetition of the data, so that it
is useful only for small hidden messages.

Once the data is encoded, we can choose t bits in
each code block that do not need to be modified in
the redundant data. Our choice is determined by
conflicts with already locked bits from a previously
embedded message, and after all conflicts have been
resolved by the detectability of changes.

The approach that we take here is similar to the
parity encoding suggested by Anderson [1]. How-
ever, using error-correcting codes has advantages
over using the parity encoding. We can trade se-
curity against capacity by choosing a code that is
not MDS. Additionally with error-correcting codes
only n− t bits are locked, whereas the parity encod-
ing locks all n bits.

3.5 Plausible Deniability

To embed a hidden message into the cover medium,
we modify the redundant data of the cover medium.
The redundant data might have properties of a sta-
tistical nature of which we are not aware, or un-
derstand less well than an adversary. If the em-
bedding process changes the characteristics of the
cover medium, a more knowledgeable observer can
conclude the presence of a hidden message without
necessarily being able to point to the specific bits
that were changed.

The originator of the stego medium might now be
forced to reveal the hidden communication. How-
ever, we assume that the only predicate the observer
can ascertain is the fact that the cover medium was
modified. If the sender embeds multiple hidden mes-
sages into the cover medium, he can include an in-
nocuous message, turn that over on request, claim
that there is no other information hidden in the
stego medium, and leave unharmed. This is called
plausible deniability.

Actually, the described mechanism already implic-
itly supports plausible deniability. More than one
hidden message can be embedded, as the “locked
bit” attribute prevents information from other hid-
den messages from being overwritten. Depending
on the size of the hidden messages, the likelihood
that a selection is found that does not conflict with
previously locked bits can be small. In that case,
error-correcting codes can be employed to increase

the selection flexibility.

3.6 Hidden Message Determines Cover

Usually, a hidden message is embedded into a spe-
cific medium. Instead of selecting a specific cover
medium, the hidden message can be examined and
a cover medium will be selected that allows embed-
ding with minimal modifications.

This can be achieved by embedding the hidden mes-
sage into multiple cover media. Afterwards, the
cover medium that results in the fewest modifica-
tions is chosen.

As expected, the distribution of changed bits in the
different cover media follows a binomial distribution
similar to the one shown in Section 3.3.

4 JPEG image format

While the embedding methods mentioned in this pa-
per are independent of the actual data format of the
cover medium, each data format has its own statis-
tical properties. We restrict our analysis to a very
data format: JPEG [11]. However, similar charac-
teristics can also be found in other formats. The
general idea of correcting statistical deviations still
applies, but requires different, appropriate trans-
forms.

The JPEG image format uses a discrete cosine
transform (DCT) to transform successive 8×8-pixel
blocks of the image into 64 DCT coefficients each.
The DCT coefficients F (u, v), of an 8 × 8 block of
image pixels f(x, y), are given by

F (u, v) =
1
4
C(u)C(v)

[7∑
x=0

7∑
y=0

f(x, y)∗

cos
(2x + 1)uπ

16
cos

(2y + 1)vπ

16

]
,

where C(u), C(v) = 1/
√

2 when u and v equal 0 and
C(u), C(v) = 1 otherwise.

Afterwards the coefficients are quantized by the fol-
lowing operation:

FQ(u, v) = IntegerRound
(F (u, v)

Q(u, v)

)
,

−40 −30 −20 −10 0 10 20 30 40
0

5000

10000

15000

C
oe

ffi
ci

en
t F

re
qu

en
cy

Modified image

−40 −30 −20 −10 0 10 20 30 40
0

5000

10000

15000

C
oe

ffi
ci

en
t F

re
qu

en
cy

Original image

−40 −30 −20 −10 0 10 20 30 40
−20

−10

0

10

20

D
iff

er
en

ce
 in

 p
er

ce
nt

DCT coefficents

Histogram difference

Figure 3: Differences in the DCT histograms are no-
ticeable when the embedding process does not make
any statistical corrections.

where Q(u, v) is a 64-element quantization table.

The least-significant bits of those quantized DCT
coefficients, for which FQ(u, v) 6= 0 and 6= 1, are
used as redundant bits into which the hidden mes-
sage is embedded.

5 Statistical Tests

Statistical tests can reveal if an image has been mod-
ified by steganography. These tests determine if an
image’s statistical properties deviate from the norm.
Some tests are independent of the data format and
just measure the entropy of the redundant data.

The simplest test is to measure the correlation to-
wards one. A more sophisticated one is Ueli Mau-
rer’s “Universal Statistical Test for Random Bit
Generators” [5]. We expect images with hidden data
to have a higher entropy than those without.

Westfeld and Pfitzmann outline an interesting sta-
tistical attack [13]. They observe that for a given
image, the embedding of encrypted data changes the
histogram of color frequencies in a particular way.

In the following, we clarify their approach and show
how it applies to the JPEG format. In their case,
the embedding process changes the least significant
bits of the colors in an image. The colors are ad-

dressed by their indices in the color table. If ni and
n∗i are the frequencies of the color indices before and
after the embedding respectively, then the following
relation is likely to hold

|n2i − n2i+1| ≥ |n∗2i − n∗2i+1|.

In other words, the frequency difference between ad-
jacent colors is reduced by the embedding process.
In an encrypted message, zeros and ones are equally
distributed. For n2i > n2i+1 that means that the
bits of the hidden message change n2i to n2i+1 more
frequently than the other way around.

The same is true in the case of the JPEG data for-
mat. Instead of measuring the color frequencies, we
observe differences in the frequency of the DCT co-
efficients. Figure 3 displays the histogram before
and after a hidden message has been embedded in
a JPEG image. The histogram differences are dis-
played in the subgraph at the bottom of the figure.
We observe a reduction in the frequency difference
between coefficient −1 and its adjacent DCT coeffi-
cient −2. Adjacent means that the coefficients differ
only in the least significant bit. A similar reduction
in frequency difference can be observed between co-
efficients 2 and 3.

Westfeld and Pfitzmann use a χ2-test to determine
whether the color frequency distribution in an image
matches a distribution that shows distortion from
embedding hidden data. In the following, we out-
line their test for the DCT coefficients in a JPEG.
Because the test uses only the stego medium, the
expected distribution y∗i for the χ2-test has to be
computed from the image. The assumption for a
modified image is that adjacent DCT frequencies
are similar. Let ni be the DCT histogram, we then
take the arithmetic mean,

y∗i =
n2i + n2i+1

2
,

to determine the expected distribution and compare
against the observed distribution

yi = n2i.

The χ2 value for the difference between the distri-
butions is given as

χ2 =
ν+1∑
i=1

(yi − y∗i)2

y∗i
,

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Analysed position in image in percent

P
ro

ba
bi

lit
y

of
 e

m
be

dd
in

g
in

 p
er

ce
nt

No data embedded (not visible)
Data embedded

Figure 4: An extended χ2-test where each sample
covers 3.2% of the DCT coefficients detects the em-
bedding in the modified image, but does not react
to an unmodified image.

where ν are the degrees of freedom, that is, the num-
ber of different categories in the histogram minus
one. It may be necessary to sum adjacent values
from the expected distribution and from the ob-
served distribution to ensure that there are enough
counts in each category. Westfeld and Pfitzmann
require that each count is greater than four. If two
adjacent categories are summed together, the de-
grees of freedoms need to be reduced by one.

The probability p that the two distributions are
equal is given by the complement of the cumulative
distribution function,

p = 1−
∫ χ2

0

t(ν−2)/2e−t/2

2ν/2Γ(ν/2)
dt,

where Γ is the Euler Gamma function.

The probability of embedding is determined by cal-
culating p for a sample from the DCT coefficients.
The samples start at the beginning of the image and
for each measurement the sample size is increased.

Because the test uses an increasing sample size and
always starts at the beginning of the image, it de-
tects changes only if the frequency histogram is dis-
torted continuously from the beginning of the image.
Intermediate areas in the image that do not exhibit
distortions can cause negative test results. This is
the case even if other areas in the image are clearly
distorted. For this reason, the test does not detect
the embedding process described in this paper.

5.1 Detection

It is possible to extend Westfeld and Pfitzmann’s
χ2-test to be more sensitive to partial distortions in
an image. Observe that two identical distributions
produce about the same χ2 values in any part of the
distribution. Instead of increasing the sample size
and applying the test at a constant position, we use
a constant sample size but slide the position where
the samples are taken over the entire range of the
image. Using the extended test we are able to detect
our simple embedding process; see Figure 4.

In this case, the sample size is set to 3.2% of all
DCT coefficients. The test starts at the beginning
of the image, and the position is incremented by one
percent for every χ2 application. This extended test
does not react to an unmodified image, but detects
the embedding in some areas of the stego image.

To find an appropriate sample size, we choose an
expected distribution for the extended χ2-test that
should cause a negative test result. Instead of calcu-
lating the arithmetic mean of coefficients and their
adjacent ones, we take the arithmetic mean of two
unrelated coefficients,

y∗i =
n2i−1 + n2i

2
.

A binary search on the sample size is used to find a
value for which the extended χ2-test does not show
a correlation to the expected distribution derived
from unrelated coefficients.

6 Correcting Statistical Deviations

Not all of the redundant bits are used when em-
bedding the hidden message. In fact, the selection
process allows no more than half of the redundant
bits to be used for data.

If we know what kind of statistical tests are be-
ing used to examine an image for modification, we
can use the remaining redundant bits to correct any
statistical deviation that the embedding process cre-
ated.

Our first (naive) approach included preserving the
correlation to one and the entropy measured by the

−40 −30 −20 −10 0 10 20 30 40
0

5000

10000

15000

C
oe

ffi
ci

en
t F

re
qu

en
cy

Modified image

−40 −30 −20 −10 0 10 20 30 40
0

5000

10000

15000

C
oe

ffi
ci

en
t F

re
qu

en
cy

Original image

−40 −30 −20 −10 0 10 20 30 40
−20

−10

0

10

20

D
iff

er
en

ce
 in

 p
er

ce
nt

DCT coefficents

Histogram difference

Figure 5: The naive statistical corrections cause the
frequency of adjacent DCT coefficients to be equal-
ized. It is immediately evident that the image is
modified.

Maurer test. Essentially, when a bit is changed
from zero to a one, we try to change a nearby bit
from one to zero. Although, this approach helps to
prevent entropy increase in the redundant data, it
completely neglects statistics that depend on macro-
scopic properties. For the JPEG format, the result
is a distortion in the DCT histogram, illustrated in
Figure 5. The DCT coefficients −2 and −1 are even
closer together than in Figure 3, and the frequencies
for DCT coefficients 2 and 3 are nearly the same.

If we want to avoid distortions in the DCT his-
togram, additional corrections are necessary to
maintain the distribution of the DCT coefficients.
For example, suppose embedding a hidden mes-
sage modifies the j-th DCT coefficient, DCT (j). If
DCT (j) = 2i, it will be modified to 2i + 1. We cor-
rect this change by finding an adjacent coefficient
DCT (k), that is DCT (k) = 2i + 1, and changing it
to 2i. If we correct every change to the DCT coef-
ficients, their histogram will be identical to the one
of the original image.

Furthermore, a correcting transform that essentially
swaps values keeps all frequency counts constant.
Thus, no statistic that is based purely on frequency
counts will be able to detect a difference between
the original and the stego medium.

We make the following observation for frequency
count based statistics. Let f be a frequency count
in the histogram, and f̄ its adjacent count. With-

out loss of generality, let f ≥ f̄ . Let α denote the
fraction of redundant bits that are used to hold the
hidden message. After embedding, we expect the
following changes in frequencies:

f∗ = f − α

2
(f − f̄),

f̄∗ = f̄ +
α

2
(f − f̄).

In order for the transform to be able to correct
the frequency count, enough unmodified coefficients
need to be left in f̄ so that the change in f can be
adjusted, in other words the relation

(1− α)f̄ ≥ α

2
(f − f̄)

must hold.

The relation yields an a priori estimate for the frac-
tion α of redundant bits that can be used for data
while still having enough bits left for the correcting
transform to work:

α ≤ 2f̄

f + f̄
.

Given a hidden message, we can use the estimate
to choose an image for which the correcting trans-
form will be able to preserve the original frequency
counts. Interestingly enough, for JPEG the fraction
of redundant bits that can be used to hold the hid-
den message does not increase linearly for images
with more DCT coefficients; see Figure 6.

The correcting transform has the following require-
ments:

1. For any part of the image, the distribution of
the DCT coefficients should be similar to the
unmodified image.

2. The number of corrections necessary to pre-
serve statistical properties should be small.

Some statistical properties of the DCT coefficients
may be unknown to us, so we try to prevent intro-
ducing additional distortions. Such distortions can
result from corrections meant to preserve the statis-
tics that we do know about. If we keep the num-
ber of additional modifications small, we reduce the
likelihood of further distorting the image’s statisti-
cal properties.

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 r
ed

un
da

nt
 b

its
 u

sa
bl

e
fo

r
da

ta
 h

id
in

g

Number of DCT coefficients

Figure 6: The fraction of the DCT coefficients that
can be used for data hiding does not increase lin-
early for images with more coefficients.

Furthermore, if steganography is to remain unde-
tected by the extended χ2-test, all parts of the im-
age must be free of statistical distortions. The test
will detect no embedding if each part of the modi-
fied image has a DCT coefficient distribution similar
to the original.

Algorithm 1 meets both requirements. It is run after
the embedding process finishes. In step 1, we com-
pute the DCT frequency histogram from the origi-
nal image and store it in N . Step 2 determines the
threshold frequencies. The threshold indicates how
many errors in the histogram we are willing to toler-
ate for a specific DCT coefficient. It is calculated by
multiplying the observed frequencies of the DCT co-
efficients with the scaling factor α. When the num-
ber of errors for a coefficient exceeds its threshold,
we modify the image to preserve the statistics for
that coefficient.

Step 3 finds AdjDCT , the index of the coefficient
adjacent to the modified one. In step 4, we deter-
mine if there are pending errors for the adjacent
coefficient that should be corrected. In that case,
the correction for the current DCT coefficient can
be traded against the pending correction of its ad-
jacent coefficient.

If that is not the case, we check in step 5 if the
number of errors for the coefficient, Nerror[DCT (i)],
can be incremented without exceeding its threshold
value. If another increment is possible, we continue

1 N ← DCTFreqTable(original);
k ← number of coefficients in image;

2 α← 0.03 ∗ 5000/k;
for i← DCTmin to DCTmax do

Nerror[i]← 0;
N∗[i]← αN [i];

endfor
for i← 1 to k do

if DCT (i) unmodified then
continue in loop;

endif
3 AdjDCT ← DCT (i)⊕ 1;
4 if Nerror[AdjDCT] then

decrement Nerror[AdjDCT];
continue in loop;

endif
5 if Nerror[DCT (i)] < N∗[DCT (i)] then

increment Nerror[DCT (i)];
continue in loop;

endif
if exchDCT (i, DCT (i)) fails then

increment Nerror[DCT (i)];
continue in loop;

endif
endfor
for i← DCTmin to DCTmax do

while Nerror[i] 6= 0 do
decrement Nerror[i];
exchDCT (k, i);

endw
endfor

Algorithm 1: This transform preserves the statis-
tical properties of an JPEG image. It keeps track
of differences in the frequency counts between orig-
inal and stego medium. If the differences exceed a
certain threshold, the frequency count is adjusted.

with the next modification. Otherwise, we have to
correct the current modification in the image. The
exchDCT algorithm is responsible for that. If that
fails too, we just go ahead and increase the error for
the coefficient above the threshold and take care of
it later.

After all modifications have been examined, we need
to correct all remaining errors. Not all the correc-
tions might be possible. However, if we are able to
correct most of the errors, changes in the histogram
are not detectable.

The exchDCT () algorithm is very simple. Given a
coefficient value DCT and a position i in the im-

age, it tries to find the same coefficient at a prior
position and change it to its adjacent coefficient. It
starts searching near the coefficient that caused the
algorithm to be executed and works its way to the
beginning of the image. Coefficients that hold data
from the hidden message or that have been used
for previous corrections are skipped by exchDCT ().
The algorithm indicates success or failure.

Function: exchDCT ()
Data : i, DCT

AdjDCT ← DCT ⊕ 1;
for j ← i− 1 to 1 do

if DCT (j) = DCT and
DCT (j) does not hold data and
DCT (j) has not been used for corrections
then

DCT (j)← AdjDCT ;
return success

endif
endfor
return failure

Algorithm 2: Find a specific DCT coefficient and
change it to its adjacent DCT coefficient.

7 Analysis

To evaluate our correction algorithm, we embedded
data into 54 pictures taken with a Fuji MX-1700
digital camera around Ann Arbor, Michigan. The
size of the images is 640× 480 pixels. After the im-
ages were downloaded from the camera, they were
recompressed with a quality factor of 75. This sim-
ulates the conversion step in the embedding process
without actually embedding any data.

For this set of images, the average number of DCT
coefficients that we can use for modification is about
46, 000, varying between 30, 000 and 97, 000. Each
of these contributes one redundant bit.

Without embedding any data in the redundant bits,
we notice a strong correlation towards one. On av-
erage, 63.8% of all the bits are set with a standard
deviation of ±3.4% between images.

We embedded the first chapter of Lewis Carroll’s
“The Hunting of the Snark” into the images. After
compression, the hidden message had a size of about
14, 700 bits.

Method One-Correlation Maurer Test
All images

Unmodified 63.41%± 3.50% 6.732± 0.233
No corrections 59.10%± 3.19% 6.976± 0.168

Corrections 62.91%± 3.36% 6.775± 0.231
Images for which a priori estimate holds

Unmodified 63.06%± 3.53% 6.738± 0.241
Corrections 63.06%± 3.53% 6.752± 0.231

Figure 7: Comparison between unmodified images,
images with data embedded but without statistical
corrections, and finally images with data embedded
plus statistical corrections.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Analysed position in image in percent

P
ro

ba
bi

lit
y

of
 e

m
be

dd
in

g
in

 p
er

ce
nt

Bad Corrections
No Corrections
Good Corrections (not visible)

Figure 8: The extended χ2-test detects the embed-
ding for the image that has no statistical correc-
tions. Our naive correction is even more detectable.
However, an image that receives the proper statis-
tical correction can not be distinguished from an
unmodified image.

Figure 7 shows the results for the simple statistics
that operate only on the redundant data. With a
block size of eight bits, the result of the Maurer test
for a truly random source is 7.184. We observe a
noticeable increase in entropy for images that have
not received statistical correction. The correlation
towards one decreases noticeably, too. However, for
the images that have been corrected for statistical
distortions the values are very close to the data from
the unmodified images. Examining only the im-
ages for which the a priori estimate holds, we notice
that the differences between the unmodified images
and the images that received corrections are even
smaller. These simple tests are thus not able to de-
tect our steganography.

The more interesting statistic is the DCT frequency
histogram. If we plot the DCT histogram of im-
ages that have received corrections, we are no longer
able to find noticeable differences in the distribu-
tion. Figure 8 shows the extended χ2-test. The test
detects the image without corrections and the image
corrected with our naive method, but it is unable to
detect the image corrected for statistical deviations
with the transform in Algorithm 1.

The correcting transform causes about 2967 ± 434
additional changes to the redundant data. That is
approximately 20% of the size of the hidden mes-
sage. The average number of differences that can
not be corrected is 186± 400. The majority of cor-
rections fail for images for which the a priori esti-
mate indicates a maximum message size that was
smaller than the one we try to embed. However, if
we look only at images for which the estimate holds,
the correcting transform changes 3106±415 bits and
the average number of differences that can not be
corrected is 5± 5.7.

It is possible to further decrease the changes from
the correcting transform, by biasing the selection al-
gorithm against modifying coefficients with a higher
frequency than their adjacent coefficients. The iden-
tification step from Section 3.1 adds the annota-
tion that changes to bits originating from higher
frequency coefficients are easier to detect. Using
the worst selection, the correcting transform causes
3365 ± 442 additional changes. The best selection
results in only 3054±430 changes. Comparing each
image, we see that using this technique, the correct-
ing transform can avoid 311±68 changes in average.

To verify the correctness of the a priori estimate,
we embed messages of different sizes and apply the
correcting transform. We note that for message sizes
below the estimate the transform is able to correct
most errors. Increasing the message size above the
estimate causes a noticeable increase in errors.

The transform also has to meet the restriction that
there be no area in the image that shows notice-
able distortion in the DCT coefficients. Figure 9
shows the histogram difference of a modified image
in comparison to the original. The differences in
the frequency of the DCT coefficients are negligi-
ble, thus the extended χ2-test does not indicate any
hidden data.

−120 −100 −80 −60 −40 −20 0 20 40 60 80

−0.2

−0.1

0

0.1

0.2

D
iff

er
en

ce
 in

 p
er

ce
nt

Histogram difference

Bits 1 − 23946

−120 −100 −80 −60 −40 −20 0 20 40 60 80

−0.2

−0.1

0

0.1

0.2

D
iff

er
en

ce
 in

 p
er

ce
nt Bits 23947 − 47892

−120 −100 −80 −60 −40 −20 0 20 40 60 80

−0.2

−0.1

0

0.1

0.2

D
iff

er
en

ce
 in

 p
er

ce
nt

DCT coefficients

Bits 47893 − 71840

Figure 9: Examining the differences in the DCT
histogram for parts of the image shows no noticeable
deviations from the unmodified original. The largest
difference is around 0.2%.

8 Conclusion

Even though steganography is often undetectable by
the observer’s senses, statistical analysis can reveal
the presence of a hidden message.

We introduced two new methods to improve the
selection process. The first uses a seeded pseudo-
random number generator to determine the fewest
modifications to the cover medium. The second uses
error-correcting codes to increase the flexibility in
selecting bits without increasing the number of nec-
essary changes. Together, these methods can be
used to provide plausible deniability be embedding
multiple hidden messages in the cover medium.

Although the commonly used χ2-test is unable to
detect modifications from the improved embedding
process described in this paper, we described an ex-
tended χ2-test that is capable of detecting modified
areas in parts of an image.

To counter statistical tests based on frequency
counts like the extended χ2-test, we introduced a
new method to correct the statistical deviations
from the embedding process and a correcting trans-
form for the JPEG format. As a result, none of the
presented statistical tests can detect the presence of
steganography. We also presented an a priori es-

timate that allows us to determine the amount of
data that can be hidden in an image while still be-
ing able to preserve frequency count based statistics.
Given a hidden message, we can use the estimate to
quickly choose an image in which a specific message
can be embedded safely.

The methods to improve the embedding and to
apply correcting transforms to preserve statisti-
cal properties have been implemented in the Out-
Guess [8] program, which is freely available as source
code at www.outguess.org.

9 Acknowledgments

I thank Peter Honeyman and Patrick McDaniel for
careful reviews and suggestions, and Peter Gutmann
for being a good shepherd. I also thank Andrew
Carra for earlier discussions on reducing modifica-
tions to the cover medium, and Sean Coffey for help-
ful comments on error-correcting codes.

References

[1] Ross J. Anderson and Fabien A. P. Petitcolas.
On The Limits of Steganography. Journal on
Selected Areas in Communication, 16(4):474–481,
May 1998.

[2] Thomas Aura. Practical Invisibility in Digital Com-
munication. In Proceedings of Information Hiding
- First International Workshop. Springer-Verlag,
May/June 1996.

[3] Oded Goldreich. Modern Cryptography, Proba-
bilistic Proofs and Pseudo-randomness. Springer-
Verlag, 1999.

[4] Neil F. Johnson and Sushil Jajodia. Steganalysis
of Images Created Using Current Steganographic
Software. In Proceedings of Information Hiding
- Second International Workshop. Springer-Verlag,
April 1998.

[5] Ueli M. Maurer. A Universal Statistical Test for
Random Bit Generators. Journal of Cryptology,
5(2):89–105, 1992.

[6] D. Moore and G. McCabe. Introduction to the Prat-
ice of Statistics. W. H. Freeman and Company, 3rd
edition, 1999.

[7] Birgit Pfitzmann. Information Hiding Terminology.
In Proceedings of Information Hiding - First In-
ternational Workshop. Springer-Verlag, May/June
1996.

[8] Niels Provos. OutGuess - Universal Steganography.
http://www.outguess.org/, August 1998.

[9] RSA Data Security. The RC4 Encryption Algo-
rithm, March 1992.

[10] J. H. van Lint. Introduction to Coding Theory.
Springer-Verlag, 2nd edition, 1992.

[11] G. W. Wallace. The JPEG Still Picture Com-
pression Standard. Communications of the ACM,
34(4):30–44, April 1991.

[12] Steve Walton. Information Authentication for a
Slippery New Age. Dr. Dobbs Journal, 20(4):18–
26, April 1995.

[13] Andreas Westfeld and Andreas Pfitzmann. Attacks
on Steganographic Systems. In Proceedings of In-
formation Hiding - Third International Workshop.
Springer Verlag, September 1999.

[14] J. Zöllner, H. Federrath, H. Klimant, A. Pfitz-
mann, R. Piotraschke, A. Westfeld, G. Wicke, and
G. Wolf. Modelling the Security of Steganographic
Systems. In Proceedings of Information Hiding
- Second International Workshop. Springer-Verlag,
April 1998.

